機械設計工学

Size: px
Start display at page:

Download "機械設計工学"

Transcription

1 伝達装置 ( 歯車装置 ) 歯車とは 1 減速 増速運動は機械の最も重要な運動の一つ 歯車は機械の減速 増速を実現させる重要な機械要素の一つ 3 歯車性能 ( 振動 騒音 効率 伝達精度など ) と寿命 ( 強度 ) は機械装置の性能と寿命に直接に影響を与えている 4 歯車の設計 製造技術は機械産業の基盤となり 極めて重要な技術の一つである 大歯車 小歯車 Shimane University, Machine Design Lab. 017/3

2 1. 歯車の役割 (1) 車における歯車の役割 出典 : 車の後輪駆動用デファレンシャルギア デフギア機構の Youtube 映像

3 歯車増速機 () 風力発電装置における歯車の役割 発電機 回転翼 発電機 1000~ 1500rpm 増速機 増速比 ~15rpm Shimane University, Machine Design Lab. 017/3 出典 : 機械伝動 ( 中国語 ) 011 年 10 月第 35 巻

4 (3) 新幹線における歯車の役割 新幹線車両の台車 モータ 車輪 車輪 歯車減速機 Shimane University, Machine Design Lab. 017/3 出典 : 図解 鉄道の科学宮本昌幸著講談社

5 出典 : NIKKEI MONOZUKURI May 008 P36-39 (4) 航空機における歯車の役割 三菱重工 様開発中の MRJ 飛行機用遊星歯車装置

6 (5) ヘリコプターの動力伝達システム歯車の役割 主回転翼 傘歯車軸 尾部回転翼 平歯車 傘歯車 エンジン 出典 : 公開特許公報 改良型ヘリコプター用トランスミッション 特開 日本国特許庁

7 . 歯車の種類及び分類 平行軸の歯車 ラック はすばラック 交差軸の歯車 傘歯車 食い違い軸の歯車 ねじ歯車 平歯車 はすば歯車 まがりば傘歯車 ハイプイドギヤ 内歯車 やまば歯車 フェースギヤ ウォームギヤ

8 3. 一対の平歯車のピッチ円とピッチ点 一対の円板による摩擦伝達 : 歯車伝達 : r P r 1 接触円 P: ピッチ点 ( 接触点 ) ω 1, ω : 角速度 r 1, r : 半径 ( ピッチ円半径 ) 速比 : P: ピッチ点 ω 1, ω : 角速度 r 1, r : ピッチ円の半径 i = ω 1 = r 速比 : i = ω 1 = r = z 1 ω r 1 ω r 1 大きな力を伝達できない 大きな力を伝達できる z

9 4. 歯車の歯数とモジュール モジュールの定義 : m = d 1 and m = d z 1 z d 1,d : 歯車 1とのピッチ円直径 ; z 1 z : 歯車 1との歯数ピッチ円 歯数とモジュールの関係 : d 1 = m z 1 d = m z (1) () 一対の歯車のかみあう条件 : 歯車 1 と のモジュールが等しくならなければならない モジュールは JIS 規格の標準値を使用 : 第 1 系列 第 系列 第 3 系列

10 標準歯車の場合 (K=1) km Addendum Dedendum 歯先円直径 5. 歯車の歯の構成 ( 歯先円 歯元円 歯たけ ) 歯元のたけ歯末のたけ K= 歯たけ係数 km c k m 頂げき C 歯末のたけ =m 頂げき :c=0.5m 歯元のたけ =m+0.5m=1.5m 有効歯たけ :h e =m+m=m 全歯たけ =(m+m+0.5m)=.5m 歯先円直径 = ピッチ円直径 + 歯末のたけ =mz+m=(z+)m 歯底円直径 = ピッチ円直径 - 歯元のたけ =mz-(1.5m)=(z- 1.5)m

11 6. 並歯 低歯 高歯歯車の定義 低歯歯たけ係数 K < 1 歯末のたけ <m ( m= モジュール ) ( スプライン締結 ) 並歯 : 歯たけ係数 K = 1 歯末のたけ =m ( 最も一般的に使用されているもの ) 高歯 : 歯たけ係数 K > 1 歯末のたけ >m ( 航空機に使用 )

12 7. 歯車の歯形曲線 : インボリュート曲線 インボリュート曲線 歯車の歯 図 1 インボリュート曲線の発生 図 インボリュート曲線を用いた歯車の歯形 インボリュート曲線とは : 図 1 のように巻き付けた糸をたわませずに巻きほこしていった時 糸の先端が描く曲線 a 0, a 1, a, a n である この基となる円を基礎円と呼ぶ

13 8. インボリュート曲線の特徴 インボリュート曲線 特徴 : 1. インボリュート曲線上の点の垂線は基礎円と接し その点から接点までの長さ = 曲率半径. a 1 b 1 = a 0 b 1 糸 糸 糸 糸 糸の先端糸 a b = a 0 b a 3 b 3 = a 0 b 3 糸糸 歯車の歯形はなぜインボリュート曲線であるか? 図 1 インボリュート曲線 基礎円

14 9. インボリュート関数 図 において 点 P における曲率半径を ρ とすれば 下記の式が得られる ρ = IP = IA (1) また 次のような式が得がれる インボリュート曲線 IA = (α + θ)r g () ただし α = 圧力角度 ; r g = 基礎円半径 (mm) 直角三角形 OIP において 次 (3) が得がれる IP = r g tan α = ρ (3) () と (3) を (1) に代入し 式 (4) が得がれる θ = tan α α (4) 図 インボリュート関数の導き この θ をインボリュート関数と呼ぶ 式 (5) のように表現する invα = θ = tan α α (5)

15 10. ラックによる歯車の歯の加工 ( 創成運動 ) ラックの直線運動 ラック V = ω r 創成された歯車の歯形 r ω 歯車 円板の回転運動 ラックによる歯の創成運動 ( 動画 )

16 11. ラック上の点と加工された歯形上の点の対応関係 ラックの構造設計 0 0.5m 基準ピッチ線 Pitch Line 基準ピッチ点 ラックの歯形 ピッチ点 0.375m 0.5πm 0.5πm one pitch (πm) 歯車の歯形 ピッチ点 台形の傾斜角度ピッチ点における圧力角度 ( 標準の場合 =0 度 ) 歯先 (C k 部 ) 頂げき部 m m 0.5m 歯末のたけ (C k 部を除く ) 歯元のたけ ( 頂げき部を除く ) 歯元のたけ (m) 基準ピッチ線ピッチ t0 m 歯末のたけ (m) ピッチ円 円周ピッチ 歯の歯末部分を加工 歯の歯元部分を加工 歯の頂げき部分を加工

17 1. 歯の法線ピッチと円周ピッチ 法線ピッチt e = 法線方向に沿って測ったピッチ円周ピッチt = 円周上に沿って測ったピッチ円周ピッチの計算式 : t = πr z (1) 法線ピッチの計算式 : t e = πr g z r g = r cos α () (3) 法線ピッチと円周ピッチの関係 : t e = t cos α = πm cos α (4) r= ピッチ円半径 r g = 基礎円半径

18 13. 圧力角 ピッチ円 基礎円の関係 1. ピッチ点 Pを通った基礎円の接線 = 作用線. 作用線の傾き角度 =ピッチ点 Pの圧力角度 3. 標準歯車の場合には α = α c (1) α=ピッチ点 Pにおける圧力角 α c =ラックの圧力角度 圧力角 ピッチ円 基礎円の関係 : r g1 = r 1 cos α r g = r cos α () (3) r g1, r g : 歯車 1 と の基礎円半径 r 1, r : 歯車 1 と のピッチ円半径

19 14. 歯のかみあい点と作用線の関係について かみあい終了点 かみあい開始点 かみあい途中点 歯車のかみあい ( 接触 ) は作用線上に沿って行われている 即ち 一対の歯のかみあい始めとかみあい終わりのすべての過程において 歯のかみあい点 ( 接触点 ) は作用線上に沿って移動

