2

Size: px
Start display at page:

Download "2"

Transcription

1 III

2 2

3 i (Gamma-Ray Burst : GRB) 10 msec 100 sec GRB erg erg GRB GRB GRB GRB 2007 Ikaros (Interplanetary Kite craft Accelerated by Radiation Of the Sun) (GAmma-ray burst Polarimeter : GAP) (Pre-flight Model : PM) (Flight Model : FM) 7 X 8 X 200 MeV proton/cm 2 /s GRB GRB 40% 2 75% 5 GRB

4

5 iii i GRB GRB GRB GRB GRB Ikaros X X X

6 iv β β GAP (M) (η) (MDP) EGS EGS ( ) GEANT4 MEGAlib MEGAlib Body EGS MEGAlib GAP

7 v EGS MEGAlib GAP GAP X GAP GRB CXB CsI Ge CsI Xe GAP

8 vi 10.1 GAP GRB A 103 A A

9 1 1 (Gamma-Ray Burst : GRB) 10 msec 100 sec GRB erg erg GRB GRB 100 sec 1967 GRB GRB X GRB GRB GRB (shell) GRB GRB GRB Ikaros (Interplanetary Kite craft Accelerated by Radiation Of the Sun) (GAmma-ray burst Polarimeter : GAP) (Pre-flight Model : PM) (Flight Model : FM)

10 2 1 X X X 80% GRB

11 3 2 GRB 2.1 GRB (Gamma-Ray Burst :GRB ) 10 msec 100 sec GRB erg erg GRB 1967 VELA VELA 16 GRB 1973 GRB Ic GRB GRB 2.1 CGRO BATSE (Burst And Transient Source Exeperiment) 2.2 BATSE GRB 2 GRB 2 GRB 2 GRB GRB GRB 25% 0.3 BATSE GRB 2.3 BATSE 2704 GRB GRB GRB 1973 X BeppoSAX X GRB BeppoSAX

12 4 2 GRB 2.1 CGRO BATSE GRB 2.2 CGRO BATSE 1234 GRB X X X X GRB 2.4 GRB X GRB GRB GRB GRB GRB

13 2.1 GRB CGRO BATSE 2704 GRB 2.4 BeppoSAX GRB X HETE-2 GRB GRB Z=0.169 ( 20 ) (SN 2003dh) 2.5 GRB SN 2003dh 33 GRB GRB

14 6 2 GRB 2.5 GRB030329/SN 2003dh GRB SN 2003dh GRB GRB BATSE 2.1 [2] ( ) hν N(ν) = N 0 (hν) α exp, hν < (α β)e 0 (2.1) E 0 = N 0 {(α β)e 0 } (α β) (hν) β exp(β α), hν > (α β)e 0 (2.2) E 0 α (β) ( ) exp( hν/kt ) GRB 2.1 GRB 2.1 α 1 β 2 β GRB GRB GRB [1]

15 2.2 GRB GRB GRB 2.2 GRB GRB γ 1 GRB E = erg (shell) shell γ 100 shell shell shell shell 2.7 GRB f 10 2 erg/cm 2 /s d cm GRB GRB

16 8 2 GRB central engine variable wind Inter Stellar Medium internal shock (GRB) external shock (afterglow) 2.7 GRB GRB L γ 4πd 2 f erg/s L g erg/s GRB GRB GRB t 10 R c t cm E L γ t erg (γγ e + e ) f p e + e σ T σ T f p E/m e c 2 E σ T = cm kev cm 2 R cm GRB e + e GRB GRB γ R γ 2

17 2.3 GRB 9 X E b γ b R c t R cγ 2 t 2.8 γ A B 2.8 t R/cγ 2 << R/c γ 1 ( ) γ 1 R t R/c A B t R/cγ 2 A C t R/cγ 2 v = c(1 γ 2 ) 1/2 c(1 γ 2 /2) A C A cr/v R R/γ 2 γ 2(β B+1) γ 4 γ > GRB GRB GRB RHESSI GRB RHESSI kev 20 MeV GRB ± 20 %

18 10 2 GRB INTEGRAL SPI GRB041219a SPI kev 10 MeV GRB GRB GAP GRB 2.9 RHESSI 3 kev-20 MeV 2.10 RHESSI 80 ± 20 % 2.11 INTEGRAL SPI

19 2.3 GRB GRB GRB shell GRB shell 1/γ shell GRB /γ 1/γ 2.3.2

20 12 2 GRB

21 13 3 Ikaros 50 cm (INterplanetary Kite-craft Accelerated by Radiation Of the Sun:Ikaros) Ikaros 3.1 Ikaros Ikaros GAP GAP 3.2 Ikaros 200 GAP 1 GRB

22 14 3 Ikaros 3.1 Ikaros GAP 3.2 GAP

23 Π 4.1 Π I pol I I pol : I : (4.1) Z X-Y X Y X Y I X I Y X I pol I unpol Y X X X X Y 4.2 I X unpol = I Y unpol = 1 2 I unpol (4.2) 4.3 I X pol = I pol (4.3) I Y pol = 0

24 16 4 X-Y X Y I max = I X = 1 2 I unpol + I pol (4.4) I min = I Y = 1 2 I unpol Π = I max I min I max + I min (4.5) Π = 1 Π = X K E e = hν E b (4.6) E b X X [8] θ 4.1 X ( ) Z ν ν E e p e θ φ θ c φ c

