Jacobi Determination of Endomorphism Type of Jacobian Varieties of Hyperelliptic Curves over Finite Fields Kazuto MATSUO, Jinhui CHAO, and Shigeo TSUJ

Size: px
Start display at page:

Download "Jacobi Determination of Endomorphism Type of Jacobian Varieties of Hyperelliptic Curves over Finite Fields Kazuto MATSUO, Jinhui CHAO, and Shigeo TSUJ"

Transcription

1 Jacob Determnaton of Endomorphsm Type of Jacoban Varetes of Hyperellptc Curves over Fnte Felds Kazuto MATSUO, Jnhu CHAO, and Shgeo TSUJII CM CM CM lftng CM CM lftng Jacob Jacob ordnary Jacob Jacob Frobenus 1. Jacob Jacob Toyo Communcaton Equpment Co., Ltd., 1 1 Koyato 2, Samukawa-mach, Koza-gun, Kanagawa-ken, Japan Dept. of Electrcal, Electronc, and Communcaton Engneerng, Faculty of Scence and Engneerng, Chuo Unversty, Kasuga, Bunkyo-ku, Tokyo, Japan Dept. of Informaton and System Engneerrng, Faculty of Scence and Engneerng, Chuo Unversty, Kasuga, Bunkyo-ku, Tokyo, Japan dvsor Dvsor [1] [5] [6] [20] CM 1 CM (2) [18], [20], [21] 2 (3) [8], [14], [17], [18] (1) theta [6], [7], [9], [10], [12], [13], [18], [19] [6], [12], [18], [19] CM A Vol. J85 A No. 6 pp

2 2002/6 Vol. J85 A No. 6 CM lftng [22], [23] CM theta CM [11], [15], [16] Jacob Jacob Kohel [24] Jacob CM lftng Jacob 2 2. Jacob CM order p 2 F q g C C : Y 2 = F (X) (1) F (X) =X 2g+1 + a 2gX 2g + + a 0 F q [X] (2) F (X) J C C Jacob J C F q -dvsor J C(F q ) g C/F q Jacob #J C(F q ) Hasse-Wel Range ( q 1) 2g #J C(F q ) ( q +1) 2g (3) J C(F q ) J C[n] J C n-torson group J C[p a ] = (Z/p a Z) r, 0 r g (4) r = g J C ordnary J C ordnary Jacob C ordnary C ordnary J C smple J C End(J C) K = Q ZEnd(J C) (5) J C CM [K : Q] =2g End(J C) K order O End(J C) lftng CM [11], [15], [16] C [24] π q J C q Frobenus χ q(x) Z[X] K = Q(π q ) (6) χ q(x) =X 2g s 1X 2g 1 + s 2X 2g 2 s 1q g 1 X + q g, s Z (7) [25]K maxmal order O K Z-bass rank 2g Z-module 1. K 2g CM O K K maxmal order O K Z-bass B K B K =(ω 1 ω 2 ω 2g ) (8) ω = f (π q)/d,f (X) Z[X], deg f = 1, d Z, d 1 d,f 1 =1,d 1 =1. 678

3 Jacob Proof. [26, V Lemma1.1] B K χ q(x) [26] [28] K B πq =(1 π q π 2g 1 q ) (9) B πq Z[π q] Z-bass BZ[π q] =(f 1(π q) f 2(π q) f 2g(π q)) (10) Z[π q] Z-bass 3. [24] Kohel [24] ordnary F q ordnary E End(E) E F q c conductor π q E q Frobenus K E CM conductor c Kohel O K Z-bass a, m Z B = 1 π q+a m c 2 (Kohel). n m ker(π q + a) E [n] End(E) Z+ Z πq + a n E m j c c = m Q p j Kohel j E dvson polynomal 4. Jacob Dvson polynomal Kohel Baby step gant step algorthm 4. 1 ordnary Jacob Jacob J C/F q End(J C) J C CM K order K order End(J C) = O E O K (11) O E O E Z-bass π q J C q Frobenus π q End(J C) (12) O E Z[π q] O E O K (13) 1 f m = Y p e B 0 =(f 1(π q) f 2g 1(π q) f 2g (π q ) q g 1 ) (14) p E E h h p j p j +1 ker(π q + a) ker(π q + a) B 0 K order O 0 Z-bass O 0 Z[π q] O 0 O K (15) O 0 679

