CEV(Constant Elasticity of Variance) FE 1

Size: px
Start display at page:

Download "CEV(Constant Elasticity of Variance) FE 1"

Transcription

1 CEV(Consan Elasiciy of Variance) FE 1

2 1 (Karazas and Shreve[1998] Carr, Jarrow and Myneni[1992] J. Huang, Subrahmanyam and Yu[1996] ) S 1 ds =(r δ)s d + σ(s )dw,s = x(> ) r δ K T sup E[e rτ (K S τ ) + ]= τ T [ [ E e rt (K S T ) +] T + rke [ ] T δe e ru S u 1 {Su Bu}du ] e ru 1 {Su Bu}du B T Taahashi[1995] [1999] () ( [1992] Taahashi[1995] [1999]) (Kuniomo and Taahashi[21]) (Ieda and Waanabe[1989] Yoshida[1992] ) (Kuniomo and Taahashi[23]) 2

3 (Taahashi and Yoshida[21a] [23] Kobayashi, Taahashi and Toioa[21]) (Taahashi and Yoshida[21b]) [23] S CEV(Consan Elasiiciy of Variance) ds =(r δ)s d + σs γ dw, (1/2 γ 1) CEV 5 CEV CEV 2 (Ω, F, {F } T, P) [,T] {F } T (-usual condiions- Karazas and Shreve[1996] Definiion ) W, ( T ) (Ω, F, {F } T, P) 1 P 3

4 S x, ( T ) ds =(r δ)s d + σ(s )dw,s = x(> ) (1) () x,r,δ σ : R R y, z R y, z K 1 > σ(y) 2 K 1 (1 + y 2 ) (2) σ(y) σ(z) h( y z ) h h :[, ) [, ), h() =, ɛ> (,ɛ) h 2 (u)du = 1 [1974] 3.1 Karazas and Shreve[1996] Proposiion ( ) (1) (2) K > < T <x< x p(, x) := sup E[e rτ (K Sτ x ) + ] τ (3) C := {x (, ); p(, x) > (K x) + } (4) sup τ τ a > <l T a l P( inf u l Sx u <a) > (5) c() C =(c(), ) (6) ( ) 6.1 p(, x) x ( K ) (5) ( ) (6) c() c() c() 4

5 2 1 B := c(t ) <T [ ] T sup E[e rτ (K Sτ x ) + ] = E[e rt (K ST x ) + ]+E rk e ru 1 {S x u B u}du τ T [ ] T E δ e ru Su1 x {S x u B u}du (7) ( ) x T ( < T ) 1 2 x T ( <T) p(t, x) = E[e r(t ) (K S x T ) + ]+E[ 1 E[ p(t, x) = sup [e rτ (K Sτ x ) + ] τ T rke ru 1 {S x u B +u}du] δs x ue ru 1 {S x u B +u}du] (8) = E[e r(t ) (K ST x )+ ]+E[ rke ru 1 {S x u c(t u)}du] E[ δsue x ru 1 {S x u c(t u)}du] = E[e r(t ) (K ST x )+ ]+E[ rke ru 1 {S x u B +u}du] E[ δsue x ru 1 {S x u B +u}du]. (8) B B K z = p(t, z) = E[e r(t ) (K ST z ) + ]+E[ rke ru 1 {S z u B +u}du] E[ δsue z ru 1 {S z u B +u}du] (9) z 5

6 3 x> x ds =(r δ)s d + σ (S )dw,s = x (1) S x, T r δ σ : R R (2) 3.1 T K P A P A = sup E[e rτ (K S τ ) + ] (11) τ T P A ( 2 ) P A = P E (T,x) + rke[ e ru 1 {S x u B u}du}] δe[ e ru S x u1 {S x u B u}du] (12) B T K z = P E (T, z)+rke[ e ru 1 {S z u <B u+}du] δe[ e ru Su1 z {S z u <B u+}du] (13) z ( 2 ) P E (, z) :=E[e r (K S z ) + ] (14) S B P A [,T] N := T N,, 2,..., N B (N 1),B (N 2),..., B 6