25 4.2 X x z θ phi hν = E e + hν (4.7) hν c = p e cos θ e + hν cos θ c (4.8) p e sin θ e cos φ e + hν c p e sin θ e sin φ e + hν c sin θ cos φ = 0 (4.9) sin θ sin φ = 0 (4.10) p e E e (p e c) 2 = E e (E e + 2m e c 2 ) hν hν = 1 + hν (4.11) mc 2 (1 cos θ) E e = h(ν ν ) = m e c 2 2ν 2 cos 2 θ e (hν + m e c 2 ) 2 (hν) 2 cos 2 (4.12) θ e dσ/dω 4.14 dσ dω = r2 0 E 2 2 E 2 ( E E + E E 2 sin2 θ cos 2 φ E E = 1 + E (1 cos θ) m e c2 E = hν, E = hν, r 0 = e m e c 2 ) (4.13)

26 18 4 dσ dω = 1 sin 2 θ cos 2 φ r γ(1 cos θ) 2 [ 1 + γ 2 (1 cosθ) 2 ] 2(1 sin 2 θ cos 2 φ){1 + γ(1 cos θ)} γ = E m e c 2 (4.14) γ dσ dω = r2 0(1 sin 2 θ cos 2 φ), E m e c 2 (4.15) keV 100keV 500keV 2MeV 10MeV keV 100keV 500keV 2MeV 10MeV x axis 0 y axis z axis x axis 4.2 θ 4.3 θ = 90 φ 4.2 θ 1keV( ) θ θ = 0, 180 z θ = 90, 270 x γ γ > θ = 90 φ φ 10.9 θ = 90 φ 4.3 θ = 90 1 cos 2 φ φ sin (x ) σ 4.14 dω [{ 1 σ = 3 8γ σ 0 2(γ + 1) γ 2 } log(2γ + 1) γ 1 2(2γ + 1) 2 ] (4.16)

27 4.2 X 19 σ 0 = 8πr2 0 3 = [cm 2 ], γ = E m e c 2 σ 0 σ MeV MeV X 4.17 I = I 0 e µx (4.17) I : I 0 : µ : 1/cm x : cm σ σ = µ ρ (4.18) I = I 0 e σρx (4.19) I : I 0 : ρ : g/cm 3 σ : cm 2 /g x : cm

28 ρx σρx g/cm 2 [24] ( ) A x B y 1 y 2 y n

29 [8] 4.1 g cm 2 ( MeV ) Be C Al Cu Pb Air , A + x B + y 1 + y y n (4.20) A(x, y 1 y 2 y n )B (4.21) A x B y

30 22 4 A(x, x)a A(x, x )A A(x, y)b A(x, f) (p, p),(p, n),(p, p ),(p, α), (p, γ),(p, 2n),(p, pn) (p, n), (p, pn) X Y Y Q E er E e = E er E b (4.22) E b K L M

31 beta kev MeV X 1 ns X K K X L K L K α K X X X X X β u κ 1 n β c [ (n β)(1 β 2 ] ) E(r, t) = q κ 3 R 2 + q c [ n ] κ 3 (n β) β R (4.23) B(r, t) = [n E(r, t)] (4.24) [] R

32 R β 1 E rad = [ q Rc 2 n (n u) ] (4.25) 4.6 B rad = [n E rad ] (4.26) E rad = B rad = q u sin Θ (4.27) Rc2 4.6 S = c 4π E2 rad = c q 2 u 2 4π R 2 sin Θ (4.28) c4

33 dw dtdω = q2 u 2 4πc 3 sin2 Θ (4.29) P = dw dt = q2 u 2 4πc 2 sin 2 Θ dω (4.30) (4.31) = q2 u 2 4πc (1 µ2 ) dµ P = 2q2 u 2 3c X 4.7 X

34 B m q d dt (γmc2 ) = qv E = 0 d dt (γmv) = q c v B (4.32) 2 γ = const v = const 1 v = v + v dv dt = 0 (4.33) v dt = q γmc v B (4.34)

35 ω B = qb γmc (4.35) v = γ2 v v = v ω B P = 2q2 3c 3 γ4 q2 B 2 γ 2 m 2 c 2 v2 (4.36) /γ 1 γ S = a θ = 2a γ v = v θ s = v t v B α γm v t = q c v B (4.37) θ s = qb sin α γmcv (4.38) a = v ω B sin α (4.39)

36 s 2v γω B sin α (4.40) t 1 2 t 2 t A 1 1 t A 2 2 t A 1 t A 2 R t A 1 = R c (4.41) t A 2 = (t 2 t 1 ) + R c (t 2 t 1 )v c (4.42) (4.43) t A = t A 2 t A 1 = (t 2 t 1 ) (t 2 t 1 )v c = (t 2 t 1 ) ( ) 1 v c 2 s = v(t 2 t 1 ) t 2 t 1 = ω B sin αγ (4.44) (4.45) t A = t A 2 t A 1 = v 1 v c = 1 1 γ γ 2 = t A 1 γ 3 ω B sin α ω c 1 t 2 γω B sin α ( 1 v c ) (4.46) 2 1 γω B sin α 2γ 2 (4.47) ω c γ 3 ω B sin α (4.48)

37 β ( ν ) (A, Z) (A, Z + 1) + e + ν (4.49) β + ( ν ) (A, Z) (A, Z 1) + e + + ν (4.50) ( K ) K X (A, Z) + e (A, Z 1) + ν (4.51)

38

39 31 5 X MeV 2m e c cm 1 ns

40

41 ev 1 ev 10 PN PN p n ( ) PN X /cm 3 (high purity germanium detector:hpge ) cm

42 ORTEC GEM (NaI) (CsI) (Z) Z NaI CsI CsI NaI NaI 5.1 [8] ( ) ( )

43 5.4 GAP [g/cm 3 ] [nm] [µs] [ /MeV] NaI(Tl) CsI(Tl) (64 ) (36 ) BGO GSO (90 ) (10 ) (NE102A) GAP GRB 100 kev CsI (Tl) 5.9 θ = 90