4 2002/6 Vol. J85 A No O 0 O E (16) Proof. πq 1 B πq 0 1 b1 πq 1 = B πq C,b. A Q (17) b 2g (7) 0 q g b 2g π qπq 1 = B πq b 2g 1 + s 1b 2g 1 C A = 1 (18) b 2g = 1/q g 0 1 qb 1 qπq 1 = B πq 1 q g 1 C A (19) qπ 1 q O E (20) [29, Theorem 7.4] 1 f (16) O 0 O O K (21) K order O End(J C) O O E Algorthm 1 F q ordnary C Jacob J C Algorthm 1 step 1 J C q Frobenus π q χ q(x) step 8 O 0 O O K K order Z-bass B O step 10 ω O ω End(J C) J C/F q 4. 2 χ q F q C Jacob J C q Frobenus π q χ q(x) Z[X] (22) C zeta Z(X, C) d X dx log Z(X, C) = N X 1 (23) =1 N C F q - Z(X, C) χ q(x) Z(X, C) = X 2g χ q( 1 X ) (1 X)(1 qx) N = q +1 2gX j=1 (24) π ϕ j q (25) π ϕ j q,j =1...2g πq 2g χ q C F q - =1...g Algorthm 2 680

5 Jacob Algorthm 2 step 2 domnant part step 2 a F q g a (qg 1)/2 Algorthm 2 O(g 3 q g (log q) 3 ) (26) Algorthm 2 χ q(x) Elkes [30] Elkes O g 2 q 8g/5 /4 (log q) 2 (27) Algorthm 2 Elkes Algorthm 2 Elkes Algorthm Algorthm 6 J C/F q q n Frobenus π q n χ q n χ q n Algorthm 2 F q n Algorthm 3 χ q n Algorthm 3 step 4 R,j R j step 5 I 2g 2g 2g Algorthm 3 g,n domnant part step 5 π q π q = q (28) χ q n(x) =X 2g s 1X 2g 1 + s 2X 2g 2 s 1q (g 1)n X + q gn (29) s Z, =1...g (28) s ψ 2g! q g 2 < 2 2g q gn 2 (30) Hessenberg [28] step 5 O((2g) 3 (log(2 2g q gn )) 3 )=O(g 6 n 3 (log q) 3 ) (31) (31) Algorthm O Algorthm 1 O 0 O O K O Z-bass Z[π q] O O K O Z-bass (8) B K (10) BZ[π q] O Z-bass 681

6 2002/6 Vol. J85 A No Z[π q] OBZ[π q] BZ[π q] = B OA O Z-bass B O A = (a j) Z 2g 2g a a d a j( < j) 0 a j <a. [27, 3 Lemma(2.9)()] A Z 2g 2g a j( < j) 0 a j <a det A 0 O O K B O = B KA 1 A 1 =(b j) Z 2g 2g BZ[π q] = B KA 2 A 2 =(c j) Z 2g 2g c = d A 1 Q 2g 2g A 1 = A 2A 1 A 1 A 2 = A 1A A 1A a b = d a d 4 O O O K B O = B K Ā (32) Ā Ā Z 2g 2g (33) AZ[π q] Z 2g 2g, A K, A O Q 2g 2g Q(π q ) B πq BZ[π q] = B πq AZ[π q] (34) B K = B πq A K (35) B O = B πq A O (36) 4 (32) AZ[π q] = A OA (37) A O = A K Ā (38) 4 A Ā = A 1 K AZ[π q]a 1 Q 2g 2g (39) Z O Z[π q] O O K Z[π q] O O K O Z-bass O O O 0 A 2g 2g a 2g,2g q g 1 a 2g,2g Algorthm 4 O 0 O O K O Z-bass Algorthm 4 step 5 A (8) d c = 2gY =1 d (40) d d c 1/(2g+1 ) a 2g,2g O(q 1 g d 2g) <2g, j a j O(d ) 2g +1 a j A #{A} = O(q 1 g c 2g ) A Ā ĀA = A 1 K AZ[π q] (41) A 1 K A Z[π q] d A a j c 1/(2g+1 ) Ā O(g(log c) 2 ) Algorthm 4 O(gq 1 g c 2g (log c) 2 ) (42) χ q(x) dscrmnant χ q(x) q dsc (χ q) (4q) g(2g 1) (43) 682

7 Jacob p c dsc (χ q) Algorthm 4 O(2 2g2 (2g 1) g 5 q 2g3 g 2 g+1 (log q) 2 ) (44) 4. 4! 2O! 2 End(J C ) Algorthm 1 step 10 ω O O K ω End(J C) 4. 3 O Z[π q] J C q Frobenus π q ω O π q ω = f(π q)/d, d Z,f(X) Z[X] (45) ω f,d (45) 5 5. ω = f(π q)/d O f(x) Z[X],d Z ω End(J C) J C[d] ker f(π q) (46). ω End(J C) D J C[d] dd =0 ωdd =0 f(π q)d =0 J C[d] ker f(π q) σ 1 : dj C J C/J C[d] (47) Can. σ 2 : J C/J C[d] J C/ ker f(π q) (48) σ 3 : J C/ ker f(π q) f(π q)j C (49) σ 1 dj C = J C J C/J C[d] σ 2 J C/J C[d] J C/ ker f(π q) σ 3 J C/ ker f(π q) f(π q)j C = J C σ 2 σ ω : J C J C (50) D σ 3(σ 2(σ 1(D))) (51) D J C dω(d) =ω(dd) =f(π q)d (52) ω = f(π q)/d 5 ω End(J C) dvsor D J C[d] f(π q)d = 0 (53) ω End(J C) 6. l d s d l part d = Y s,s = l e (54) s, J C[s ] ker f(π q) J C[d] ker f(π q) (55) 7. d Z G =(D 1 D 2 D 2g ) (56) J C[d] J C[d] =ZD 1 + ZD ZD 2g (57) dvsor D J C[d],f(π q)d =0 D G, f(π q)d =0 (58) d part s J C[s] G dvsor D G (53) ω End(J C) Algorthm 5 ω O ω End(J C) Algorthm 5 s = l e J C[s] G G Cantor [31] dvson polynomal J C q Frobenus χ q(x) 683