20 15. 歯のかみあい長さとかみあい率 かみあい開始点 :K 1 かみあい終了点 :K ピッチ点 :P かみあい長さ =K 1 K ( 作用線上の距離 ) K 1 Pにおけるかみあい : 近寄りかみあい PK におけるかみあい : 遠のきかみあい 1 枚歯のかみあい開始点からかみあい終了点までの作用線上の距離をかみあい長さと呼ぶ

21 (1) かみあい長さ L の計算 : L = K 1 K = r k1 r g1 + r k r g A sin α (1) r g1 : 歯車 1 の基礎円半径 ; r k1 : 歯車 1 の歯先円半径 ; r g : 歯車 の基礎円半径 ; r k : 歯車 の歯先円半径 ; α: ピッチ点 P における圧力角 ; A: 歯車 1 と の中心距離 ; () 歯のかみあい率の計算 : かみあい長さを法線ピッチで除した商をかみ合い率と呼ぶ かみあい長さ L かみあい率 () 法線ピッチ t e ε = L t e = r k1 r g1 + r k r g A sin α b πm cos α c (3)

22 16. かみあい始めから終わりまでの歯の様子 1 対の歯のかみあい始め 1 対の歯のかみあい途中 3 対の歯のかみあい終わり 3 41 対の歯のかみあい始め 4 51 対の歯のかみあい終了 5 1 対の歯のかみあい始め 1

23 (1) 滑り率の定義 : 17. 歯車の滑り率 歯車 1 は微小な角度 ω で回転した時 歯車 1 の歯形の円孤移動量を d s1 とし 歯車 の歯形の円孤移動量を d s とすると 滑り率は下記の式で定義できる 歯車 1 の滑り率 : 歯車 の滑り率 : σ 1 = d S1 d S d S1 σ = d S1 d S (1) () d S () 滑り率の計算式 : X(1 + 1 σ 1 = ± i ) (d 1 /) sin α b X X(1 + 1 σ = i ) (d 1 /) sin α b ± X (X: 作用線上の接触点からピッチ点までの距離 α b : 圧力角度 ) (d 1,d : ピッチ円直径 ) ( i = d ) d 1

24 (3) 滑り率の曲線及び特徴 1. 歯車 1 と のピッチ点における滑り率はゼロであり ピッチ点から歯先 歯元へ離れていくと 滑り率はだんだん大きくなっていく. 歯先と歯元の滑り率は一番大きい 図 1 歯車 1 と の滑り率曲線

25 18. 歯の干渉現象と切下げ ( 別名 : アンダーカット英文 :undercut) 小歯車の歯数は非常に少ない場合には ( 例えば Z<17) 大歯車の歯先円は小歯車のインボリュート曲線の発生円である基礎円の内部に入り インボリュート曲線は基礎円から始まり 基礎円の内部には インボリュート曲線が形成できないので 大歯車の歯先と小歯車の歯元は干渉が発生し この干渉で歯車加工時 小歯車の歯元を切下げる現象が発生する 切下げると歯の根元はやせ 強度低下することになるとともに 切下げ部の滑り率が非常に大きいので 切下げる部にかみあう場合には 激しい摩耗が発生する恐れがある 従って 切下げを防がなければならない 干渉による切下げ

26 19. 切下げしない最小歯数及び切下げ防止対策 (1) 切下げしない最小歯数の計算式 : 表 1 圧力角度と切下げしない最小歯数の関係 Z min = h k msin α (1) 圧力角度 α 並歯 h k = m 低歯 h k = 0.8m 高歯 h k = 1.m () 切下げ防止方法 : 1. 圧力角度を大きくする. 歯のたけを低くする 3. ラックを転位させて 転位歯車を作る 切下げしない最小転位係数の計算 : アンダーカット x 1 Z 1 sin α () ( 並歯の場合 ) 転位前 転位後

27 0. 転位歯車と転位係数 (1) 標準歯車の加工 () 転位歯車の加工 + 転位 - 転位 xm x: 転位係数 xm: 転位量 なぜ 転位歯車を作る必要があるか? 1. 転位により 歯車の軸間中心距離が自由に調整 設計できる. 転位により かみ合い率は大きくなり 滑り率が小さくなり 歯元が強くなり 歯 車の性能改善ができる 3. 歯車転位により 歯の切下げを防ぎ 最小歯数を17 枚以下にすることができる

28 中心距離増加係数 : 1 cos cos 1 b c z z y 中心距離 : b c b b m z z d d m y z z A cos cos ) ( α c (α 0 ): ラックカッターの圧力角度 ; c c b inv z z x x inv 1 1 tan α b : かみあいピッチ円の圧力角度 : 1. 転位歯車の寸法計算

29 . 転位平歯車の寸法計算式の纏め 転位係数 工具圧力角度 歯車 1 歯車 x x1 C かみあい圧力角度 inv b x tan c z 1 1 x z inv c 中心距離増加係数中心距離かみあいピッチ円直径基準ピッチ円直径歯先円直径基礎円直径歯底円直径歯末のたけ d b 1 A z A 1 z1 z z z 1 z cos c y 1 cos b 1 z db 1 db ( z1 ym d b z ) mcos cos z1 A z1 z d1 mz 1 d mz d k z (1 x )} m 1 { 1 1 d g1 mz 1 cos d r1 d k1 h h k 1 x ) m 1 ( 1 c b c d k z (1 x )} m { d g mz cos dr dk h h k 1 x ) m ( c

30 23 歯車の回転方向 内歯車の場合 外歯車の場合 駆動歯車と被動歯車は逆方法 駆動歯車と被動歯車は同方法 内歯車 大歯車 小歯車 外歯車

31 歯幅 Face width ハブ Hub 4. 歯車の各部の名称 歯幅 ハブ ウェブ Web リム Rim ウェブ リム

32 5. 歯車設計時の注意点 1. 歯車 1 のモジュール = 歯車 のモジュール. 工具の圧力角度 =0 度 (JIS 規格 ) 3. 最小歯数を選ぶ時 歯元切下げの有無を確認する必要がある ( 標準歯車の場合には 最小歯数は 17 枚以上 ) 4. 標準歯車で軸間の中心距離が満足できない時には 転位歯車を使用する 5. 転位歯車を使用する場合には 転位係数は歯車の性能や強度に影響を及ぼすので 転位係数の妥当性検討が必要である + 転位の場合には 転位係数が大きすぎると 下図のように歯先が尖る現象が生じるので 要注意 大きな + 転位係数による歯の歯先尖り現象

33 6. インボリュート歯形の特徴 1. 歯車の歯形として インボリュートの他に サイクロイド曲線 トロコイド曲線 円弧などが使われている. 歯形の作りやすさ ( 刃物 = 直線歯形 ) と加工精度の保障 ( 加工 精度測定の易さ ) からみると インボリュート曲線はコストパフォーマンスが一番よいので 殆どの歯車にインボリュート曲線が歯形曲線として採用されている 3. 特殊な歯車装置にインボリュート歯形以外の曲線を使用 例 :1 ピン歯車装置 = サイクロイド歯形 波動歯車装置 = 円弧歯形 直線歯形 インボリュート

34 7. ピン歯車装置の歯形 : トロコイド曲線 トロコイド ( サイクロイド ) 歯形歯車 Gear and 外歯車 Tooth Tooth ピン歯車 pin Torque 反力ピン pin Case Bearing 中央ベアリングころ pin

35 8. 波動歯車装置の歯形 1. 円弧歯形. インボリュート歯形 3. 直線歯形

36 i: 減速比 ; 9. 歯車の減速比 回転数と伝達トルクの関係 (1) 減速比の計算 : i = n 1 n = z z 1 () 回転数の関係 (3) トルクの関係 z 1, z : 歯車 1 と歯車 の歯数 ; 出力軸側 n = n 1 i T T = i T 1 η η: 歯のかみあい効率 負荷 n 1000rpm 400Nm n 1, n : 歯車 1 と歯車 の回転数 (rpm) 減速装置 歯数 0 枚 Z 1 Z 歯数 40 枚 入力軸側 モーター T 1, T : 歯車 1 と歯車 に作用されるトルク 000rpm 00Nm T 1 n 1