44 φ 5.9 GAP θ = 90 φ (M) 5.9 CsI φ 5.10 φ M 100% N max N min 10.2 M N max N min N max + N min = (5.1) M 100%

45 θ φ M 5.3 Π = M M 1 00% (5.2) (η) η CsI CsI CsI CsI GRB (MDP) (Minimum Detectable Polarization:MDP) (M η) MDP

46 38 5 (a) M (b) η 5.11 η M MDP 10.3 [23] MDP (%) = n σ 2(S + B) M 100% S T (5.3) n σ : M 100% : S : [photon/sec] B : [count/sec] T : [sec] 3σ MDP GRB F [photon/cm 2 /sec] A [cm 2 ] η MDP (%) = 3 2 ηaf + B M 100% ηaf T (5.4)

47 EGS EGS5 EGS5 (Electron Gamma Shower Version 5) EGS5 pegs5 (Preprocessor for EGS) EGS5 1 kev kev GeV 1 kev GeV EGS γ EGS5 1 kev ( ) EGS5 CGVIEW CGVIEW EGS Combinational Geometry (CG) CG

48 EGS EGS CG (Body) ( 6.2) 1. (RPP) x,y,z 2. (SPH) 3. (RCC) 4. (TRC) 5. (TOR) (n : x/y/z = 1/2/3) Body + OR + Body Body

49 6.2 GEANT4 MEGAlib EGS5 Body Body Body + Body AND Body Body OR Body EGS pegs5 CsI EGS5 (C 5 H 8 O 2 ) n 6.2 GEANT4 MEGAlib MEGAlib MEGAlib (MEdium Energy Gamma-ray Astronomy library) MEGAlib Geant3 MGeant/MGGPOD Geant4

50 42 6 C++ ROOT MEGAlib ACT NCT NuSTAR GRI X MEGAllib Geomega (Geometry for MEGAlib) Geomega filename.setup MEGAlib GEomega MEGAlib Body Geomega 1. (BRIK) xyz 2. (SPHERE) θ φ 3. (TUBE) φ 4. (CONE) 5. (TRD1) x y z 6. (TRD2) x y x 7. z (TRAP) z z θ φ xy 8. z (GTRA) TRAP 9. z (PCON)

51 Z z Geomega Geomega Body xyz MEGAlib EGS5 Body MEGAlib EGS5 MEGAlib 5 cm 5 cm 5 cm 0.5 cm CsI kev Z 5.0 cm 5.0 cm ( )

52 CsI CsI plastic scintillator spectrum count MEGAlib EGS energy(mev) 6.3 MEGAlib EGS5 100 kev 100 kev E = 100 kev E < 100 kev MEGAlib EGS5 (E = 100 kev) (E < 100 kev) % 57.05% CsI MEGAlib EGS5 100 CsI 6.5

53 CsI scintillator spectrum (CsI1+CsI2+CsI3+CsI4) box_csi_sum_err.qdp count MEGAlib EGS energy(mev) 6.4 MEGAlib EGS5 CsI 100 kev CsI 6.2 CsI 10 5 CsI E = 100 kev CsI E < 100keV CsI 5cm 5cm CsI CsI MEGAlib EGS5 E = 100 kev CsI CsI CsI CsI E < 100 kev CsI CsI CsI CsI χ 2 ν = 1.77 CsI χ 2 ν = σ EGE5 MEGAlib ( MEGAlib EGS5 ) NIST XCOM (Photon Cross Sections Database)

54 46 6 plastic spectrum MEGAlib/EGS5 pla_mgg_par_egs.qdp ratio energy(mev) CO= 1.000, WV= 94.21, N= EGS5 MEGAlib CsI spectrum MEGAlib/EGS5 CsI_mgg_par_egs.qdp ratio energy(mev) CO= , WV= 65.26, N= CsI EGS5 MEGAlib 6.1 I = I 0 e σρx (6.1) I : I 0 : ρ : g/cm 3 σ : cm 2 /g x : cm (C 5 H 8 O 2 ) n XCOM 6.7 XCOM 100 kev

55 CrossSection (cm 2 /g) CrossSection (PlasticScintillator C 5 H 8 O 2 ) Total Attenuation Thomson scatter Compton scatter Photoelectric absorption energy(mev) 6.7 XCOM cm 2 /g ρ g/cm 3 x 5 cm 43.80% 56.20% MEGAlib 56.12% EGS % cm 5 cm MEGAlib EGS5 1σ 0.42%

56 GAP GAP GAP EGS5 EGS5 3.5 cm CsI EGS5 CsI H 2 EGS5 EGS

57 MEGAlib MEGAlib Z (PCON) CsI MEGAlib GAP 100 kev Z x y 14cm 14cm CsI GAP EGS5 GAP CsI CsI CsI GAP LD MEGAlib root (totalhit == 2) EGS5

58 CsI CsI plastic scintillator GAP coincodence event count MEGAlib EGS energy(mev) 6.9 MEGAlib EGS5 CsI scintillator GAP coincidence event MEGAlib EGS5 count energy(mev) 6.10 MEGAlib EGS5 CsI CsI

59 CsI MEGAlib EGS5 (E = 100 kev) 0 0 (E < 100 kev) CsI12 (E = 100 kev) 0 0 CsI12 (E < 100 kev) CsI CsI CsI kev 99 kev 100 kev 100 kev EGS5 EGS5 CsI MEGAlib