8 2002/6 Vol. J85 A No. 6 πq n χ q n(x) Algorthm 3 #J C(F q n )=χ q n(1) s #J C(F q n ) J C[s](F q n ) φ J C[s](F q n ) φ F q n l e 0 #J C(F q n ) e 0 s 0 = l e 0 D J C(F q n ) D = #JC(Fqn ) s 0 D J C[s 0] (60) D D J C[s 0](F q n ) dvsor D Baby step gant step algorthm [28], [32], [33] J C[s 0](F q n ) G 0 G 0 =( D1 D2 D2g ) (61) # D = lẽ ē ê = max{0, ē e} G =(lê1 D1 lê2 D2 lê2g D2g ) (62) J C[s](F q n ) s J C[s] G Algorthm 6 Algorthm 6 Algorthm 6 step 3 Algorthm 3 (31) n O(g 6 n 3 (log q) 3 ) gcd(q,s) =1 n =1...O(s 2g ) χ q n #J C(F q n ) Algorthm 6 O(g 6 s 8g (log q) 3 ) (63) gcd(q,s) 1 n =1...O(s g ) χ q n O(g 6 s 4g (log q) 3 ) (64) n G 0 (3) #J C(F q n )=O(q gn ) (65) Baby step gant step algorthm D J C[l e 0 ](F q n ) O(gn log q) dvsor D O(g) D O(g 4 (n log q) 3 ) (66) Baby step gant step algorthm O( l e 0 ) dvsor O( l e 0 (gnlog q) 2 ) (67) 684

9 Jacob e 0 = O(g log l n) Baby step gant step algorthm O(g 2 l g n 5/2 (log q) 2 ) (68) gcd(q,s) =1 1 n<o(s 2g ) G 0 n O( g l) step 6 Algorthm 6 G 0 D J C[l e 0 ](F q n ) O(g 4 s 6g (log q) 3 ) (69) Baby step gant step algorthm O(g 2 l g s 5g (log q) 2 ) (70) l s O(g 4 s 6g (log q) 3 ) (71) gcd(q,s) 1 1 n<o(s g ) G 0 πqd,=1...2g s gcd(q,s) =1 O(g 3 s 4g (log q) 2 log s ) (77) gcd(q,s) 1 O(g 3 s 2g (log q) 2 log s ) (78) 2g D f(π q)d s gcd(q,s) =1 O(g 3 s 4g (log q) 2 (log q + g log s )) (79) gcd(q,s) 1 O(g 3 s 2g (log q) 2 (log q + g log s )) (80) s = s (73) (74) Algorthm 5 domnant part Algorthm 6 Algorthm 5 d l part s gcd(q,s) =1 O(g 4 s 3g (log q) 3 ) (72) O(g 6 (log q) 3 X s 8g ) (81) Algorthm 6 gcd(q,s) =1 O(g 6 s 8g (log q) 3 ) (73) gcd(q,s) 1 O(g 6 s 4g (log q) 3 ) (74) Algorthm 5 Algorthm 5 step 3 D G f(π q)d π qd, =1...2g s gcd(q,s) =1 O(g 2 s 4g (log q)3 ) (75) gcd(q,s) 1 O(g 2 s 2g (log q)3 ) (76) gcd(q,s) 1 O(g 6 (log q) 3 s 4g ) (82) 5. Algorthm 1 Jacob Algorthm 5 domnant part Algorthm 6 Algorthm 6 Algorthm 1 torson Algorthm 1 Algorthm 6 (40) c d 1 = d 2 = = d 2g 1 =1, d 2g = c = O((4q) g(2g 1) 2 ) (83) case Algorthm 6 685