37 30 歯車装置の多段減速機構 歯車2 Z n 入力軸 出力軸 歯車1 Z1 n1 歯車4 Z4 n4 歯車3 Z3 n3 出力側 入力側

38 31. 二段減速機構の速比とトルク計算 (1) 1 段目減速比 : i 1 = z z 1 Z 1 n 1 入力軸側 モーター () 段目減速比 : 1 段目 i 34 = z 4 z 3 Z Z 3 n (3) 総減速比の計算式 : 段目 i 14 = i 1 i 34 負荷 Z 4 n 3 i 14 = z z 1 z 4 z 3 出力軸側 回転数の関係式 : トルクの関係式 : 出力軸の回転数 = 入力軸の回転数 / 総減速比出力軸のトルク = 入力軸のトルク 総減速比 総効率 総効率 =1 段目歯車の効率 段目歯車の効率 =η 1 η

39 3. 三段減速機構の速比計算 (1) 1 段目減速比 : i 1 = z z 1 () 段目減速比 : 入力軸側 モーター Z 1 n 1 1 段目 i 34 = z 4 z 3 (3) 3 段目減速比 : i 56 = z 6 z 5 Z Z 3 n Z 4 Z 5 n 3 段目 (4) 総減速比の計算式 : 出力軸側 3 段目 i 14 = i 1 i 34 i 56 i 14 = z z 1 z 4 z 3 z 6 z 5 (1) () 負荷 Z 6 n 4

40 入力部 33. 平歯車の設計計算 (1) 島根大学の開発したソフトによる歯車の設計計算 出力部 歯部寸法 マタギ歯厚とオーバピン寸法

41 34. 平歯車の製図 内スプライン付きの平歯車内 外平歯車の一体化構造 () 島根大学の開発したソフトによる歯車 D と 3D 製図 高歯非標準歯厚平歯車

42 35. 高歯 低歯平歯車の設計計算と製図 転位 高歯歯車の D と 3D 製図

43 開発ソフトのメニュー画面 36. はすば歯車の設計計算と製図 3D 製図 歯部寸法 マタギ歯厚とオーバピン寸法 切り下げチェック 入力部

44 やまば歯車の設計計算と製図

45 37. 設計 製図例 : 歯車試験機の設計と製図 (1) 歯車試験装置の設計 AutoCAD 01 AutoCAD 01 試作した装置の写真

46 38. 歯車装置のアニメーションの作り方 (1) 不思議遊星歯車装置のアニメーション紹介

47 39. ヘリコプターのメイントランスミッション構造 MGB の動作アニメーション

機械設計工学

機械設計工学 はすば歯車 傘歯車 とウォームギヤ 参考文献 : (1) KHK 総合カタログ歯車技術資料 小原歯車工業株式会社 (2) KG GEARS CATALOGE 協育歯車工業株式会社 はすば歯車 自動車のトランスミッションによく使われている 1. はすば歯車の特徴 はすば歯車 平歯車 歯筋は軸に対して斜めになっている 大小歯車のねじれ角度は同じであるが ねじれ方向は逆である 平歯車より高強度 ( かみ合い率が高いため

More information

機械設計工学

機械設計工学 歯車の加工 精度及び歯面修整 歯車の歯切り方法 歯車の加工精度 歯車の加工寸法の管理 歯車の組立誤差及び加工誤差と歯面接触応力分布の関係 歯車の歯面修整 歯車の歯切り方法 歯の創成運動 ホブギリ加工法 シェーピング法 研磨加工法 1. 歯車の創成運動 ( 創成法 ) 歯の創成運動 ( 歯を形成するために ) = ラックの直線運動 + 円板の回転運動 ラック ホブカッタ ラックの直線運動 V = ω

More information

円筒歯車の最適歯面修整の設計例 適正な歯面修整で負荷容量の増大を目指すー 目次 1. はじめに 2 2. ` 解析例 ( はすば歯車の例 ) 歯車諸元 (C 面取り ) 歯車諸元 (R 面取り ) 最適歯面修整 歯先修整 + 歯先

円筒歯車の最適歯面修整の設計例 適正な歯面修整で負荷容量の増大を目指すー 目次 1. はじめに 2 2. ` 解析例 ( はすば歯車の例 ) 歯車諸元 (C 面取り ) 歯車諸元 (R 面取り ) 最適歯面修整 歯先修整 + 歯先 円筒歯車の最適歯面修整の設計例 適正な歯面修整で負荷容量の増大を目指すー 2019.02.25 目次 1. はじめに 2 2. ` 解析例 ( はすば歯車の例 ) 2 2.1 歯車諸元 (C 面取り ) 2 2.2 歯車諸元 (R 面取り ) 7 2.3 最適歯面修整 9 2.4 歯先修整 + 歯先 C 12 2.5 歯先修整 + 歯先 R 14 2.6 解析結果の比較 16 3. 修整歯形 + 歯先

More information

技術資料.indb

技術資料.indb 歯車技術資料 歯車の役割 機械要素として歯車は伝動装置に広く使用されています この歯車が現在のように普及した理由としては次のことが考えられます 小は時計用歯車から 大は船舶用タービン歯車まで伝達馬力の範囲が広いこと 動力を確実に伝達することができること 歯数の組み合わせをかえることにより 速度伝達比を自由に 正確に選べること 歯車の組み合わせの数を増減することによって 回転軸相互の関係位置を自由にできること

More information

CAT_728g

CAT_728g . 歯車の荷重計算. 平歯車, はすば歯車, やまば歯車にかかる力の計算 被動歯車に作用する力,, の大きさは, それぞれ,, に等しく方向が反対である. 歯車と転がり軸受の二つの機械要素の間には, 非常に密接な関係があり, 多くの機械に使用されている歯車装置には, 軸受がほとんど使われている. これらの歯車装置に使用する軸受の定格寿命計算, 軸受の選定は, 歯車のかみあい点における力が基本となる.

More information

<4D F736F F F696E74202D208B408D5C DD8C768E958ED E9197BF97702E707074>

<4D F736F F F696E74202D208B408D5C DD8C768E958ED E9197BF97702E707074> 歯車 Ⅰ 歯車の目的と歴史 歯車の特長 歯車の種類 平歯車のかみ合い条件 歯形の必要条件 インボリュート曲線 歯形 インボリュート歯車の構成と動き歯車各部の名称と記号 平歯車のかみ合い原理共通ラック ( 基準ラック ) ラック工具を用いた歯車の創成基礎円 ピッチ円 中心距離 Copy Right by C.KANAMORI 2006 1 歯車の目的と歴史 目的 歯車は2 軸間に回転と運動 ( 動力

More information

カタログ

カタログ [32] 正弦歯車設計ソフトウエア 図 32.3 歯車諸元 図 32. 正弦歯車設計ソフトウエア 32. 概要古くからポンプギヤ用として提案されてきた正弦曲線で構成される歯形を基準ラックとする歯車 ( 以下, 正弦歯車 ) は, インボリュート歯車に比べすべり率が小さいため動力損失が小さくなる. そのため, かみ合い時の摩擦発熱量が減少し, 歯の温度上昇も押さえられると考えることができる. このことから,

More information

Microsoft Word - 9章3 v3.2.docx

Microsoft Word - 9章3 v3.2.docx 3. 内歯歯車 K--V 機構の効率 3. 退行駆動前項では外歯の K--V 機構の効率について考察した ここでは内歯歯車の K--V 機構を対象とする その考え方は外歯の場合と同じであるが 一部外歯の場合とは違った現象が起こるのでその部分に焦点を当てて述べる 先に固定したラックとピニオンの例を取り上げた そこではピニオン軸心を押す場合と ピニオンにモーメントを加える方法とではラックの役割が違うことを示した

More information

1. はじめに非対称歯形歯車は, 歯車の大きさや材料を変更しないで負荷容量を増大させることができることからロシア航空機の TV7-117( 図 1.1),TV3-117VMA-SBM1,NK-93 ターボプロップエンジンの遊星歯車 ( 図 1.2) などに採用されている 1). この歯車の採用により