60

61 53 7 GAP X (Cosmic X-ray Background; CXB) GRB 7.1 GAP X (R.Giacconi) 1962 X X X X 10 2 kev X X X X 3 kev 300 kev X (AGN) X 300 kev 10 MeV X 1a [21] [11] 7.1 CXB 3 kev<e <500 kev HEAO MeV<E <30 MeV COMPTEL SAS χ N(E) photon/cm 2 /sec/sr

62 54 7 GAP 300 kev 3 kev 300 kev 7.74 photon/cm 2 /sec/sr kev 100 GeV X 8 χ [11] ( N(E) = 7.877E 1.29 exp ( = 60 ) ( ) 6.5 E + 60 E ), 3 60 kev (7.1) ( ) ( ) E 60 ( ) ( E 60 ) 2.05, > 60 kev (7.2) EGS5 GAP 0.5 mm 0.5 mm mm kev 200 kev 0.5 mm CXB 7.4 CsI CsI

63 7.1 GAP 55 Pb Attenuation Pb transmission factor µ/ρ (cm 2 /g) energy(kev) transmission factor energy(kev) kev 400 KeV mm 30 kev 400 kev CXB trans PB photon/cm 2 /s/kev/sr energy(kev) 7.4 CXB 0.5 mm CsI 1 GAP 4π CXB 3 kev 300 kev 8.5 cm 4π cm 18 cm 4π 10 6 CXB

64 56 7 GAP CXB CXB 3 kev 300 kev 7.74 photon/cm 2 /s/sr π 2π photon/s 0.5 mm CXB 3 kev 300 kev photon/cm 2 /s/sr 2π 4.92/times10 2 photon/s photon/s CXB B = B + B + B (7.3) = = count/sec/12csi CXB 0.5 mm count/s count/s 47.1 (47.1) MeV MeV N C (E) =

65 7.1 GAP proton/m 2 /sr/sec/mev 1 GeV 2π P C = N C (E) de π 0 sin θ dθ 2π =2.26 proton/cm 2 /s = proton/cm 2 /year 0 dφ [proton/m 2 /sec] (7.4) 10 8 proton/cm

66 58 7 GAP 100 MeV/nucleon [22] N S (E) = 10 4 E 4 proton/cm 2 /sec/sr/gev (7.5) km km 7.7 θ 7.6 θ sin θ tan θ = R r (7.6) 7.7 = π Ω = ( ) 2 R r θ 0 sin θ dθ 2π 0 dφ (7.7)

67 7.2 GAP P S = N S (E) de θ 0 2π sin θ dθ 0 = proton/cm 2 /s = proton/cm 2 /year dφ proton/cm 2 /s (7.8) GAP 2 mm 0.5 mm 2 mm 20 MeV 2 mm 0.5 mm 25 MeV CsI MeV UD ( ) 7.2 GAP GRB GAP GAP GAP CsI MEGAlib 7.8

68 60 7 GAP 7.8 GAP GAP 30 cm 30 cm 100 kev 10 6 GAP 30 cm 30 cm 100 kev 10 6 GAP 0.5 mm 30 cm 30 cm 100 kev kev 500 kev GRB CsI 12 CsI GAP 0.5 mm GAP GAP CsI kev 300 kev 500 kev GRB GRB E 1 5 : 5 : kev 300 kev 500 kev N 1

69 7.2 GAP keV Al_block scatter incident Xray=100%polarized,10 6 photon/900cm 2 300keV Al_block scatter incident Xray=100%polarized,10 6 photon/900cm 2 count CsI number GAP only Al_block Al_block(GAPwithPb) (a) 100 kev X count GAP only Al_block 5 10 CsI number Al_block(GAPwithPb) (b) 300 kev X count keV Al_block scatter incidnet Xray=100%polarized,10 6 photon/900cm 2 GAP only Al_block 5 10 CsI number Al_block(GAPwithPb) (c) 500 kev X 7.9 CsI GAP X X GAP 0.5 mm X N 2 N 3 GRB 7.9 N = 15N 1 + 5N 2 + 3N 3 23 (7.9) (7.10)

70 62 7 GAP 7.2 GAP X X 0.5 mm GAP 100 kev 300 kev 500 kev GAP GAP GAP GAP GAP GRB 7.15 N = ( ) GRB 23 (7.11) (7.12) = GRB CXB CXB GRB MEGAlib 7.8 GRB CXB10 kev 30 kev 50 kev GRB CsI 12 CsI 7.3 GRB 100 kev 500 kev CXB 10 kev 30 kev 50 kev 500 kev CXB 300 : 340 : 30 : 8 N 1 N 2 N 3 N N = 300N N N 3 + 8N (7.13) (7.14)

71 7.2 GAP CXB 10 kev 30 kev 50 kev GAP X X 0.5 mm GAP 10 kev 30 kev 50 kev GAP GAP GAP GAP GAP CXB 7.15 N = ( ) GRB (7.15) 678 (7.16) = CXB X X CsI 8

72

73 65 8 ( ) CsI CsI CsI EGS5 8.1 A x B y A + x B + y A (x,y) B A (p,n) B x A (p,xn) B Z A A A x+1 Z A (p, xn) Z+1 B A (p,xn) B β + β β + β β β + (4 ) (p, xn) β CsI(Tl) Cs I Tl (p,xn)

74 Cs

75 I

76 Tl

77 8.2 CsI CsI (p,xn) (p,xn) (p,xn) GAP kev 100 kev CsI (Tl) GAP (7 ) /cm MeV Ge CsI (Tl) (ORTEC EG&G GEM20) GEM P P 56.1 mm 57.5 mm to 3 mm 1.27 mm 700 µm