10 2002/6 Vol. J85 A No. 6 J C q Frobenus π q χ q(x) dscrmnant q g(g 1) dsc (χ q)=q g(g 1) d case d 2g = O p dsc (χq) q = O q g(g 1) d (84) (81) (82) Algorthm 6 q part (81) q = p n d 2g p part p g(g 1)n/2 part O( d ) part part s gcd(q,s) =1 s = O(2 g(2g 1) q g2 /2 ) (85) gcd(q,s) 1 3 s = O(q (g 1)(g 2)/2 ) (86) (73) (74) gcd(q,s) =1 domnant O(2 8g2 (2g 1) g 6 q 4g3 (log q) 3 ) (87) (44) (87) Algorthm 1 6. q 2 2 Magma [34] χ q Elkes [30] Algorthm 6 step 8 [28, Algorthm 5.4.1] Baby step gant step algorthm Algorthm 6 step 10 #G <4 Algorthm 5 G G Algorthm 5 step Pentum III 866 MHz memory 500 MByte p {7, 17, 31, 61, 127, 251, 509, 1031} F p Jacob memory (40) c Algorthm 6 n N 1 1 #{C } memory 1 p = c N Jacob c O(p 2 ) N O(p) c = O(q 2 ) (88) N = O(q) (89) (42) g =2 (88) Algorthm 4 686

11 Jacob 1 Table 1 Expermental results of computng endomorphsm rngs of hyperellptc curves over F p. p #{C } Memory (MByte) c N C Table 2 Lst of curves that endomorphsm rngs of ther Jacoban varetes could not be determned n the experment (Denote as C ). p C c N 127 Y 2 = X 5 +98X 4 +75X 3 +97X 2 +32X Y 2 = X X X 3 +58X 2 +99X Y 2 = X X X X X Y 2 = X X X 3 +10X X Y 2 = X X 4 +55X X X Y 2 = X X X X X O(q 7 (log q) 2 ) (90) (89) Algorthm 5 Algorthm 6 step 3 Algorthm 3 (31) n =1...N χ q n O(q 4 (log q) 3 ) (91) D (66) O((q log q) 3 ) (92) Baby step gant step algorthm (68) l = q O(q 9/2 (log q) 2 ) (93) (90) p = 1031 F C C : Y 2 = X X 4 +47X X X (94) C Jacob J C p Frobenus π p χ p(x) =X 4 +45X X X (95) J C CM K = Q(π p ) (96) maxmal order O K Z-bass B K =(ω 1 ω 2 ω 3 ω 4 ), (97) ω 1 =1, ω 2 = π q, ω 3 = π2 q +5π q +2, 7 ω 4 = π3 q πq π q O 0 Z-bass 687

12 2002/6 Vol. J85 A No. 6 B 0 =(ω 1 ω 2 7ω 3 14ω 4 ) (98) O 0 O O K K order O 8 O O O E J C[2] ker f 1(π p) (99) J C[7] ker f 2(π p) (100) J C[7] ker f 3(π p) (101) f 1(X) =X (102) f 2(X) =X 3 +5X 2 +2X (103) f 3(X) =X 2 +5X + 2 (104) J C[2] #J C(F 1031 n ) n =1, 2,... n =1 #J C(F 1031) = (105) J C[2] J C(F 1031) φ J C[2](F 1031) J C[2](F 1031) = Z/2Z (106) D f 1(π p)d = 0 (107) #J C(F 1031 n ) n =2 #J C(F )= (108) J C[2] J C(F ) φ J C[2](F ) J C[2](F ) = (Z/2Z) 2 (109) f 1(π p)d 0 (110) D J C (99) f 1(π q) 2 / End(J C) (111) J C[7] #J C(F 1031 n ) n =24 #J C(F )=7 8 N 24 (112) J C[7] J C (F ) φ N N bt J C[7](F ) J C[7](F ) = (Z/7Z) 2 (113) 2 D f 2(π p)d = 0 (114) f 3(π p)d = 0 (115) #J C(F 1031 n ) n = 168 #J C(F )=7 8 N 168 (116) J C[7] J C(F ) φ N N bt J C[7](F ) J C[7](F ) = (Z/7Z) 4 (117) f 2(π p)d 1 0 (118) f 3(π p)d 2 0 (119) D 1, D 2 J C (100) (101) f 2(π q) / End(J C) 7 (120) f 3(π q) / End(J C) 7 (121) End(J C) = O 0 (122) 3 36 MByte memory J C[7](F ) 688