1. はじめに非対称歯形歯車は, 歯車の大きさや材料を変更しないで負荷容量を増大させることができることからロシア航空機の TV7-117( 図 1.1),TV3-117VMA-SBM1,NK-93 ターボプロップエンジンの遊星歯車 ( 図 1.2) などに採用されている 1). この歯車の採用により 技術資料 1: 非対称歯形歯車の設計 1. はじめに 2. 高圧力角の効果 3. 基準ラック 4. 外歯車の設計例 4.1 歯車寸法, 歯厚 4.2 歯形 4.3 すべり率 4.4 歯面応力解析 4.5 フラッシュ温度, 摩擦係数, 油膜厚さ, 動力損失 4.6 曲げ応力解析 4.7 伝達誤差解析 4.8 寿命, スカッヒング発生確率 5. 内歯車の設計例 5.1 歯車寸法 5.2 歯形 5.3 すべり率

More information

2 遊星機構の分類

2 遊星機構の分類 遊星機構の分類前節図.-3 において基本遊星機構を組み合わせることによって別の遊星機構が構成されることを示した 基本遊星機構の組み合わせ方はこのほかにまだ幾通りもの形があるが 一つのユニットとしての遊星機構の自由度はである そのためこの機構を決定機構とするために入力軸 出力軸のほかに 機構全体の運動を規制するための軸が必要となる この軸を補助軸と呼ぶ 図.- では固定した軸がそれに相当する つまり補助軸の運動状態を外からの条件できめれば

More information

目盛の読み方 標準目盛の場合 ( 目量.1mm) スリーブの読み 7.mm シンブルの読み +.7mm マイクロメータの読み 7.7mm 通常上図のように目量.1mm まで読取れますが 下図のように目分量で.1mm まで読取ることもできます 約 +1μm 約 +μm バーニヤ付の場合 ( 目盛.1m

目盛の読み方 標準目盛の場合 ( 目量.1mm) スリーブの読み 7.mm シンブルの読み +.7mm マイクロメータの読み 7.7mm 通常上図のように目量.1mm まで読取れますが 下図のように目分量で.1mm まで読取ることもできます 約 +1μm 約 +μm バーニヤ付の場合 ( 目盛.1m マイクロメータ編 各部の名称 標準外側マイクロメータ インナースリーブ アンビル 測定面 スピンドル スリーブ テーパーナット フレーム クランプ シンブル ラチェットストップ 防熱カバー デジマチック標準外側マイクロメータ 測定面スピンドルシンブルラチェットストップ フレーム アンビル クランプ出力コネクタ ( 出力付機種 ) ホールドスイッチ ZERO(INC)/ABS 切替えスイッチ 防熱カバー

More information

<4D F736F F F696E74202D C835B B C8CB38DCF82DD2E B8CDD8AB B83685D>

<4D F736F F F696E74202D C835B B C8CB38DCF82DD2E B8CDD8AB B83685D> 歯車の歯形修整と 3D モデリング 1 歯形修整の種類とその目的 1) 歯先修整と歯元修整 2) クラウニングとエンドレリーフ 3) セミトッピング 2. 歯車の 3D モデリング 1) 機構部品のモデリングの際の留意点 2) モデリング曲面生成の方法 3) 歯車の 3D モデリング 2009/12/04 テクファ ジャパン ( 株 ) 香取英男 1 歯車の歯形修整 広義の歯形修整には 下記の3 種類がある

More information

かみ合い部分における損失

かみ合い部分における損失 第 8 章かみ合い部分における損失 遊星歯車機構の効率を取り扱うには 組の歯車のかみ合い損失を吟味する必要がある ここでかみ合い損失は摩擦に起因しているが 摩擦現象を理論的に説明することは非常に難しい そのため摩擦係数が一定として処理されるのが一般的である このような前提で従来から歯車の摩擦損失の大きさを算出する計算式はいくつも提案されているが ここではそれらの計算式の解説をまず行う このような摩擦現象によって発生する歯車の損失で定まる効率は通常の平歯車では非常に高く99%

More information

カタログ

カタログ [ 付録 :E] 正弦歯形歯車の動力損失低減の可能性 E1. 緒言 1980 年代初め頃より AV 機器などに盛んに使われ始めたプラ スチック歯車は, 鋼歯車の設計基準に倣ってインボリュート歯形 が採用されている. プラスチック歯車を低トルク領域での動力伝 達や回転伝達のみを目的とする場合はインボリュート歯形を採用 することに全く異論は無い. しかしながら, ある程度大きなトル ク領域での動力伝達に用いられた場合は,

More information

カムと歯車のソフトウェア

カムと歯車のソフトウェア カムと歯車のソフトウェア 2018-2 各種自動機械に使用されるカムと歯車の設計製作には 複雑な輪郭計算や強度計算に必要な圧力角 曲率半径の計算が不可欠です 本ソフトウェアではこの様な複雑な計算を簡単なデータ入力により繰り返し より早く より高精度に計算作図し データ出力するなど ビジュアル的 直感的に開発設計を行うことができます 平歯車 はすば歯車 ラック & ピニオン 遊星歯車減速機をはじめ近年ロボット間接駆動には欠かせないトロコイド歯車

More information

Microsoft PowerPoint - LectureMR.ppt

Microsoft PowerPoint - LectureMR.ppt 011.5.13 大学院講義メカニカルデザイン基礎駆動系の設計 - アクチュエータ 減速機の選択 - 機械物理工学専攻岩附信行 1. アクチュエータの分類従来形アクチュエータ : 種類 電磁アクチュエータ 油圧アクチュエータ 空気圧アクチュエータ 詳細 DCモータ ACモータステッピングモータ 歯車モータピストン - シリンダ ピストン - シリンダ 長所 動力供給容易 高速応答 制御が容易 高出力

More information

機構学 平面機構の運動学

機構学 平面機構の運動学 問題 1 静止座標系 - 平面上を運動する節 b 上に2 定点,Bを考える. いま,2 点の座標は(0,0),B(50,0) である. 2 点間の距離は 50 mm, 点の速度が a 150 mm/s, 点 Bの速度の向きが150 である. 以下の問いに答えよ. (1) 点 Bの速度を求めよ. (2) 瞬間中心を求めよ. 節 b a (0,0) b 150 B(50,0) 問題 1(1) 解答 b

More information

ローラチェーンスプロケット 形式及び円滑なローラチェーン伝動には ローラチェーンとスプロケットの噛合いが正確に行われる事が要求されます スプロケットの ( 速比 ) 中心距離 配置などの選定が使用ローラチェーンに対して適切であるかどうかがローラチェーン及び スプロケットの寿命を左右しますから 円滑な

ローラチェーンスプロケット 形式及び円滑なローラチェーン伝動には ローラチェーンとスプロケットの噛合いが正確に行われる事が要求されます スプロケットの ( 速比 ) 中心距離 配置などの選定が使用ローラチェーンに対して適切であるかどうかがローラチェーン及び スプロケットの寿命を左右しますから 円滑な スプロケット 71 ローラチェーンスプロケット 形式及び円滑なローラチェーン伝動には ローラチェーンとスプロケットの噛合いが正確に行われる事が要求されます スプロケットの ( 速比 ) 中心距離 配置などの選定が使用ローラチェーンに対して適切であるかどうかがローラチェーン及び スプロケットの寿命を左右しますから 円滑な回転と伝動効率を低下させないためにも スプロケットの選定には十分な考慮を払って下さい

More information

機械設計工学

機械設計工学 歯車の強度 歯車の破損パターン 及び強度計算法 1. 歯車がかみあう時の応力分布状態 歯接触部の応力集中歯面接触破損ピッチング (Pitting) スポーリング (Spalling) 歯先滑り 率が高い スコーリング (Scoring) ( 焼付き ) 歯元隅肉部 の応力集中 歯元折れ破損 出典 : 歯車の研究 成瀬政男 ( 著 ) 出版社 : 養賢堂 (1960) 光弾性試験による応力分布測定結果

More information

歯車の手引き ごあいさつ 歯車は 紀元前から回転を伝えるために使われている伝動部品です 古くから使われ 今後もあらゆる産業に使われる重要な歯車を知って頂くために作成した冊子が この 歯車の手引き です これから皆さんに歯車の基礎勉強をして頂き 歯車による動きの方向 伝える力の違いなどを学んで下さいますれば 幸いです 今後の 歯車の手引き の改善のため 講義の中で判りにくい内容がありましたら遠慮なく講師に申し出をお願い致します