7 K z = P E (,z) (15) z B (N 1) K z = P E (2,z)+rK e r P(S z <B (N 1) ) δ e r E[S 1 z {S z <B (N 1) }] (16) z B (N 2) B (N 1),B (N 2),..., B (N i+1) i 1 K z = P E (i,z)+rk e r( ) P(S z <B (N i+) ) i 1 =1 δ e r( ) E[S 1 z {S z <B (N i+) }] (17) =1 z B (N i) B (N 1),B (N 2),..., B P A i 1 P A = P E (T,x)+rK e r( ) P(S z <B ) i 1 =1 δ e r( ) E[S z 1 {S z <B }] (18) =1 3.2 P E (, x) P(S <A) E(S 1 {S<A}) A P E (, x) P(S <A) E(S 1 {S<A}) S (1) ɛ S (ɛ) ds (ɛ) =(r δ)s (ɛ) d + ɛσ(s (ɛ) )dw,s (ɛ) = x (19) 7

8 ɛ (, 1] (1) (1) σ (S ) ɛσ(s (ɛ) ) σ (S )=ɛσ(s (ɛ) ) ɛ =. S (ɛ) ɛ =. S () (19) ds (ɛ) =(r δ)s (ɛ) d S (ɛ) = x S () := xe (r δ) (2) S (ɛ) ɛ =. ɛ 2 S (ɛ) = S () + ɛg 1 + ɛ 2 g 2 + o(ɛ 2 ), (21) g 1 := g 2 := σ(s () ) := σ(s(ɛ) e (r δ)( s)) σ(s () s )dw s, e (r δ)( s)) σ(s () s )g 1sdW s, ) S (ɛ) (ɛ) S =S () 1 S () X (ɛ) X (ɛ) X (ɛ) := S(ɛ) ɛ X (ɛ) S (). (22) ɛ = g 1 + ɛg 2 + o(ɛ) g 1 Σ Σ := e2(r δ)( u) σ 2 (S u () )du 1 X (ɛ) ɛ Taahashi[1999] Lemma 2.1(1) E[g 2 g 1 = x] =c x 2 + f, c := 1 Σ 2 f := c Σ, u e (r δ)( u) σ(s u () ) σ(s u () ) X (ɛ) e 2(r δ)( v) σ 2 (S v () )dvdu g (ɛ) X (x) n[x;, Σ ]+ɛ[ d dx {(c x 2 + f )n[x;, Σ ]}] (23) 8

9 ɛ ( Taahashi[1999] ) ( ) 1 x 2 n[x;, Σ ]:= exp, 2πΣ 2Σ X (ɛ) ɛ ((23) 1 ) ɛ ((23) 2 ) X (ɛ) (23) P(S (ɛ) <A) E(S (ɛ) 1 (ɛ) ) {S <A} ( 6.3 ) P(S (ɛ) <A) = P( S(ɛ) S () ɛ = P(X (ɛ) < A S() ) ɛ < A S() ) ɛ N( a ) ɛ(c a 2 + f )n[a ;, Σ ], (24) Σ a := A S(), ɛ y 1 N(y) := exp( x2 2π 2 )dx, E[S (ɛ) 1 (ɛ) {S <A} = E[S(ɛ) 1 (ɛ) {X = E[(S (ɛ) S () = E[(S (ɛ) S () <a } ] = ɛe[ S(ɛ) S () ɛ = ɛe[x (ɛ) )1 (ɛ) + {X <a S() } 1 (ɛ) ] {X <a } )1 (ɛ) {X <a ]+S() } P(X (ɛ) 1 {X (ɛ) <a ]+S() } P(X (ɛ) 1 (ɛ) {X <a ) ɛ( Σn[a ;, Σ ] ɛc a 3 n[a ;, Σ ]) <a ]+S() } P(X (ɛ) <a ) <a ) +S () (N ( a ) ɛ(c a 2 + f )n[a ;, Σ ]), (25) Σ P E (, x) P E (, x) ɛ PE ɛ (, x) PE(, ɛ x) = E[e r (K S (ɛ) ) + ] = E[e r (K S (ɛ) )1 (ɛ) {S <K} ] = e r (KP[S (ɛ) <K] E[S (ɛ) 1 (ɛ) ]) {S <K} e r K(N ( Σ ) ɛ(c 2 + f )n[ ;, Σ ]) 9