13 Jacob 3 Table 3 Tmng of determnng the endomorphsm rng of the hyperellptc curve (94). χ p 0.1 O s.t O 0 O O K 0.05 #J C(F 1031 n ) 4.0 J C [2](F 1031) 0.01 J C [2](F ) 0.04 J C[7](F ) 7.0 J C[7](F ) (99) 0.00 (100) 2.2 (101) lftng CM ordnary Jacob (87) lftng CM q 1000 F q 2 memory Kohel 3. [24] [1] D.G. Cantor, Computng n the Jacoban of hyperellptc curve, Math. Comp., vol.48, no.177, pp , [2] S. Paulus and A. Sten, Comparng real and magnary arthmetcs for dvsor class groups of hyperellptc curves, ANTS-III, no.1423 n Lecture Notes n Computer Scence, pp , Sprnger-Verlag, [3] P. Gaudry and R. Harley, Countng ponts on hyperellptc curves over fnte felds, ANTS-IV, ed. W. Bosma, no.1838 n Lecture Notes n Computer Scence, pp , Sprnger-Verlag, [4] K. Nagao, Improvng group law algorthms for Jacobans of hyperellptc curves, ANTS-IV, ed. W. Bosma, no.1838 n Lecture Notes n Computer Scence, pp , Sprnger-Verlag, [5] K. Matsuo, J. Chao, and S. Tsuj, Fast genus two hyperellptc curve cryptosystems, IEICE Techncal Report, ISEC , [6] A.M. Spallek, Kurven vom Geshlcht 2 und hre Anwendung n Publc-Key-Kryptosystemem, PhD thess, GH Essen, [7] X. Wang, 2-dmensonal smple factors of J 0(N), Manuscrpta Math., vol.87, no.2, pp , [8] K. Matsuo, J. Chao, and S. Tsuj, Desgn of cryptosstems based on Abelan varetes over extenson felds, IEICE Techncal Report, ISEC97-30, [9] H.J. Weber, Hyperellptc smple factor of J 0(N) wth dmenson at least 3, Expermental Math., vol.6, no.4, [10] G. Frey and M. Müller, Arthmetc of modular curves and applcatons, n Algorthmc algebra and number theory, ed. B. Matzat, G. Greuel, and G. Hss, pp.11 48, Sprnger-Verlag, [11] K. Matsuo, J. Chao, and S. Tsuj, On lftng of CM hyperellptc curves, Proc. of SCIS 99, pp , [12] P.V. Wamelen, Example of genus two CM curves defned over the ratonals, Math. Comp., vol.68, no.225, pp , [13] P.V. Wamelen, Provng that a genus 2 curve has complex multplcaton, Math. Comp., vol.68, no.228, pp , [14] J. Chao, K. Matsuo, and S. Tsuj, Fast constructon of secure dscrete logarthm problems over Jacoban varetes, Informaton Securty for Global Informaton Infrastructures: IFIP TC 11 16th Annual Workng Conference on Informaton Securty, ed. S. Qng and J.Eloff, pp , Kluwer Academc Pub., [15] J. Chao, K. Matsuo, H. Kawashro, and S. Tsuj, Constructon of hyperellptc curves wth CM and ts applcaton to cryptosystems, Advances n Cryp- 689

14 2002/6 Vol. J85 A No. 6 tology - ASIACRYPT2000, ed. T. Okamoto, no.1976 n Lecture Notes n Computer Scence, pp , Sprnger-Verlag, [16] Ordnary lftng CM Proc. of SCIS2000, no.c51, [17] CM Wel number Proc. of SCIS2000, no.c50, [18] A. Weng, Constructng hyperellptc curves of genus 2 sutable for cryptography, preprnt, [19] 2 Proc. of SCIS2001, pp , [20] A vol.j84-a, no.8, pp , Aug [21] J.F. Mestre, Constructon de curbes de genere 2 à partr de leurs modules, n Effectve methods n algebrac geometry, ed. C. T. T. Mora, no.94 n Progress n Mathematcs, pp , Brkhäuser, [22] J. Chao, O. Nakamura, K. Sobataka, and S. Tsuj, Constructon of secure ellptc cryptosystems, Advances n Cryptology - ASIACRYPT 98, ed. K. Ohta and D. Pe, no.1514 n Lecture Notes n Computer Scence, pp , Sprnger-Verlag, [23] CM A vol.j82-a, no.8, pp , Aug [24] D. Kohel, Endomorphsm rngs of ellptc curves over fnte felds, PhD thess, UCB, [25] H. Stchtenoth, Algebrac functon felds and codes, Unverstext, Sprnger-Verlag, [26] M. Pohst, Computatonal Algebrac Number Theory, no.21 n DMV Semner, Brkhäuser, [27] M. Pohst and H. Zassenhaus, Algorthmc Algebrac Number Theory, no.30n Encyclopeda of mathematcs and ts applcatons, Cambrdge U.P., [28] H. Cohen, A Course n Computatonal Algebrac Number Theory, no.138 n Graduate Text n Mathematcs, Sprnger-Verlag, [29] W.C. Waterhouse, Abelan varetes over fnte felds, Ann. scent. Ec. Norm. Sup., 4 o t. 2, pp , [30] N.D. Elkes, Ellptc and modular curves over fnte felds and related computatonal ssues, n Computatonal perspectves on number theory, ed. D.A. Buell and J.T. Tetlbaum, pp.21 76, AMS, [31] D.G. Cantor, On the analogue of the dvson polynomals for hyperellptc curves, Journal für de rene und angewandte Mathematk, vol.447, pp , [32] H. Cohen, Advanced Topcs n Computatonal Number Theory, no.193 n Graduate Text n Mathematcs, Sprnger-Verlag, [33] E. Teske, A space effcent algorthm for group structure computaton, Math. Comp., vol.67, pp , [34] D IEEE 690