More information

表 4.2 歯車係数 fz f まがりばかさ歯車では, ねじれ角の方向, 回転方向及び駆動側か従動側かによって荷重の向きが異なる 分離力 (Ks) 及びアキシアル荷重 (Ka) は図 4.5に示す方向を正としている 回転方向とねじれ角の方向は歯車の大端面からみて定義することになっており, 図 4.5

表 4.2 歯車係数 fz f まがりばかさ歯車では, ねじれ角の方向, 回転方向及び駆動側か従動側かによって荷重の向きが異なる 分離力 (Ks) 及びアキシアル荷重 (Ka) は図 4.5に示す方向を正としている 回転方向とねじれ角の方向は歯車の大端面からみて定義することになっており, 図 4.5 4. 軸受荷重の計算 軸受荷重を算定するためには, 軸受が支持している軸系に作用している荷重を決定する必要がある 軸系に作用する荷重には, 回転体の自重, 機械が仕事をするために生じる荷重及び動力伝達による荷重などがあり, これらは理論的に数値計算できるものもあるが, 計算が困難な場合も多い 軸受の主要な用途である動力伝達軸について作用する荷重の計算方法を示す 4. 1 軸系に作用する荷重 4. 1.

More information

バンコランロングシンクロベルト 設計マニュアル

バンコランロングシンクロベルト 設計マニュアル BANCOLLAN LONG SNCHRONOUS BELT C-L-002-001 C O NTENTS ISO9001ISO14001 ISO9001ISO14001 370 3 4 5 6 7 8 12 ISO 9001 199652 KA0953248 16 17 20 21 23 26 28 ISO 14001 1999521 KA0772509 29 32 47 49 53 54 BANCOLLAN

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

Skill_Builder_Spur Gears Part 2_J

Skill_Builder_Spur Gears Part 2_J Autodesk Inventor 2009 Skill Builders Autodesk Inventor 2009 平歯車 Part 2: 特定のパラメータに基づいた平歯車の設計 これは 2 つの章に分かれた Skill Builder の 2 つ目です 1 つ目では 既知の寸法に基づいて 平歯車の連結部を設計する方法を学習します 2 つ目では 特定のパラメータ ( 力 速度 歯車比 ) に対して

More information

ポリチェーンベルトプーリ追加工プーリ技術資料 E Vベルト G Tベルト H T Dベルト タイミングベルト 特殊ベルト15 長尺ベルト

ポリチェーンベルトプーリ追加工プーリ技術資料 E Vベルト G Tベルト H T Dベルト タイミングベルト 特殊ベルト15 長尺ベルト 14 ポリチェーンベルトプーリ追加工プーリ技術資料 E Vベルト G Tベルト H T Dベルト タイミングベルト 特殊ベルト15 長尺ベルト ポリチェーンベルト POLYCHAIN GT CARBON 8MGT 8MGT ピッチ :8.0mm ベルト歯形寸法 ベルト呼称例 8MGT-640-12 CB カーボン仕様 幅 (mm) ピッチ周長 (mm) タイプ記号 ベルトサイズ一覧表 8MGT-

More information

C 1 = f 1 C r (1.6) C 1 f 1 C r : N : 1 : N HRC HRC C 2 = f 2 C r (1.7) C 2 f 2 C r : N : 2 : N f f2 0.4

C 1 = f 1 C r (1.6) C 1 f 1 C r : N : 1 : N HRC HRC C 2 = f 2 C r (1.7) C 2 f 2 C r : N : 2 : N f f2 0.4 1 1-1 1-2 90 1-3 100 1-4 1-5 L 10 = ( C r / P r ) p (1.1) L 10 C r P r : 10 6 rev. : N : N p : p = 10/3 p = 3 L h = 10 6 L 10 / 60n = 500 f p h (1.2) f h = f n C r / P r (1.3) f n = ( 33.3 / n ) 1/ p (1.4)

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

ACモーター入門編 サンプルテキスト

ACモーター入門編 サンプルテキスト 技術セミナーテキスト AC モーター入門編 目次 1 AC モーターの位置付けと特徴 2 1-1 AC モーターの位置付け 1-2 AC モーターの特徴 2 AC モーターの基礎 6 2-1 構造 2-2 動作原理 2-3 特性と仕様の見方 2-4 ギヤヘッドの役割 2-5 ギヤヘッドの仕様 2-6 ギヤヘッドの種類 2-7 代表的な AC モーター 3 温度上昇と寿命 32 3-1 温度上昇の考え方

More information

大分工業高等専門学校紀要第 46 号 ( 平成 1 年 11 月 ) 表. 切削条件 切削条件 (1) 切粉挙動撮影 () 切削抵抗測定 ホブ諸元 超硬合金 ( 刃数 =15, モジュール m=1.75, 高速度鋼 ( 刃数 =1, モジュール m=1.75, 外形 D=49mm, 進み角 1, 圧

大分工業高等専門学校紀要第 46 号 ( 平成 1 年 11 月 ) 表. 切削条件 切削条件 (1) 切粉挙動撮影 () 切削抵抗測定 ホブ諸元 超硬合金 ( 刃数 =15, モジュール m=1.75, 高速度鋼 ( 刃数 =1, モジュール m=1.75, 外形 D=49mm, 進み角 1, 圧 大分工業高等専門学校紀要第 46 号 ( 平成 1 年 11 月 ) 歯形形状と切りくずかみ込み状態 安部達朗 1 福永圭悟 1 大分高専機械 環境システム工学専攻, 機械工学科 ドライホブ切りは生産コスト低減や環境保護などの面から注目されている加工方法である. しかし, 切粉のワークへのかみこみによる歯車精度悪化の品質低下が課題とされている. そこで, 歯車歯形形状を数値的に解析し, ホブ切り時の理論的な切粉生成状況を明らかにした.

More information

問題 ( p.₃₅)

問題 ( p.₃₅) 問題 ( p.₃₄) 問題 ( p.₃₅) 問題 ( p.₃₆) 課題 ( p.₃₇) 課題 ( p.₄₄) 用紙に斜眼紙を使用すると便利である また フリーハンドによる作図は 短時間に解答できるので できるだけ多くの課題によって 等角図になれさせるとよい フリーハンドで円をえがくときは 図 1 48( p.41) に従って 各面の円の傾きや形状がつねにわかるようにしておくとよい この問題は 等角図から投影図を現寸でかかせる課題として利用してもよい

More information

点におけるひずみの定義 ( その1)-(ε, ε,γ ) の定義ひずみは 構造物の中で変化しているのが一般的である このために 応力と同様に 構造物内の任意の点で定義できるようにした方がよい また 応力と同様に 一つの点に注目しても ひずみは向きによって値が異なる これらを勘案し あ

点におけるひずみの定義 ( その1)-(ε, ε,γ ) の定義ひずみは 構造物の中で変化しているのが一般的である このために 応力と同様に 構造物内の任意の点で定義できるようにした方がよい また 応力と同様に 一つの点に注目しても ひずみは向きによって値が異なる これらを勘案し あ 3. 変位とひずみ 3.1 変位関数構造物は外力の作用の下で変形する いま この変形により構造物内の任意の点 P(,,z) が P (',',z') に移動したものとする ( 図 3.1 参照 ) (,,z) は変形前の点 Pの座標 (',', z') は変形後の座標である このとき 次式で示される変形前後の座標の差 u ='- u ='- u z =z'-z (3.1) を変位成分と呼ぶ 変位 (

More information

19年度一次基礎科目計算問題略解

19年度一次基礎科目計算問題略解 9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる

More information

問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた

問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた 問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた 測定データを図 1-2 に示す データから, オーステナイト系ステンレス鋼どうしの摩擦係数を推定せよ

More information

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと 567_ 次曲線の三角関数による媒介変数表示 次曲線の三角関数による媒介変数表示 次曲線 ( 放物線 楕円 双曲線 ) の標準形の, についての方程式と, 三角関数による媒介変数表示は次のように対応している.. 放物線 () 4 p (, ) ( ptn, ptn ) (). 楕円. 双曲線 () () (, p p ), tn tn (, ) ( cos, sin ) (, ), tn cos (,