78 ORTEC GEM20 Ge CsI CsI 8.6 Count Cd109 88keV Co57 122keV Co57 136keV mix_cal_source spectrum livetime=116sec Cs keV Co keV Co keV K keV Count ch Background spectrum livetime=10797sec bgd_csi.qdp Pb Kα keV Pb Kα keV Pb Kβ keV Pb Kβ keV K keV ch CsI 40 19K 40 19K 0.012% MeV MeV X

79 8.2 CsI Cd 57Co 137Cs 60Co 88.03keV keV keV 662keV 1173keV 1333keV 8.7 channel = 2 Energy (8.1) calibrate Channel = 2.00 energy Channel Energy 8.7

80 CsI CsI 25 Ge t= CsI spectrum (each 15000sec) count/sec t: time since measurement (sec) t=0 t=15000 t=30000 t=45000 t=60000 t= energy(kev) t= CsI kev kev kev 500 kev kev EGS5

81 8.2 CsI 73 CsI spectrum (each 15000sec) CsI spectrum (each 15000sec) count/sec Xe 122 Xe 125 Xe 123 Xe energy(kev) 121 I 125 Xe count/sec Xe 127 Cs 129 Cs energy(kev) kev 250 kev 250 kev 500 kev kev 500 kev I kev 84.3 % Xe kev 2.69 % Xe kev 48.9 % kev 14.9 % kev 8.56 % Xe kev 54.0 % kev 30.1 % Cs kev 58.4 % Cs kev 22.5 % CsI CsI 0 kev 500 kev CsI 7

82 74 8 experiment first data & simulation count experiment first data simulation data energy(kev) naomi 7 Jan : CsI 149 kev kev kev kev kev kev kev CsI

83 8.2 CsI dn p dt = N t fσ λn p (8.2) N p : t /cm 3 N t : /cm 3 f : proton/cm 2 /s (σ) : b (1b = cm 2 ) λ : cm T : s (T = ln2 λ ) N p = N tfσ ( 1 e λt) λ (8.3) N p = N tfσ λ (8.4) Xe Xe 149 kev Xe Xe 149 kev 149 kev Xe Xe 149 kev

84 ( ) (E E 0 ) 2 F (E) = N exp 2σ 2 + const (8.5) F (R) dx = 2π N σ (8.6) first data const+gauss fit count/sec F(x)=GN*exp( (x GC) 2 /2GW 2 ) + CO CO=1.492 GC=149.1 GW= GN=6.396 integral count= energy (kev) CO= 1.492, GC= 149.1, GW= , GN= 6.396, WV= N= kev 8.5 (90% ) const E ± σ N χ ν A = A 0 e λt (8.7) A : t A 0 : kev

85 8.2 CsI kev Xe Xe 149 kev ( ) ( ) (t t1 ) (t t2 ) F (t) = N 1 exp + N 2 exp τ 1 τ 2 (8.8) N 1 t 1 τ Xe N 2 t 2 τ Xe 149keV exp+exp fit count/sec F(x)=EN 1 *exp( (x EC 1 )/EW 1 )+EN 2 *exp( (x EC 2 )/EW 2 ) EC 1 =0 EC 2 =0 EW 1 = EW 2 =10802 EN 1 = EN 2 = time since beam stop (sec) EC= 0.000, EW= E+05, EN= E 02, EC= 0.000, EW= E+04 EN= 14.36, WV= 438.2, N= kev 8.6 (90% ) N ± t 1 0 fix τ fix N ± t 2 0 fix τ fix χ ν =keV Xe Xe ± count/s ± count/s

86 Xe 149 kev 149 kev CsI = count/s/csi (8.9) A = λn p (8.10) Xe 149 kev N p = ( ) (8.11) = /CsI = = /cm f e = proton/s/cm2 (8.12) = proton/s/cm Xe I I /cm Xe 8.13 σ σ = λn p N t f(1 e λt ) (8.13) = cm 2 =88.16 mb 2.26 proton/cm 2 /s (7 ) kev

87 8.2 CsI 79 N p = N tfσ λ = /cm 3 (8.14) CsI N p = N tfσ λ = /CsI (8.15) 149 kev A = λn p = Bq/cm 3 (8.16) CsI 149 kev A = λn p = Bq/CsI (8.17) s n/cm 3 Bq/cm produce_n.out Xe123 produced N p and A time (sec) Xe Xe kev kev I 212 kev Xe 149 kev Xe 149 kev 178 kev 330 kev Cs Cs 412 kev