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P 15, pp.61-80 Abel-Jacob I 1 Introducton Remann Abel-Jacob X g Remann X ω 1,..., ω g Λ = {( γ ω 1,..., γ ω g) C g γ H 1 (X, Z)} Λ C g lattce Jac(X) = C g /Λ Le Abel-Jacob (Theorem 2.2, 4.2) Jac(X) Pcard

More information

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec l Wel (Yoch Meda) Graduate School of Mathematcal Scences, The Unversty of Tokyo 0 Galos ([M1], [M2]) Galos Langlands ([Ca]) K F F q l q K, F K, F Fr q Gal(F /F ) F Frobenus q Fr q Fr q Gal(F /F ) φ: Gal(K/K)

More information

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q p- L- [Iwa] [Iwa2] -Leopoldt [KL] p- L-. Kummer Remann ζ(s Bernoull B n (. ζ( n = B n n, ( n Z p a = Kummer [Kum] ( Kummer p m n 0 ( mod p m n a m n ( mod (p p a ( p m B m m ( pn B n n ( mod pa Z p Kummer

More information

genus 2 Jacobi Pila Schoof 42 Adleman Huang 2 19 3 Gaudry Harley l genus 2 Jacobi 17 Jacobi Spallek 52 theta CM Jacobi genus2 Wang 61 Weber 60 Wamelen

genus 2 Jacobi Pila Schoof 42 Adleman Huang 2 19 3 Gaudry Harley l genus 2 Jacobi 17 Jacobi Spallek 52 theta CM Jacobi genus2 Wang 61 Weber 60 Wamelen 6 2000 Journal of the Institute of Science and Engineering5 Chuo University Jacobi CM Type Computation of CM Type of Jacobian Varieties Jacobi CM CM Jacobi CM type reflex CM type Frobenius endomorphism

More information

10_4.dvi

10_4.dvi Vol.44, No.1, 1/7 28 Synchronzed Control for Blateral Teleoperaton wth Dfferent Confguratons and Communcaton Delays Hsanosuke Kawada,KoueYoshda and Toru Namerkawa Ths paper addresses the problem of the

More information

さくらの個別指導 ( さくら教育研究所 ) A AB A B A B A AB AB AB B

さくらの個別指導 ( さくら教育研究所 ) A AB A B A B A AB AB AB B 1 1.1 1.1.1 1 1 1 1 a a a a C a a = = CD CD a a a a a a = a = = D 1.1 CD D= C = DC C D 1.1 (1) 1 3 4 5 8 7 () 6 (3) 1.1. 3 1.1. a = C = C C C a a + a + + C = a C 1. a a + (1) () (3) b a a a b CD D = D

More information

Skew-Frobenius IISEC, JANT18 1

Skew-Frobenius IISEC, JANT18 1 Skew-Frobenius IISEC, 2008 7 5 JANT18 1 Frobenius C/F p Jacobian J C (F p n) Frobenius ϕ p ϕ p Z[ϕ p ] End(J C ) ϕ p J C (F p ) J C (F p n) (J C (F p n)/j C (F p )) p g(n 1) g 2, p n J C (F p ) JANT18

More information

橡jttc2.PDF

橡jttc2.PDF 1 ( ) 1 GA GA GA MOGA (Multple-Objectve Genetc Algorthm) GA GA GA MOGA GA GA MOGA GA GA 3.1MOGA ( ) x x j f = f, f, 1 2 L, f q x x j x j f ( x ) f ( x ) f ( x ) f ( x ) L f ( x ) f ( x ) ( ) ( ) 1 1 j

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

main.dvi

main.dvi THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. ( ) Estmaton and Analyss of Topc Models n Tme Seres Japanese / Chnese News and Blogs Shuo HU,LyZHENG, Yusuke

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

I z n+1 = zn 2 + c (c ) c   pd L.V. K. 2 I 2012 00-1 I : October 1, 2012 Version : 1.1 3. 10 1 10 15 10 22 1: 10 29 11 5 11 12 11 19 2: 11 26 12 3 12 10 12 17 3: 12 25 1 9 1 21 3 1 I 2012 00-2 z n+1 = zn 2 + c (c ) c http://www.math.nagoya-u.ac.jp/~kawahira/courses/12w-tenbou.html

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

1 (VOA) Frenkel- Lepowsky-Meurman [25] VOA V Leech lattice Λ VOA V Λ 2 V + Λ Dong Lam 2 Frenkel-Lepowsky-Meurman [25] Lepowsky-Li [37] (vertex

1 (VOA) Frenkel- Lepowsky-Meurman [25] VOA V Leech lattice Λ VOA V Λ 2 V + Λ Dong Lam 2 Frenkel-Lepowsky-Meurman [25] Lepowsky-Li [37] (vertex 1 (VOA Frenkel- Lepowsky-Meurman [25] VOA V Leech lattce Λ VOA V Λ 2 V + Λ 2 3 4 5 Dong Lam 2 Frenkel-Lepowsky-Meurman [25] Lepowsky-L [37] (vertex operator algebra, VOA Z-graded C V = n Z V n v V n Z