More information

オルダム継手

オルダム継手 オルダム継手からエアコンまで 西山豊 533-8533 大阪市東淀川区大隅 --8 大阪経済大学情報社会学部 Tel: 06-638-431 E-Mail: nishiama@osaka-ue.ac.jp 015 年 7 月 18 日改訂 1. ある博物館で数学は教科書の中だけでなく生活の中に存在する. 数学は抽象的な数式だけでなく, つねに具体的である. 何か面白い教材がないかと京大総合博物館を見学しているとき,

More information

Microsoft PowerPoint - Robotics_13_review_1short.pptx

Microsoft PowerPoint - Robotics_13_review_1short.pptx 東北文化学園大学 科学技術学部知能情報システム学科 費 仙鳳 ロボットの概要 数学的基礎 座標変換 同次変換 オイラー角 ロールピッチヨウ角 座標系設定 リンクパラメータ 腕型ロボットの構造 腕型ロボットの順運動学 腕型ロボットの逆運動学 腕型ロボットのヤコビアン 速度 特異姿勢 1 2 3 4 1 三角関数 ベクトルと行列 並進変換と回転変換 同次変換行列の導入 オイラー角 (Z-Y-Z) ロール

More information

問題-1.indd

問題-1.indd 科目名学科 学年 組学籍番号氏名採点結果 016 年度材料力学 Ⅲ 問題 1 1 3 次元的に外力負荷を受ける物体を考える際にデカルト直交座標 - を採る 物体 内のある点 を取り囲む微小六面体上に働く応力 が v =- 40, = 60 =- 30 v = 0 = 10 v = 60 である 図 1 の 面上にこれらの応力 の作用方向を矢印で記入し その脇にその矢印が示す応力成分を記入しなさい 図

More information

Microsoft Word - 完成稿.doc

Microsoft Word - 完成稿.doc LEGO と紙とパソコンと - コーヒーカップの描く軌跡 - 小杉亮人 1. はじめに今回扱う題材はコーヒーカップである このコーヒーカップというものは, 子供の遊具だと思って侮っていると, とんでもないことになる 特に真ん中にあるハンドルをいい気になって思い切り回すと, 乗り終わったときに具合が悪くなったことのある人も多いのではないだろうか では, なぜコーヒーカップがそれほどめまいのするアトラクションになるのだろうか

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

EV5GT EV5GT ピッチ :5.0mm ベルト歯形寸法 ベルト呼称例 500-EV5GT-15 プーリ歯形寸法 幅 (mm) タイプ記号 ピッチ周長 (mm) ベルトサイズ一覧表 185-EV5GT EV5GT EV5GT

EV5GT EV5GT ピッチ :5.0mm ベルト歯形寸法 ベルト呼称例 500-EV5GT-15 プーリ歯形寸法 幅 (mm) タイプ記号 ピッチ周長 (mm) ベルトサイズ一覧表 185-EV5GT EV5GT EV5GT E Vベルト EV5GT EV5GT ピッチ :5.0mm ベルト歯形寸法 ベルト呼称例 500-EV5GT-15 プーリ歯形寸法 幅 (mm) タイプ記号 ピッチ周長 (mm) ベルトサイズ一覧表 185-EV5GT 185.00 37 225-EV5GT 225.00 45 230-EV5GT 230.00 46 240-EV5GT 240.00 48 245-EV5GT 245.00 49 250-EV5GT

More information

Microsoft PowerPoint - 材料加工2Y0807V1pdf.ppt

Microsoft PowerPoint - 材料加工2Y0807V1pdf.ppt 第 7 回目圧延 生命医科学部医工学科バイオメカニクス研究室 ( 片山 田中研 ) IN6N 田中和人 E-ail: 内線 : 648 圧延の定義回転する上下ロール間に素材をかみこませ, 厚さや断面積の小さな板, あるいは形材等をつくる方法圧延の歴史 5 世紀末 : レオナルド ダ ビンチ 6 世紀 : 棒や板材の圧延 8 世紀末 : 動力に蒸気力を利用ロール, ハウジングの大型化ロールの多段化 世紀

More information

New power transrmission system 未来の減速装置 OGINIC 技術資料 お問い合わせ TEL : ( 直通 ) URL: OG

New power transrmission system 未来の減速装置 OGINIC 技術資料 お問い合わせ TEL : ( 直通 ) URL:    OG New power transrmission system 未来の減速装置 お問い合わせ TEL : 0 8 2 3-7 7-1 3 8 9( 直通 ) URL:http://www.oginokk.co.jp E-mail : ogino@oginokk.co.jp OGNIO KOGYO CO;LTD. 本社工場 : 731-4229 広島県安芸郡熊野町平谷 1 丁目 12-1 TEL : 082-854-0315

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

宇宙機工学 演習問題

宇宙機工学 演習問題 宇宙システム工学演習 重力傾度トルク関連. 図に示すように地球回りの円軌道上を周回する宇宙機の運動 を考察する 地球中心座標系を 系 { } 軌道面基準回転系を 系 { } 機体固定系を 系 { } とする 特に次の右手直交系 : 地心方向単位ベクトル 軌道面内 : 進行方向単位ベクトル 軌道面内 : 面外方向単位ベクトル 軌道面外 を取る 特に この { } Lol Horiotl frme と呼ぶ

More information

平成9年度水道事業年報 1概況 2施設

平成9年度水道事業年報 1概況 2施設 () (mm) 12 3 31 12 3 31 4 5 6 7 8 9 10 11 12 1 2 3 145,085 146,117 146,352 146,409 146,605 146,685 146,807 147,014 147,002 147,277

More information

<4D F736F F D E682568FCD CC82B982F192668BAD9378>

<4D F736F F D E682568FCD CC82B982F192668BAD9378> 7. 組み合わせ応力 7.7. 応力の座標変換載荷 ( 要素 の上方右側にずれている位置での載荷を想定 図 ( この場合正 ( この場合負 応力の座標変換の知識は なぜ必要か? 例 土の二つの基本的せん断変形モード : - 三軸圧縮変形 - 単純せん断変形 一面せん断変形両者でのせん断強度の関連を理解するためには 応力の座標変換を理解する必要がある 例 粘着力のない土 ( 代表例 乾燥した砂 のせん断破壊は

More information

Microsoft PowerPoint - MathcadPrime10-Katori.pptx

Microsoft PowerPoint - MathcadPrime10-Katori.pptx 研究開発 設計業務の処理になぜ Mathcad が有効か? 2011/02/15 テクファ ジャパン ( 株 ) 香取英男 技術業務に Mathcad を導入して 研究開発 設計業務の革新的な効率化を図る --------------------------------------------------------------------------------------------------------

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

3回

3回 30 第 3 章ベクトルの微分法 キーワードベクトル ベクトルの演算 ゼロベクトル マイナスのベクトル ベクトルの定数倍 定数ベクトル 関数ベクトル ベクトルの成分表示 ベクトルの微分法 速度ベクトル 加速度ベクトル 極率 極率半径 ベクトルのスカラー積 ベクトル積 3.1 ベクトルの演算 1kgの質量や m 3 の体積などのように量で与えるものをスカラーと呼ぶ これに対し 北東の風 風速 m/sのように方向と大きさで与えるものをベクトルと呼ぶ

More information

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8 [N/m] m[g] mẍ x (N) x. f[hz] f π ω π m ω πf[rd/s] m ω 4π f [Nm/rd] J[gm ] J θ θ (gm ) θ. f[hz] f π ω π J J ω 4π f /8 θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 剛体過去問解答例. 長さの棒の慣性モーメントは 公式より l G l A 点のまわりは平行軸の定理より A l l l B y 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 運動方程式は 方向 : R f, y 方向 : y N l 回転 : G { N f R cos } A 静止しているとき 方向の力と 力のモーメントがつり合うので y ~ より R ' また 摩擦力が最大静止摩擦力より大きいとはしごは動き出すので