88 keV exp+exp fit 178keV exp fit count/sec F(x)=EN 1 *exp( (x EC 1 )/EW 1 )+EN 2 *exp( (x EC 2 )/EW 2 ) EC 1 =0 EC 2 =0 EW 1 = EW 2 =10802 EN 1 = EN 2 = time since beam stop (sec) 188.5keV exp+exp fit EC= 0.000, EW= E+05, EN= E 02, EC= 0.000, EW= E+04 EN= 14.36, WV= 438.2, N= count/sec F(x)=EN*exp( (x EC)/EW) EC=0 EW=10802 EN= time since beam stop (sec) 212keV exp+exp fit EC= 0.000, EW= E+04, EN= count/sec F(x)=EN*exp( (x EC)/EW) EC=0 EW=87773 EN= time since beam stop (sec) 243.5keV exp+exp fit EC= 0.000, EW= E+04, EN= 4.524, WV= 833.1, N= count/sec F(x)=EN*exp( (x EC)/EW) EC=0 EW=11010 EN= time since beam stop (sec) 330keV exp+exp fit EC= 0.000, EW= E+04, EN= 45.42, WV= E+13, N= count/sec F(x)=EN*exp( (x EC)/EW) EC=0 EW= time since beam stop (sec) T0_412inte_2.qdp 412keV exp+exp fit EN= EC= 0.000, EW= E+04, EN= 2.292, WV= 817.3, N= count/sec F(x)=EN*exp( (x EC)/EW) time since beam stop (sec) EC=0 EW=10802 EN= EC= 0.000, EW= E+04, EN= 2.428, WV= 2191., N= count/sec F(x)=EN 1 *exp( (x EC 1 )/EW 1 )+EN 2 *exp( (x EC 2 )/EW 2 ) EC 1 =0 EC 2 =0 EW 1 =32460 EW 2 = EN 1 = EN 2 = time since beam stop (sec) EC= 0.000, EW= E+04, EN= 6.806, EC= 0.000, EW= E+05 EN=

89 8.2 CsI Xe 149 kev Xe 178 kev Xe 330 kev Ge /cm σ mb 28.10[mb] 16.94[mb] /cm Bq/cm Xe 149 kev Cs 412 kev Cs 412 kev Ge /cm σ mb 162.2[mb] 80.10[mb] /cm Bq/cm CsI CsI EGS5 CsI 7.8 CsI 149 kev 178 kev 330 kev 412 kev 106 CsI CsI 149 kev kev kev kev

90 82 8 CsI CsI GAP CsI CsI 149 kev kev kev kev proton/cm 2 /s CsI X 10 3 Bq/CsI CsI 10 3 counts/csi/s CsI CsI X CsI 10 4 Bq/cm proton/cm 2 /s CsI 10 2 Bq/cm 3

91 83 9 GAP X (EXM-101A5B) X GAP 9.1 GAP GAP GAP PM PM EGS5?? 9.2 ( KEK ) ( Photon Factory:PF )BL14A GAP KEK-PF-BL14A 5keV 80keV X 80 kev X 1 mm 82.3%

92 84 第9章 シミュレーションと実験の比較 実験のセットアップ 偏光度の測定 KEK での 80 kev 単色 X 線の偏光度を知るために 山形大学のプロペラ検出器を用いて偏 光度の測定を行った プロペラ検出器は図 に示すような構造をしており 散乱体から十 分に離れた場所に小さな CdTe 検出器を配置することで 90 方向の散乱光だけを集めること ができる そのためこの検出器はのモジュレーションはとても大きい 0deg Photo diode E 90deg scatter CdTe scatter CdTe 図 9.1 山形大学のプロペラ検出器 散乱体から十分離れたところに小さな検出器を置くこ とで 90circ 方向の散乱光のみを観測し モジュレーションファクタの高い検出器になって いる この検出器のモジュレーションふファクタは山形大学での EGS4 でのシミュレーション結 果より であると報告されている 実験でのモジュレーションカーブは図 となり a + b sin(c x + d) でフィットした結果モジュレーションファクタは ± 1.57 となった 1.2 M=0.811+/ Modified Count Angle[degree] 図 9.2 山形大学のプロペラ検出器によるモジュレーションカーブ a + b sin(cx + d) に よりフィットした結果モジュレーションファクタは ± となった よって KEK 実験における光源の偏光度は Π = 82.3% ± である

93 X 109 Cd kev CsI 109 Cd kev GAP 30 Ch 1 0 ch 0 kev 9.1 E = Ch kev (9.1) CsI 109 Cd kev 88.0 kev 241 Am 59.5 kev 4.15 Ch Ch Ch E = 5.75 Ch 1.69 kev (9.2) 80 kev X CsI CsI 80 kev (Lower Discriminate level : LD) (Upper Discriminate level : UD) (Ch) CsI (Ch) LD UD LD UD GAP X GAP X, CsI CsI

94 cm 37 CsI CsI 9.4 GAP X CsI CsI CsI LD UD 9.2 LD UD kev (kev) CsI (kev) LD UD LD UD csi 9.2 KEK GAP 80 kev 10 6 CsI 9.2 CsI cm x kev 10 5 CsI 9.2 CsI GAP X CsI 9.2 CsI

95 cm x 0 X GAP 10 30

96 GAP X M=0.446+/ Experiment M=0.574+/ simulation Counts count CsI ID CsI ID 9.5 GAP X CsI 9.6 EGS5 GAP Π = M experiment M 100% 77.7% ± 4.89% GAP 2 cm X M=0.262+/ Experiment M=0.273+/ simulation Relative Count count CsI ID CsI ID 9.7 GAP 2 cm 37 X CsI 9.8 EGS5 GAP 2 cm x 0 22 X x % ± 12.0%

97 GAP ( ) Experiment simulation Counts count incident 0deg incident 10deg incident 20deg incident 30deg 5 10 CsI ID 9.9 GAP CsI ID 9.10 GAP

98

99 GAP 5 M η GAP M η EGS5 50 kev 300 kev 10 kev CsI CsI GRB GAP GAP CsI φ f(φ) = a + b sin(c φ + d) (10.1) M = (10.2) = b a 12 CsI GAP ( CsI )

100 92 10 GAP Mfactor GAP efficiency Mfactor efficiency energy(kev) 10.1 GAP energy(kev) 10.2 GAP GAP X (CXB) GRB CXB GAP CsI GRB 10.1 X GAP 10.1 GAP photon (or proton) /cm 2 /sec count/sec/12csi X (CXB) (3 kev kev) 2.27 (20 MeV - 1 GeV) 0 CXB CXB GRB GRB CsI