10 e r {ɛ( Σ n[ ;, Σ ] ɛc 3 n[ ;, Σ ]) +S () (N ( ) ɛ(c 2 + f )n[ ;, Σ ])}. (26) Σ := K S() ɛ ɛ σ (x) =ɛσ(x) (27) σ(x) Gese and Johnson[1984] (Richardson s approximaion scheme) P A 4 h F (h) F (h) =F () + a 1 h + a 2 h 2 + a 3 h 3 + o(h 3 ) 4 h = T/4 F (ih) ih F (4h) = F () + 4a 1 h +16a 2 h 2 +64a 3 h 3 + o(h 3 ) F (2h) = F () + 2a 1 h +4a 2 h 2 +8a 3 h 3 + o(h 3 ) F (4/3h) = F () a 1h a 2h a 3h 3 + o(h 3 ) F (h) = F () + a 1 h + a 2 h 2 + a 3 h 3 + o(h 3 ) h 3 o(h 3 ) F () F () F () 1 6 F (4h)+4F(2h) 27 2 F (4/3h)+32 F (h) (28) 3 F () P A F (4h) T F (2h) T/2 F (4h/3) T/3 F (h) T/4 4 1

11 4 CEV(Consan Elasiciy Variance) 4.1 CEV CEV CEV ds =(r δ)s d + σs γ dw,s = x (29) γ 1/2 γ 1 r, δ, σ x x > CEV S =(r δ) +( S σ S 1 γ ) W CEV ( 6.4 ) S (ɛ) ds =(r δ)s d + ɛbs γ dw,s = x (3) σ(x) :=bx γ σ (x) =bγx γ 1 α := r δ α Σ Σ = = e 2α( u) σ(s u () ) 2 du e 2α( u) b 2 (xe αu ) 2γ du 11

12 = b 2 x 2γ e 2α e 2(γ 1)αu du = b 2 x 2γ 2(γ 1)α e2α (e 2(γ 1)α 1). (31) c c Σ 2 = u e α( u) b(xe αu ) γ bγ(xe αu ) γ 1 e 2α( v) b 2 (xe αv ) 2γ dvdu u = b 4 x 4γ 1 γe 3α e 2(γ 1)αu e 2(γ 1)αv dvdu = b4 x 4γ 1 γ 2(γ 1)α e3α e 2(γ 1)αu [e 2(γ 1)αu 1]du = b4 x 4γ 1 γ 2(γ 1)α e3α 1 4(γ 1)α (e2(γ 1)α 1) 2 = b 4 x 4γ 1 γ 8(γ 1) 2 α 2 e3α (e 2(γ 1)α 1) 2 Σ 2 = b 4 x 4γ 4(γ 1) 2 α 2 e4α (e 2(γ 1)α 1) 2 c = γ 2xe α (32) 4.2 CEV r =.488 S() = 4 b = 1 γ =.5,.66,.75 T =.833,.3333,.5833,1 K = 35, 4, 452% 3% 4% δ =,.1,.3, ɛ b σ ɛbs() γ = σ S() ɛ δ = γ =.5,.66,.75 T =.833,.3333,.5833,1 K =35, 4, 45 σ =.2,.3,

13 (ame a.e.) Nelson and Ramaswamy [15] (ame lai) (ame lai) (ame a.e.) (error1) 1 γ =.75 K =35 δ =. T =1 σ = % % (eur a.e.) Nelson and Ramaswamy (eur lai) (eur lai) (eur a.e.) (error2) (ame a.e.) (eur a.e.) (premi a.e.) Nelson and Ramaswamy (ame lai) (eur lai) (premi lai) (premi lai) (premi a.e.) (error3) 4 (ame rich.) (ame lai) (ame rich.) (error4) (error1) (error2) (error3) (error4).1 T =.833 K =35 σ = δ =.1,.3, δ = γ =.5,.66,.75 3 (ame a.e.) (ame rich.) (eur a.e.) (average) (rmse) (max) (min) T =.833,.3333,.5833, 1 K =35, 4, 45 σ =.2,.3, δ =.1,.3, δ = γ =.75 T =1 σ =.2 K = 45([A] γ =.75 T =1 σ =.4 K =35 [B] 1 6 S T 6 (ame lai) (ame a.e.) (error1) (error1) 1 (ame rich.) (error4) (error4)