More information

IPSJ SIG Techncal Report 2. RangeBased RangeFree. 2.1 Rangebased RangeBased TDOA(Tme Dfference Of Arrval) TOA(Tme Of Arrval) TDOA TDOA Actve Bat 2) Cr

IPSJ SIG Techncal Report 2. RangeBased RangeFree. 2.1 Rangebased RangeBased TDOA(Tme Dfference Of Arrval) TOA(Tme Of Arrval) TDOA TDOA Actve Bat 2) Cr IPSJ SIG Techncal Report 1 2 2 (SOM, Self Organzng Maps) 7). Self-Organzng Localzaton for Wreless Sensor Networks on Ansotropc Topology Yuto Takashma, 1 Naotosh Adach 2 and Yasuhsa Takzawa 2 On wreless

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

#2 (IISEC)

#2 (IISEC) #2 (IISEC) 2007 10 6 E Y 2 = F (X) E(F p ) E : Y 2 = F (X) = X 3 + AX + B, A, B F p E(F p ) = {(x, y) F 2 p y2 = F (x)} {P } P : E(F p ) E F p - Given: E/F p : EC, P E(F p ), Q P Find: x Z/NZ s.t. Q =

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

:00-16:10

:00-16:10 3 3 2007 8 10 13:00-16:10 2 Diffie-Hellman (1976) K K p:, b [1, p 1] Given: p: prime, b [1, p 1], s.t. {b i i [0, p 2]} = {1,..., p 1} a {b i i [0, p 2]} Find: x [0, p 2] s.t. a b x mod p Ind b a := x

More information

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osaka University , Schoof Algorithmic Number Theory, MSRI

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

Nobelman 絵文字一覧

Nobelman 絵文字一覧 Nobelman i-mode EZweb J-SKY 1 88 2 89 3 33 4 32 5 5 F[ 6 6 FZ 7 35 W 8 34 W 9 7 F] W 10 8 F\ W 11 29 FR 12 30 FS 13 64 FU 14 63 FT 15 E697 42 FW 16 E678 70 FV 17 E696 43 FX 18 E6A5 71 FY 19 117 20 E6DA

More information

> σ, σ j, j σ j, σ j j σ σ j σ j (t) = σ (t ) σ j (t) = σ () j(t ) n j σ, σ j R lm σ = σ j, j V (8) t σ R σ d R lm σ = σ d V (9) t Fg.. Communcaton ln

> σ, σ j, j σ j, σ j j σ σ j σ j (t) = σ (t ) σ j (t) = σ () j(t ) n j σ, σ j R lm σ = σ j, j V (8) t σ R σ d R lm σ = σ d V (9) t Fg.. Communcaton ln IIC-- Dstrbuted Cooperatve Atttude Control for Multple Rgd Bodes wth Communcaton Delay Yoshhro achbana, oru Namerkawa (Keo Unversty) Abstract hs paper descrbes dstrbuted cooperatve atttude consensus and

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A 91 7,.,, ( ).,,.,.,. 7.1 A B, A B, A = B. 1), 1,.,. 7.1 A, B, 3. (i) A B. (ii) f : A B. (iii) A B. (i) (ii)., 6.9, (ii) (iii).,,,. 1), Ā = B.. A, Ā, Ā,. 92 7 7.2 A, B, C. (1) A = A. (2) A = B B = A. (3)

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

a m 1 mod p a km 1 mod p k<s 1.6. n > 1 n 1= s m, (m, = 1 a n n a m 1 mod n a km 1 mod n k<sn a 1.7. n > 1 n 1= s m, (m, = 1 r n ν = min ord (p 1 (1 B

a m 1 mod p a km 1 mod p k<s 1.6. n > 1 n 1= s m, (m, = 1 a n n a m 1 mod n a km 1 mod n k<sn a 1.7. n > 1 n 1= s m, (m, = 1 r n ν = min ord (p 1 (1 B 10 004 Journal of the Institute of Science and Engineering. Chuo University Euler n > 1 p n p ord p n n n 1= s m (m B psp = {a (Z/nZ ; a n 1 =1}, B epsp = { ( a (Z/nZ ; a n 1 a }, = n B spsp = { a (Z/nZ

More information

Vol. 31 No. 3 Aug. 2014 157 VCG [16][12] yes/no VCG VCG 1 ( ) 1. 1 (VCG-equvalent n expectaton, VCG-EE) VCG VCG VCG-EE VCG VCG

Vol. 31 No. 3 Aug. 2014 157 VCG [16][12] yes/no VCG VCG 1 ( ) 1. 1 (VCG-equvalent n expectaton, VCG-EE) VCG VCG VCG-EE VCG VCG 156 VCG-equvalent n Expectaton VCG-equvalent n expectaton VCG-equvalent n expectaton Vckrey-Clarke-Groves (VCG) VCG VCG-equvalent n expectaton VCG-equvalent n expectaton In ths paper, we develop a new