More information

Microsoft Word - 第25回課題概要.doc

Microsoft Word - 第25回課題概要.doc 公表 第 25 回技能グランプリ 機械製図 職種競技課題 ( 概要 ) 第三角法で描かれた構造部品の組立図から 機械要素の簡単な設計計算を行い 指定された部品の製作図を作成する 製図は 下記の日本工業規格 (JIS) によること B0001: 2000 B0002-1:1998 B0002-2:1998 B0002-3:1998 B0003: 1989 B0004: 1995 B0005-1:1999

More information

JSME-JT

JSME-JT 585 日本機械学会論文集 C 編 77 巻 776 号 -4 論文 No.-693 * 瀬山夏彦 *, 永村和照 * *3, 池条清隆 Influence of Cente Distnce Eo on Diving Pefonce of Involute-Ccloid Coposite Tooth Pofile Spu e Ntsuhiko SEYM *, Kzuteu NMUR nd Kiotk

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

" 01 JJM 予選 4 番 # 四角形 の辺 上に点 があり, 直線 と は平行である.=,=, =5,=,= のとき, を求めよ. ただし,XY で線分 XY の長さを表すものとする. 辺 と辺 の延長線の交点を, 辺 と辺 の延長線の交点を G とする. 5 四角形 は直線 に関して線対称な

 01 JJM 予選 4 番 # 四角形 の辺 上に点 があり, 直線 と は平行である.=,=, =5,=,= のとき, を求めよ. ただし,XY で線分 XY の長さを表すものとする. 辺 と辺 の延長線の交点を, 辺 と辺 の延長線の交点を G とする. 5 四角形 は直線 に関して線対称な 1 " 数学発想ゼミナール # ( 改題 ) 直径を とする半円周上に一定の長さの弦がある. この弦の中点と, 弦の両端の各点から直径 への垂線の足は三角形をつくる. この三角形は二等辺三角形であり, かつその三角形は弦の位置にかかわらず相似であることを示せ. ( 証明 ) 弦の両端を X,Y とし,M を線分 XY の中点,, をそれぞれ X,Y から直径 への垂線の足とする. また,M の直径

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

タイプ出力回転速度Unit Type HPG 型番の選定 ハーモニックプラネタリ HPG シリーズの優れた性能を十分発揮させるために 使用条件の確認とフローチャートを参考に型番選定を行ってください 一般的に サーボシステムにおいては 連続一定負荷の状態はほとんどありません 入力回転速度の変動にともな

タイプ出力回転速度Unit Type HPG 型番の選定 ハーモニックプラネタリ HPG シリーズの優れた性能を十分発揮させるために 使用条件の確認とフローチャートを参考に型番選定を行ってください 一般的に サーボシステムにおいては 連続一定負荷の状態はほとんどありません 入力回転速度の変動にともな タイプHPG 入力軸ユニットタイプ サイズ 型番 :,14,2,2,,6 ピークトルク.9Nm~22Nm 小バックラッシ 標準 : 分以下特殊 :1 分以下 減速比 6 種類 1 段減速 =~9 2 段減速 =~ 高効率 9% 以上 ( 型番 :,14 は 8%) 構造図 図 8-1 出力フランジ部 出力回転方向 出力側オイルシール クロスローラベアリング 取付けインロー部 締結用ボルト穴 アンギュラベアリング

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

ARCHITREND ZERO 汎用コマンド一覧

ARCHITREND ZERO 汎用コマンド一覧 ARCHITREND ZERO 汎用コマンド一覧 一覧表でグレーに塗りつぶされているコマンドは 初期状態では表示されていません 使用するには コマンドカスタマイズで表示する必要があります 情報メニュー 2 線間の距離 角度を計測します また 計測結果の距離をそのまま寸法線として入力できます 2 点間の距離 角度 水平距離 垂直距離を計測します また 計測結果の距離をそのまま寸法線として入力できます

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度

More information

EV5GT 1.5GT 5GT 5M MXL H

EV5GT 1.5GT 5GT 5M MXL H 使用上の注意 取付け張力について 歯付ベルトはかみ合い伝動ですので 平ベルトや V ベルトなどの摩擦伝動と違い高い取付張力を必要としません しかし ベルトの性能を十分に発揮するためには 適切な取付け張力を与えてやる必要があります ベルトの張りが過大な場合は 寿命の低下や騒音発生の一因となり 過小な場合は起動トルク 又は衝撃負荷によって歯飛び ( ジャンピング ) することがあります ベルトの取付け張力は張力計を用いて正しく測定してください

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

<4D F736F F D20837E836A837D E82CC88D98FED E12E646F63>

<4D F736F F D20837E836A837D E82CC88D98FED E12E646F63> 振動分析計 VA-12 を用いた精密診断事例 リオン株式会社 振動分析計 VA-12 を用いた精密診断事例を紹介します 振動分析計 VA-12 は 振動計と高機能 FFT アナライザが一体となったハンディタイプの測定器です 振動計として使用する場合は加速度 速度 変位の同時計測 FFT アナライザとして使用する場合は 3200 ライン分解能 20kHz の連続リアルタイム分析が可能です また カラー液晶に日本語表示がされます

More information

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき,

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき, 図形と計量 直角三角形と三角比 P 木の先端を P, 根元を Q とする 地点の目の位置 ' から 木の先端への仰角が 0, から 7m 離れた Q=90 と なる 地点の目の位置 ' から木の先端への仰角が であ るとき, 木の高さを求めよ ただし, 目の高さを.m とし, Q' を右の図のように定める ' 0 Q' '.m Q 7m 要点 PQ PQ PQ' =x とおき,' Q',' Q' を

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Math-quarium 練習問題 + 図形の性質 線分 は の二等分線であるから :=:=:=: よって = = = 線分 は の外角の二等分線であるから :=:=:=: よって :=: したがって == 以上から =+=+= 右の図において, 点 は の外心である α,βを求めよ α β 70

Math-quarium 練習問題 + 図形の性質 線分 は の二等分線であるから :=:=:=: よって = = = 線分 は の外角の二等分線であるから :=:=:=: よって :=: したがって == 以上から =+=+= 右の図において, 点 は の外心である α,βを求めよ α β 70 Math-quarium 練習問題 + 図形の性質 図形の性質 線分 に対して, 次の点を図示せよ () : に内分する点 () : に外分する点 Q () 7: に外分する点 R () 中点 M () M () Q () () R 右の図において, 線分の長さ を求めよ ただし,R//Q,R//,Q=,=6 とする Q R 6 Q から,:=:6=: より :=: これから,R:=: より :6=:

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

技術計算 SELECTION OF SYNCHRONOUS BELT DRIVES 伝動タイミングベルトの選定方法 2 http: fawos.misumi.jp FA_WEB pulley 2-c 2GT 3GT Pd kw Pt kw Ks 2-d EV5GT EV8YU Pd kw Pt kw

技術計算 SELECTION OF SYNCHRONOUS BELT DRIVES 伝動タイミングベルトの選定方法 2 http: fawos.misumi.jp FA_WEB pulley 2-c 2GT 3GT Pd kw Pt kw Ks 2-d EV5GT EV8YU Pd kw Pt kw 伝動タイミングベルトの選定方法 -cgtgt PdkWPtkWKs -dev5gtev8yu PdkWPtkWKs Pt Ks KsKoKiKrKh Ko.5Ko.5 Ko Ko. Ko8 Ki9 Kr Kh 8.Ko 5 55 5 Kw Kw 68 5Kw 6 Kw 8 5.5Kw Pt Ks KsKoKiKrKhKm Ko Ki 5 Kr 6 Kh Km8 TqPd TqtqKs Tq Nm PdTqn955

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e Wavefront Sensor 法による三角共振器のミスアラインメント検出 齊藤高大 新潟大学大学院自然科学研究科電気情報工学専攻博士後期課程 2 年 214 年 8 月 6 日 1 はじめに Input Mode Cleaner(IMC) は Fig.1 に示すような三角共振器である 懸架鏡の共振などにより IMC を構成する各ミラーが角度変化を起こすと 入射光軸と共振器軸との間にずれが生じる

More information

20~22.prt

20~22.prt [ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点

More information

平成 25 年度京都数学オリンピック道場 ( 第 1 回 ) H 正三角形 ABC の外接円の,A を含まない弧 BC 上に点 P をとる. このとき, AP = BP + CP となることを示せ. 解説円周角の定理より, 4APC = 4ABC = 60, であるから, 図のよ

平成 25 年度京都数学オリンピック道場 ( 第 1 回 ) H 正三角形 ABC の外接円の,A を含まない弧 BC 上に点 P をとる. このとき, AP = BP + CP となることを示せ. 解説円周角の定理より, 4APC = 4ABC = 60, であるから, 図のよ 1 正三角形 の外接円の, を含まない弧 上に点 をとる. このとき, = + となることを示せ. 解説円周角の定理より, 4 = 4 = 60, であるから, 図のように直線 上に点 を, 三角形 が正三角形となるようにとることができる. 三角形 と三角形 において, =, = であり, 4 = 4 = 60, - 4 であるから, 辺とその間の角がそれぞれ等しく, 三角形 と三角形 は合同である.