14 (error1) 1 γ T OTM(ou of he money) γ =.75,T =1,K =35 σ = X (ɛ) (γ =.) γ. ɛ = T σ OTM(ou of he money) OTM ( ) (premi lai) (premi a.e.) (error3) (premi lai)(premi a.e.) δ T ITM(in he money) 12 δ = T =1 σ =.2 K =45 ( 1 ) S T 1 6 [B](δ = γ =.75 T =1 σ =.4 K = 35) 6 (error1) [A](δ = γ =.75 T =1 σ =.2 K = 45) [B] δ = γ =.75 T =1 (error1) OTM [B] B 1 2) [A] [B] [A] 14

15 [A] [B] S T ( 3 5 [A] K 4 6 [A] [B] K 5 (Taahashi[22] ) CEV (Taahashi[1999]) (Taahashi and Yoshida[21b]) x y P[S x S y, T ]=1 15

16 Karazas and Shreve [7] Proposiion K 2 > E[ sup S x 2 ] < T (r δ) 2 x 2 + σ(x) 2 K 2 (1 + x 2 ) [2] 3.2.6) e (r δ) S x, T e (r δ) S x = x + e (r δ)u σ(su)dw x u. r δ E[ e 2(r δ)u σ 2 (S x u)du] E[ E[ σ 2 (S x u)du] = K 1 + K 1 E[ K 1 (1 + S x u 2 )du] S x u 2 du] = K 1 + K 1 E[Su x2 ]du K 1 + K 1 E[ sup Ss x 2 ]du s T = K + K 1 E[ sup Ss x 2 ] s T < r δ < e (r δ) S x, T p(, x) (K x) + p(, x) = sup E[e rτ (K Sτ x)+ ] τ E[(K S x)+ ] = (K x) + p(, x) > <x<k K x p(, x) (K x) + > τ 1 := inf{u >; S x u K 2 } 16

17 p(, x) E[e rτ 1 (K S x τ 1 ) + ] E[e rτ 1 K 2 1 {τ 1 <}] = K 2 E[e rτ 1 1 {τ1 <}] >. p(, x) >. 1 p :(,T] (, ) [, ) (33) (,x ) [, ) 2 τ := inf{u [,); p( u, x )=(K S x (u)) + } τ := τ sup E[e rτ (K S x τ )+ ]=E[e rτ (K S x τ )+ ] τ p(, x ) p(,x ) = p(, x ) p(,x ) = E[e rτ (K S x (τ )) + ] p(,x ) E[e rτ (K S x (τ )) + ] E[e rτ (K S x (τ )) + ] = E[e rτ (K S x (τ )) + e rτ (K S x (τ )) + ] E[{e rτ (K S x (τ )) e rτ (K S x (τ ))} + ] E[(e rτ S x (τ ) e rτ S x (τ )) + ] = E[(e r S x ( ) e rτ S x (τ )) + 1 {τ = }] = E[(e r S x ( ) e rτ S x (τ )) + 1 { τ }] E[ sup (e r S x ( ) e ru S x (u)) + 1 { τ }] u E[ sup (e r S x ( ) e ru S x (u)) + ]. u α β α + β + (α β) + 17

18 sup (e r S x ( ) e ru S x (u)) + u 2 sup e ru S x (u) u 2 sup S x (u). u T E[sup u T S x (u) ] < p x <x y x y << τ x := inf{u [,); p( u, x) =(K S(u)) + } x y p(, x) p(, y) p(, x) = sup E[e rτ (K Sτ x ) + ] τ p(, y) = sup E[e rτ (K Sτ y ) + ] τ τ τ S x τ Sy τ e rτ (K S x τ )+ e rτ (K S y τ )+ p(, x) p(, y) p(, x) p(, y) = p(, x) p(, y) = E[e rτx (K S x (τ x )) + ] p(, y) E[e rτx (K S x (τ x )) + ] E[e rτx (K S y (τ x )) + ] = E[e rτx {(K S x (τ x )) + (K S y (τ x )) + }] E[e rτx (S y (τ x ) S x (τ x ))] 18