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen Hamming (Hamming codes) c 1 # of the lines in F q c through the origin n = qc 1 q 1 Choose a direction vector h i for each line. No two vectors are colinear. A linearly dependent system of h i s consists

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

index calculus

index calculus index calculus 2008 3 8 1 generalized Weil descent p :, E/F p 3 : Y 2 = f(x), where f(x) = X 3 + AX + B, A F p, B F p 3 E(F p 3) 3 : Generalized Weil descent E(F p 4) 2 Index calculus Plain version Double-large-prime

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

繰り返しゲームの新展開:

繰り返しゲームの新展開: CIRJE-J-65 001 10 001 10 5 New Progress n Repeated Games: Implct Colluson wth Prvate Montorng Htosh Matsushma Faculty of Economcs, Unversty of Tokyo October 5, 001 Abstract The present paper provdes a

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

2014 x n 1 : : :

2014 x n 1 : : : 2014 x n 1 : : 2015 1 30 : 5510113 1 x n 1 n x 2 1 = (x 1)(x+1) x 3 1 = (x 1)(x 2 +x+1) x 4 1 = (x 1)(x + 1)(x 2 + 1) x 5 1 = (x 1)(x 4 + x 3 + x 2 + x + 1) 1, 1,0 n = 105 2 1 n x n 1 Maple 1, 1,0 n 2

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

R Φ : R G,G A G Φ Φ R Φ 1 (A) G A Φ 1 (A) R R Φ 1 (A) Φ 1 (A) (R, Φ, G) R G R R R R G σ R σ (R 1, Φ 1, G 1 ) D 1 (R 2, Φ 2, G 2 ) D 2 φ D 2 f f φ Φ σ

R Φ : R G,G A G Φ Φ R Φ 1 (A) G A Φ 1 (A) R R Φ 1 (A) Φ 1 (A) (R, Φ, G) R G R R R R G σ R σ (R 1, Φ 1, G 1 ) D 1 (R 2, Φ 2, G 2 ) D 2 φ D 2 f f φ Φ σ [ 2016.11.11,12,16,17,18] [2016.11.3,4,5,6,7,8,9,10] K K K P 2 Winkelmann P 2 D D D C2 X X U p V p ϕ p U p U q ϕ q ϕ 1 p : ϕ p (U p U q ) ϕ q (U p U q ) X 1 R Φ : R G,G A G Φ Φ R Φ 1 (A) G A Φ 1 (A) R

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 4 2010 9 3 3 4-1 Lucas-Kanade 4-2 Mean Shift 3 4-3 2 c 2013 1/(18) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 -- 4 4--1 2010 9 4--1--1 Optical Flow t t + δt 1 Motion Field

More information

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [ SQUFOF SQUFOF NTT 2003 2 17 16 60 Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) 60 1 1.1 N 62 16 24 UBASIC 50 / 200 [ 01] 4 large prime 943 2 1 (%) 57 146 146 15

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional 1 1.1 semantics F 1 x, y, z,... F 1. F 38 2016 9 1 (oolean) Functional 2. T F F 3. P F (not P ) F 4. P 1 P 2 F (P 1 and P 2 ) F 5. x P 1 P 2 F (let x be P 1 in P 2 ) F 6. F syntax F (let x be (T and y)

More information

( ) 5. VSS (VIM ) 10. ( ) 11. (ANN ) ( )

( ) 5. VSS (VIM ) 10. ( ) 11. (ANN ) ( ) 1.... ( ) 5. VSS.. 8. 9. (VIM ) 1. ( ) 11. (ANN ) 1. 1. ( ) 1 Lagrange 1..1 Lagrange q, Lagrange D(q)q + C(q; _q)_q + G(q) = (1.1) D(q)q C(q; _q)_q G(q) ( ) D(q) D(q) m ; M < M m (D(q)) (1.) (D(q)) M

More information

(note-02) Rademacher 1/57

(note-02) Rademacher 1/57 (note-02) Rademacher 1/57 (x 1, y 1 ),..., (x n, y n ) X Y f : X Y Y = R f Y = {+1, 1}, {1, 2,..., G} f x y 1. (x 1, y 1 ),..., (x n, y n ) f(x i ) ( ) 2. x f(x) Y 2/57 (x, y) f(x) f(x) y (, loss) l(f(x),

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

wiles05.dvi

wiles05.dvi Andrew Wiles 1953, 20 Fermat.. Fermat 10,. 1 Wiles. 19 20., Fermat 1. (Fermat). p 3 x p + y p =1 xy 0 x, y 2., n- t n =1 ζ n Q Q(ζ n ). Q F,., F = Q( 5) 6=2 3 = (1 + 5)(1 5) 2. Kummer Q(ζ p ), p Fermat

More information

.,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i

.,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i 2006 D r. H e n e r 18 4 1 .,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i 1 2 1 1.1 2 10..................................... 1 1.2 2......................................

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information