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

第1章 単 位

第1章  単  位 H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H

More information

2013年度 九州大・理系数学

2013年度 九州大・理系数学 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ a> とし, つの曲線 y= ( ), y= a ( > ) を順にC, C とする また, C とC の交点 P におけるC の接線をl とする 以下 の問いに答えよ () 曲線 C とy 軸および直線 l で囲まれた部分の面積をa を用いて表せ () 点 P におけるC の接線と直線 l のなす角を ( a) とき, limasin θ(

More information

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI 65 8. K 8 8 7 8 K 6 7 8 K 6 M Q σ (6.4) M O ρ dθ D N d N 1 P Q B C (1 + ε)d M N N h 2 h 1 ( ) B (+) M 8.1: σ = E ρ (E, 1/ρ ) (8.1) 66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3)

More information

測量士補試験 重要事項 基準点測量「偏心補正計算」

測量士補試験 重要事項 基準点測量「偏心補正計算」 測量士補試験重要事項基準点測量 偏心補正計算 (Vr.0) 偏心補正計算 < 試験合格へのポイント > 偏心補正計算は 偏心補正計算の出題はその計算方法から 正弦定理を用いるものと余弦定理を用いるものに大別されるが 出題は正弦定理を用いる問題が主である 正弦定理を用いる問題は 与えられた数値を単に公式に当てはめればよいため 比較的簡単に解答することができる また ほぼ 100% の確率で問題文に図が示してあるため

More information

H4

H4 機種構成一覧表 3 4 56 GA GA 57 58 59 60 端子箱 ブレーキ不付きブレーキ付き 0.4 2.2 0.4 0.75 1.5 3.7 3.7 5.5 7.5 5.5 11 11 ブレーキ仕様表 出力 () 定格制御許容制動ライニング寿命電磁石ストローク (mm) 電源電圧概略電流 (A) ブレーキ慣性整流ユニットモーメント型式トルク仕事率 ( 総制動仕事量 ) 単相 (V) J:k

More information

5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき, の値が極地をとるような関数 ( はどのような関数形であるかという問題を考える. そのような関数が求められたとし, そのからのずれを変分 δ と

5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき, の値が極地をとるような関数 ( はどのような関数形であるかという問題を考える. そのような関数が求められたとし, そのからのずれを変分 δ と Arl, 6 平成 8 年度学部前期 教科書 : 力学 Ⅱ( 原島鮮著, 裳華房 金用日 :8 限,9 限, 限 (5:35~8: 丸山央峰 htt://www.orootcs.mech.ngo-u.c.j/ Ngo Unverst, Borootcs, Ar L 5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき,

More information

断面の諸量

断面の諸量 断面の諸量 建設システム工学科高谷富也 断面 次モーメント 定義 G d G d 座標軸の平行移動 断面 次モーメント 軸に平行な X Y 軸に関する断面 次モーメント G X G Y を求める X G d d d Y 0 0 G 0 G d d d 0 0 G 0 重心 軸に関する断面 次モーメントを G G とし 軸に平行な座標軸 X Y の原点が断面の重心に一致するものとする G G, G G

More information

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E >

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E > バットの角度 打球軌道および落下地点の関係 T999 和田真迪 担当教員 飯田晋司 目次 1. はじめに. ボールとバットの衝突 -1 座標系 -ボールとバットの衝突の前後でのボールの速度 3. ボールの軌道の計算 4. おわりに参考文献 はじめに この研究テーマにした理由は 好きな野球での小さい頃からの疑問であるバッテングについて 角度が変わればどう打球に変化が起こるのかが大学で学んだ物理と数学んだ物理と数学を使って判明できると思ったから

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

長尾谷高等学校レポート 回目 全枚. 関数 f() = について, 次の各問いに答えよ ( 教科書 p6~7, 副読本 p97) () 微分係数 f ( ) を定義に従って求めよ ただし, 求める過程を必ず書くこと () グラフ上の (, ) における接線の傾きを求めよ. 関数 ( ) = 4 f

長尾谷高等学校レポート 回目 全枚. 関数 f() = について, 次の各問いに答えよ ( 教科書 p6~7, 副読本 p97) () 微分係数 f ( ) を定義に従って求めよ ただし, 求める過程を必ず書くこと () グラフ上の (, ) における接線の傾きを求めよ. 関数 ( ) = 4 f 長尾谷高等学校レポート 回目 全枚 レポート作成にあたり諸注意. 数学 Ⅲ のレポートは 問題用紙と解答用紙に分かれています この用紙を含め 問題用紙は 提出する必要はありません もし提出用紙の表面に解答が書ききれない場合は 裏面を使用しても構いません ( 裏面の記述方法については後述 ). どの問題も 番号順に問題番号を書くことを忘れないでください また 解けなかった問題は 問題番号を書き 横に

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

データシート, 型式 4503B...

データシート, 型式 4503B... Torque トルク変換器デュアルレンジオプション付 型式 0B... トルク変換器型式 0B... は 回転角度のセンサを内蔵した 歪ゲージ式トルク変換器です デジタル測定信号処理機能を備えており アナログ信号とデジタル信号の出力が可能です 高応答 : 10kHz( 周波数応答 ) 最高回転数 0,000 rpm 精度等級第 1レンジ :0.0 第 レンジ :0.1/0. デュアルレンジ ( 第

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

エラー動作 スピンドル動作 スピンドルエラーの計測は 通常 複数の軸にあるセンサーによって行われる これらの計測の仕組みを理解するために これらのセンサーの 1つを検討する シングル非接触式センサーは 回転する対象物がセンサー方向またはセンサー反対方向に移動する1 軸上の対象物の変位を測定する 計測

エラー動作 スピンドル動作 スピンドルエラーの計測は 通常 複数の軸にあるセンサーによって行われる これらの計測の仕組みを理解するために これらのセンサーの 1つを検討する シングル非接触式センサーは 回転する対象物がセンサー方向またはセンサー反対方向に移動する1 軸上の対象物の変位を測定する 計測 LION PRECISION TechNote LT03-0033 2012 年 8 月 スピンドルの計測 : 回転数および帯域幅 該当機器 : スピンドル回転を測定する静電容量センサーシステム 適用 : 高速回転対象物の回転を計測 概要 : 回転スピンドルは 様々な周波数でエラー動作が発生する これらの周波数は 回転スピード ベアリング構成部品の形状のエラー 外部影響およびその他の要因によって決定される

More information

スライド 1

スライド 1 機構学 Part6: ロボットの運動学 金子真 きんにく筋肉 筋紡錘 : 筋肉の長さを測るセンサ モータ センサ ロボットの運動学 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 ワイヤ駆動式ロボット ワイヤ駆動式ロボット ワイヤプーリ機構の場合

More information

Microsoft PowerPoint - 講義 ppt [互換モード]

Microsoft PowerPoint - 講義 ppt [互換モード] カム リンク機構の設計 2010/03/16 テクファ ジャパン ( 株 ) 香取英男 カム機構は 半導体や電子部品などを高速かつ多量に製造する機械に数多く用いられている重要な機構の一つである カム機構の設計 製作を正しく行えば 長期間にわたって信頼性の高い性能を発揮できる そこで カム機構の設計を進めていく上での いくつかの留意点を示そう 1 カム リンク機構とは カム機構は基本的には カムの回転に対して

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information