19 = E[e δτx e (r δ)τx (S y (τ x ) S x (τ x ))] E[e (r δ)τx (S y (τ x ) S x (τ x ))] = y x = x y. u u S x (u) S y (u) e (r δ) S() x >y p x p p(, x) p(,x ) p(, x) p(, x ) + p(, x ) p(,x ) x x + p(, x ) p(,x ) ((, x) (,x ) ) p(, x) (34) x p(, x) (35) x x + p(, x) (36) p(, x) <x y << x y p(, x) p(, y) E[e rτx (K S x (τ x )) + ] E[e rτx (K S y (τ x )) + ] E[e rτx (S y (τ x ) S x (τ x ))] = E[e δτx e (r δ)τx (S y (τ x ) S x (τ x ))] E[e (r δ)τx (S y (τ x ) S x (τ x ))] = y x. p(, x)+x p(, y)+y x C x<y y p(, y) p(, x)+x y > (K x) + + x y (K x)+x y = K y 19

20 p(, y) > p(, y) > (K y) + y C p(, x) C = {x (, ); p(, x) > (K x) + } c() C =(c(), ) Ruowsi[1994] 6.5 A1 X = X + M + V ; T (37) (X ) M M = V V = E[ sup X ] < T V V d v dv d = v d {,T} E[X τ ]=ess sup E[X τ F ], τ T T τ [ ] T E[X τ ]=E[X T ] E 1 {τ u =u}dv u τ (38) 2

21 2 B <K C T =(c(t ), ) p(t, K) >, (K K) + = p(t, K) > (K K) +. K C T B = c(t ) <K e rt (K S T ) + e rt (K S T ) + = (K S ) + + ( rke ru 1 {Su K} + δs u e ru 1 {Su K})du e ru 1 {Su K}σ(S u )dw u + e ru dl K u (S). L K u (S) S K X, M, V X := e r (K S ) + M := V := e ru 1 {Su K}σ(S u )dw u ( rke ru 1 {Su K} + δs u e ru 1 {Su K})du + e ru dl K u (S). σ E[sup T S x 2 ] < Burholder (Karazas and Shreve[1996] Theorem ) E[ sup X ] < T rke r 1 {S K} τ := inf{u [, T ); S u B u } T E[e rτ (K Sτ ) + F ] = ess sup E[e rτ (K S τ ) + F ] for all [,T] τ T 21

22 A1 sup E[e rτ (K S τ ) + ] = E[e rτ (K Sτ ) + ] τ T [ ] T = E[e rt (K S T ) + ] E 1 {τ u =u}dv u [ ] T = E[e rt (K S T ) + ] E 1 {Su Bu}dV u τ [ ] T = E[e rt (K S T ) + ] E 1 {Su Bu}dV u. τ [ ] T E 1 {Su Bu}dV u = E[ ( rke ru 1 {Su K}1 {Su Bu} + δs u e ru 1 {Su K}1 {Su Bu})du + e ru 1 {Su B u}dl K u (S)]. S B B <KL K (S) 1 {Su Bu}1 {Su K} =1 {Su Bu} [ ] T e ru 1 {Su Bu}du sup E[e rτ (K S τ ) + ] = E[e rt (K S T ) + ]+E rk τ T [ E δ e ru S u 1 {Su Bu}du ] 6.3 X (ɛ) P(X (ɛ) <) 1 (ɛ) {X }] E[X (ɛ) < A2 X g (ɛ) X (x) =n[x;, Σ] + ɛ[ d {h(x)n[x;, Σ]}] dx ɛ (, 1] Σ c h(x) :=c x 2 + f f := c Σ ( ) 1 x 2 n[x;, Σ ]:= exp 2πΣ 2Σ P(X (ɛ) <)=N( Σ ) ɛ(c 2 + f )n[;, Σ ], 22