101 10.3 GRB GRB GRB GAP 1 2 GRB 10.3 MDP MDP GAP M η GRB F T 10.2 B MDP GRB MDP GRB BATSE 1972 GRB GRB MDP MDP (%) = 3 2 ηaf + B M 100% ηaf T (10.3) M 100% : F : GRB photon/cm 2 /s A : cm 2 η : B : count/s T : s GRB 100 kev dn de = αe 1 photon/cm 2 /s/kev (10.4) BATSE GRB erg/cm 2 GRB erg/photon s photon/cm 2 /s BATSE 50 kev 300 kev GRB E <E> 50 E 1 de = 500 <E> E 1 de (10.5) < E >= kev = erg BATSE 50 kev 300 kev α = GRB T photon/cm2 /s (10.6)

102 94 10 MDP MηF ηf kev MηF = E2 E 1 M(E)η(E) dn de de = α ( ) E + 10 M(E)η(E) log E (10.7) ηf = E2 E 1 η(e) dn de de = α ( ) E + 10 η(e) log E (10.8) 1972 GRB MDP BATSE % 9 GAP 2π ± MDP GAP MDP GRB GRB/yr field of view = 90 o field of view = 30 o GRB observation rate MDP 10.3 GAP GRB GRB GRB GAP GAP 30

103 GRB GRB 40% 1.5 GRB 70% 4 GRB 10.4 GAP GRB GAP BATSE GRB BATSE 2 1 photon/cm 2 /s BATSE 2 50 s 50 photon/cm 2 GRB E 1 CsI π = GRB 8823 photon EGS5 40% 75% GAP 8823 GAP 30 GRB CXB count/s/12csi 50 1 CsI 227 count % polarized incident=0deg 40% polarized incident=30deg count CsI ID count CsI ID % GRB 40% GRB 30 GRB CXB GRB CXB

104 % polarized incident=0deg 75% polarized incident=30deg count CsI ID count CsI ID % GRB 75% GRB 30 GRB CXB CXB CXB CXB 10.3 GRB GRB GRB BATSE GRB 50 photon 50% photon photon 1 CXB CXB 1 GRB 100 photon/cm GRB GAP 2π 9 KEK Π = M experiment M 100% M sin

105 % polarized incident=30deg x10 4 photon count CsI ID GRB 100 photon/cm 2 CXB 100 photon/cm2 GRB 50% 10 dσ dω = r2 0(1 sin 2 θ cos 2 φ), E m e c 2 (10.9) GAP 10.7 θ = 90 1 cos 2 φ sin 10.7 θ = 90 φ θ sin 10.7 X CsI θ = 90

106 98 10 h GAP GRB GRB 40% 100 photon/cm 2 GRB GRB CXB count % polarized incident=30deg x10 4 photon 5 10 CsI ID count % polarized incident=30deg 10 6 photon 5 10 CsI ID % 100 photon/cm 2 GRB GAP 30 CXB % GAP 30 naomi 29 Jan : χ 2 ν 1 N N (y i y(x i )) 2 σ 2 i=1 i (10.10) N= χ 2 ν 1 12 N (y i ay(x i )) 2 i=1 y i (10.11)

107 a χ 2 ν 10.9 a a = a χ 2 ν χ 2 ν a 10.9 a a a 1σ a 11 1σ = 0.68 χ 2 ν χ2 ν a (10.12) % = 37.5% (10.13) (10.14) % = 42.5% Π = 40% ± 2.5%

108

109 EGS5 MEGAlib GAP CsI X GRB CXB CXB X X GAP GAP GRB photon/cm 2 GRB GRB 40% 6% 40% GRB GAP 30 GRB 40% 2 75% 5

110

111 103 A A.1 y KŒn y' v K'Œn o x o' ƒæ' x' A.1 (K ) x v (K ) K u K dx = γ(dx + vdt ) dy = dy dz = dz (A.1) dt = γ (dt + v c 2 dx )

112 104 A u x = u y = u z = u x + v 1 + vu x γ γ c 2 u y ( 1 + vu x c 2 u z ( 1 + vu x c 2 ) ) (A.2) K K v u v u u u = u = u + v 1 + vu γ ( c 2 u 1 + vu c 2 ) (A.3) K θ K θ u u tan θ = u u = u sin θ γ(u cos θ + v) (A.4) u u cos θ cos θ = u u = 1 u u cos θ + v 1 + vu cos θ c2 (A.5)

113 A A.2 A.4 A.5 u = u = c tan θ = sin θ ( γ cos θ + v ) (A.6) c cos θ = cos θ + v c 1 + v c cos θ (A.7) sin θ = sin θ γ (1 + v ) (A.8) c cos θ K θ = π/2 tan θ = c γv cos θ = v c sin θ = 1 γ (A.9) (A.10) (A.11) γ 1 θ A.11 θ = 1 (A.12) γ K K 1/γ ƒæ `1/ƒÁ K'Œn A.2 KŒn K K