23 E[X (ɛ) 1 (ɛ) ]= Σ {X <} n[;, Σ ] ɛc 3 n[;, Σ ]. N(y) := y 1 2π exp( x2 2 )dx. P(X (ɛ) <) = = g (ɛ) X (x)dx [n[x;, Σ ]+ɛ[ d dx {h(x)n[x;, Σ ]}]dx. n[x;, Σ ]dx = N( ). Σ ɛ[ d dx {h(x)n[x;, Σ ]}]dx = ɛ[h(x)n[x;, Σ ]] x= = ɛ[h()n[;, Σ ]] = ɛ(c 2 + f )n[;, Σ ]. P(X (ɛ) <)=N( Σ ) ɛ(c 2 + f )n[;, Σ ]. E[X1 {X (ɛ) <} ] = = xg (ɛ) X (x)dx { x n[x;, Σ ]+ɛ[ d dx {h(x)n[x;, Σ ]}] } dx. xn[x;, Σ ]dx = ( ) 1 x 2 x exp dx 2πΣ 2Σ = Σ n[x;, Σ ] x= = Σ n[;, Σ ]. x d dx (h(x)n[x;, Σ ])dx = xh(x)n[x;, Σ ] h(x)n[x;, Σ ]dx = = h()n[;, Σ ] = c (c x 2 + f )n[x;, Σ ]dx h(x)n[x;, Σ ]dx h(x)n[x;, Σ ]dx. x 2 n[x;, Σ ]dx + f N( ). Σ 23

24 x 2 n[x;, Σ ]dx = x d dx ( Σ n[x;, Σ ])dx = Σ (xn[x;, Σ ] n[x;, Σ ]dx) = Σ (n[;, Σ ] N( Σ )). E[X (ɛ) 1 (ɛ) ]= Σ {X <} n[;, Σ ] ɛc 3 n[;, Σ ]. 6.4 CEV CEV ( 2) ds = αs d + σ(s ) γ dw,s = x γ 1/2 γ<1 B1γ 1/2 γ 1 x y K x>y x γ y γ K x y γ x γ y γ (x y) γ = 1 uγ (1 u) γ. u := y/x u<1 1 u γ (1 u) γ u= =1 24

25 1 uγ (1 u) γ lim u 1 1 u γ (1 u) γ = u<1 K 1 u γ <K, u<1 (1 u) γ x γ y γ K x y γ x = y x <y S x, < x x S x, <, (P a.s.) [1974] 3.1 B1 Karazas and Shreve[1996] Proposiion x = S =, (Karazas and Shreve[1996] Proposiion ) x> x> P[S S x, < ] =1 P[S x, < ] =1 B2x> a> <l< a l P( inf u l Sx u <a) > 25

26 α> S = x + e α S = x + αs u du + σs γ u dw u σe αu S γ u dw u l M := σe αu S γ udw u P( inf u l Sx u a) =1 M = σ 2 e 2αu S 2γ u du σ 2 e 2αu a 2γ du (P a.s.). s< l σ2 e 2αu a 2γ du s T (s) T (s) := inf{ ; M >s} T (s) l s< l σ2 e 2αu a 2γ du s B s := M T (s), G s := F T (s) B s M T (s) s c P( inf u l M u <c) >. S = e α (x + M ) P( inf u l Sx u <a) > 26

27 P( inf u l Sx u a) =1 α> (Karazas and Shreve[1996] Proposiion ) α P( inf u l Sx u <a) > 6.5 A1 Ruowsi[1994] A1 Z X Z X Jaca [4] η Z Z. Z η = ess sup E[X τ F η ]. η τ T τ = inf{u [, T ] Z u = X u }. Z = Z + N + B N B E[X τ ] = E[E[X τ F ]] = E[ess sup E[X τ F ]] τ T = E[Z ] = E[Z T N T B T ] = E[Z T ] E[B T ] = E[ess sup T τ T E[X τ F T ]] E[B T ] = E[X T ] E[B T ] = E[X T ] E[ 1 {τ u =u}db u ] E[ 1 {τ u >u}db u ]. 27

28 1 {τ u >u}db u = (P a.s.) D := {τ >} = {Z X } Z X D D 1/n L n R n ( =1, 2,..., N n) S n := Ln +1/n τ S n = R n Z S n = ess sup E[X τ F S n S n τ T ] = E(X τ F S n S n ) = E(X R n F S n ) = E(Z R n F S n ). N n D = [S n,rn ). n=1 =1 D n := N n =1 [Sn,Rn ) 1 {τ u >u}db u = = = lim n = lim 1 D (u)db u 1 n=1 D n (u)db u N n n =1 1 Dn (u)db u (B R n B S n ). Z S n = E(Z R n F S n ) E(B R n B S n F S n ) = E(Z R n Z S n F S n ) E(N R n N S n F S n ) =. B B R n B S n B R n B S n = 1 {τ u >u}db u = U := Z X U 28

29 U L (U) L (U) L (U) L (U) =2 1 {} (U u )d(b u V u ) (Proer[1992] ) U L (U) ={τu = u} = {U u =} 1 {τ u =u}db u = 1 {} (U u )db u = 1 2 L (U)+ = 1 2 L (U)+ 1 {} (U u )dv u 1 {τ u =u}dv u. 1 Y = Y +M +C ξ C C i dci = ξ d Y L (Y ) L (Y )= L (Y )=Y L (Y ) = 2 d M u = 2 = 2 1 {} (Y u )dc u 1 {} (Y u )dc i u 1 {} (Y u )ξ u du, T d M u = m u du + d M s u m u W := {u [,T] m u > } W c [,T] W L T (Y ) = 2 1 {} (Y u )ξ u 1 W (u)du +2 1 {} (Y u )ξ u 1 W c(u)du = 2 1 {} (Y u )ξ u 1 W (u)m 1 u (d M u d M s u) +2 = J 1 J 2 + J 3 1 {} (Y u )ξ u 1 W c(u)du 29

30 J 1 := 2 J 2 := 2 J 3 := 2 M = 1 {} (Y u )ξ u 1 W (u)m 1 u d M u 1 {} (Y u )ξ u 1 W (u)m 1 u d M s u 1 {} (Y u )ξ u 1 W c(u)du L z (Y )dz J 1 =2 1 {} (z)ξ u 1 W (u)m 1 u dl z u(y )dz = J 2 = 2 2 = J 1 J 1 = J 2 = 1 {} (Y u )ξ u 1 W (u)m 1 u d M s u 1 {} (Y u )ξ u 1 W (u)m 1 u d( M s u + m u du) M := {u [,T] m u = Y u =} λ λ(m) = J 3 J 3 = λ(m) > g() := 1 M (u)du, T g() g 1 () τ = g 1 () Ỹ := Y τ F := F τ Ỹ F λ{u [,T] Ỹu =} = Ỹ L T (Y )=L g(t ) (Y ) (El Karoui[1978] ) L T (Y )= U V d dv d = v d 1 L (U) = 3

31 E[X τ ] = E[X T ] E[ = E[X T ] E[ 1 {τ u =u}db u ] E[ 1 {τ u >u}db u ] 1 {τ u =u}db u ] = E[X T ]+ 1 2 L (U)+ = E[X T ]+ 1 {τ u =u}dv u 1 {τ u =u}dv u [1] P. Carr, R. Jarrow and R. Myneni, Alernaive characerizaions of American pu opions, Mahemaical Finance, [2] N. Ieda and S. Waanabe, Sochasic Differenial Equaions and Diffusion Processes, Second Ediion, Norh-Holland/Kodansha, Toyo, [3] J. Huang, M. G. Subrahmanyam and G. G. Yu, Pricing and Hedging American Opions: A Recursive Inegraion Mehod and is Implemenaion, Review of Financial Sudies, Spring [4] S. D. Jaca, Local Times, Opimal Sopping and Semimaringales, Annals of Probabiliy, 21, 1993, pp [5] EL Karoui, Sur les Monees des Semi-maringales, Aserisque, 1978, pp [6] R. Gese and H. Johnson, The American Pu Value Analyically, Journal of Finance, 39, [7] I. Karazas and S. E. Shreve, Brownian Moion and Sochasic Calculus, Graduae Texs in Mahemaics 113, Springer-Verlag, 2nd ediion, [8] I. Karazas and S. E. Shreve, Mehods of Mahemaical Finance, Springer, [9] T.Kobayashi, A.Taahashi and N. Toioa, Dynamic Opimaliy of Yield Curve Sraegies, Discussion Paper Series Faculy of Economics Universiy of Toyo, CIRJE-F-141(submied), 21. [1],,, vol 14, 1992, pp