114

115 107 M1 GAP GAP

116

117 109 [1] 2006 [2] Band, D.L. et al., 1993, ApJ [3] 2007 [4] Lazzati, D., 2003, astro-ph v1 [5] Waxman, E., 2003, Nature [6] Lazzati, D., Rossi, E., Ghisellini, G. & Rees, M.J., 2003, astro-ph v3 [7] Rybicki, G.B., Lightman, A.P., 1979, WILEY INTER SCIENCE, Radiative Processes in Astrophysics [8] KNOLL, F.C., 2001,, 3 [9] 2000 [10] GAPOM X 2003 [11] Gruber, D.E. et al., 1999, ApJ 520, [12] Rees, M.J., Meszaros, P., 1992, MNRAS 258 L41 [13] Piran, T., 1998, Phys.Rept [14] X 2001 [15] [16] [17] RHESSI X 2005 [18] X 2003 [19] MSGC 2000 [20] R.Silberberg and C.H.Tsao The Astrophysical Journal Supplement Series(1977) [21] ( ) [22] NASA Ames/Stanford 1975 Summer Study [23] R.Novick Space Science Rev. 18(1975) pp Stellar and solar X-ray polarimetry

118 110 [24] R.M.Sternheimer Physical Review, vol. 115, Issue 1, pp Range-Energy Relations for Protons in Be, C, Al, Cu, Pb, and Air

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV] 3 PET 3-1 PET 3-1-1 PET PET 1-1 X CT MRI(Magnetic Resonance Imaging) X CT MRI PET 3-1 PET [1] H1 D2 11 C-doxepin 11 C-raclopride PET H1 D2 3-2 PET 0 0 H1 D2 3-1 PET 3-2 PET ( : CYRIC ) ( 0 ) 3-1-2 (3-1

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

rcnp01may-2

rcnp01may-2 E22 RCP Ring-Cyclotron 97 953 K beam K-atom HF X K, +,K + e,e K + -spectroscopy OK U U I= First-order -exchange - coupling I= U LS U LS Meson-exchange model /5/ I= Symmetric LS Anti-symmetric LS ( σ Λ

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L 19 P6 γ 2 3 27 NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter LaBr 3 (Ce) PMT 662keV 2.9% CsI(Tl) 7.1%

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

tsuchiya_090307

tsuchiya_090307 2/26 雷活動からのX線やガンマ線(1) 短時間バースト 継続時間:ミリ秒かそれ以下 自然の雷放電および誘来放電からの観測 衛星による大気上層からの観測(TGFs) Dwyer et al. 2003 Smith et al. 2005 長時間バースト もんじゅ 継続時間:数秒から数分 もんじゅHPより 雷放電に必ずしも同期しない おもに雷雲中 日本海側の冬季や高山で観測 される McCarthy

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

CdTe γ 02cb059e :

CdTe γ 02cb059e : CdTe γ 02cb059e : 2006 5 2 i 1 1 1.1............................................ 1 1.2............................................. 2 1.3............................................. 2 2 3 2.1....................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

7-1yamazaki.pptx

7-1yamazaki.pptx Suzaku/ASTRO-H Suzaku/ASTRO-H 1. Vela ( Watchman ) (1967 1979): GRB (1969) 2. GINGA (1987 1991): X-ray counterpart GRB (galactic) X-ray burst? 3. BATSE (1991 2000): Galactic origin models!!! 4. BeppoSAX

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K 2 2.1? [ ] L 1 ε(p) = 1 ( p 2 2m x + p 2 y + pz) 2 = h2 ( k 2 2m x + ky 2 + kz) 2 n x, n y, n z (2.1) (2.2) p = hk = h 2π L (n x, n y, n z ) (2.3) n k p 1 i (ε i ε i+1 )1 1 g = 2S + 1 2 1/2 g = 2 ( p F

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

スーパーカミオカンデにおける 高エネルギーニュートリノ研究 2009 11 20 Cosmic Ray PD D M P4 ? CR M f M PD MOA M1 ν ν p+p+p+p 4 He +2e - +2ν e MeV e - + p n+ ν e γ e + + e - ν x + ν x p + p, γ + p π + X π µ + ν µ e + ν µ + ν e TeV p + p π + X π µ + ν µ e + ν µ +

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

ELECTRONIC IMAGING IN ASTRONOMY  Detectors and Instrumentation   5 Instrumentation and detectors ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10 Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Report10.dvi

Report10.dvi [76 ] Yuji Chinone - t t t = t t t = fl B = ce () - Δθ u u ΔS /γ /γ observer = fl t t t t = = =fl B = ce - Eq.() t ο t v ο fl ce () c v fl fl - S = r = r fl = v ce S =c t t t ο t S c = ce ce v c = ce v

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie Formation process of regular satellites on the circumplanetary disk Hidetaka Okada 22060172 Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

untitled

untitled 71 7 3,000 1 MeV t = 1 MeV = c 1 MeV c 200 MeV fm 1 MeV 3.0 10 8 10 15 fm/s 0.67 10 21 s (1) 1fm t = 1fm c 1fm 3.0 10 8 10 15 fm/s 0.33 10 23 s (2) 10 22 s 7.1 ( ) a + b + B(+X +...) (3) a b B( X,...)

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

放射線化学, 92, 39 (2011)

放射線化学, 92, 39 (2011) V. M. S. V. 1 Contents of the lecture note by Prof. V. M. Byakov and Dr. S. V. Stepanov (Institute of Theoretical and Experimental Physics, Russia) are described in a series of articles. The first article

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

untitled

untitled --- = ---- 16 Z 8 0 8 8 0 Big Bang 8 8 s-process 50 r-process 8 50 N r-process s-process Hydrogen 71% Helium 8% Others 1.9% Heay 4-4% lements(>ni p-process (γ process? r-process s-process Big Bang H,He

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

B

B B09170 5 8 ) ( ) π 0-1 s -1 sr -1 MeV HI Emissivity (3rd quadrant) -3-4 Abdo et al. 009 (6 months, P6V3_DIFFUSE) Local arm interarm Perseus arm and beyond Emissivity (MeV E -5-6 3 4 Energy (MeV) 5 1: 1

More information