32 [11] N. Kuniomo and A.Taahashi, The Asympoic Expansion Approach o he Valuaion of Ineres Rae Coningen Claims, Mahemaical Finance 11, 21, pp [12] N. Kuniomo and A.Taahashi, On Validiy of he Asympoic Expansion Approach in Coningen Claim Analysis, The Annals of Applied Probabiliy, 13 No.3, Augus, 23(o appear). [13],, - -,, 23( ). [14],,, 2. [15] D. B. Nelson, and K. Ramaswamy, Simple Binomial Processes as Diffusion Approximaions in Financial Models, Review of Financial Sudies, 3, 199. [16] P. Proer, Sochasic Inegraion and Differenial Equaions, Springer, [17] M. Ruowsi, The early exercise premium represenaion of foreign mare American opions, Mahemaical Finance, 4, 1994, pp [18] A.Taahashi, Essays on he Valuaion Problems of Coningen Claims, Ph.D. Disseraion, Universiy of California, Bereley, [19] A.Taahashi, An Asympoic Expansion Approach o Pricing Financial Coningen Claims, Asia-Pacific Financial Mares, 6, 1999, pp [2] A.Taahashi, An Asympoic Expansion Approach o American Opions, Unpublished manuscrip, 22. [21] A.Taahashi and N. Yoshida, An Asympoic Expansion Scheme for Opimal Porfolio for Invesmen, 1215, 21a. [22] A.Taahashi and N. Yoshida, The Asympoic Expansion Approach wih Mone Carlo Simulaions, Preprin, 21b. [23] A.Taahashi and N. Yoshida, An Asympoic Expansion Scheme for Opimal Invexmen Problems, Preprin, 23. [24],,,

33 [25] N. Yoshida, Asympoic Expansions of Maximum Lielihood Esimaor for Small Diffusion via he heory of Malliavin-Waanabe, Probabiliy Theory and Relaed Fields, 92, 1992, pp

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

218.8.21 1 2, (Theorem 1) (Theorem 2) 1 2, (Theorem 1) (Theorem 2) . (c.f. De Donno and Praelli, 24) (Ω, F, (F ) [,T ], P):, usual condiions, T < P : predicable σ-field on Ω [, T ] H 2 = { } X : (index

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

デフォルト相関係数のインプライド推計( )

デフォルト相関係数のインプライド推計( ) ,,,.,.,.,,.,,.,,.,,. :,, OU, SUR,.,.,,.,.., 62 1, BIS,.,.,,,,.,,.,.,, [33],,,.,,.,,,,.,,.,,,.. 2,. 3,. 4,,. 5. 2,,.,. 2.1,.,,.,. Giesecke [10] dependen defaul.,,,, GDP,.,,.,...,,,.,.,.,,.,,. Giesecke [10],

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1 206 B S option) call option) put option) 7 973 Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 997 Robert Merton A 20 00 30 00 50 00 50 30 20 S, max(0, S-) C max(0,s

More information

βdxβ r a, < E e uγ r ha d E e r dx e r γd e r βdx 3.2 a = {a} γ = {γ} max E e r dx e r γd e r βdx, 2 s.. dx = qand + σndz, 1 E e r uγ ha d, 3 a arg maxã E e r uγ hã d. 4 3.3 γ = {γ : γ, γ} a = {a : a,

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an CDO 2010 5 18 CDO(Collateralized Debt Obligation) Duffie and Garleânu[4] CDO CDS(Credit Default Swap) Duffie and Garleânu[4] 4 CDO CDS CDO CDS CDO 2007 CDO CDO CDS 1 1.1 2007 2008 9 15 ( ) CDO CDO 80 E-mail:taiji.ohka@gmail.com

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

??

?? ( ) 2014 2014 1/119 = (ISS) ISS ISS ISS iss-clf iss-clf ISS = (ISS) FB 2014 2/119 = (ISS) ISS ISS ISS iss-clf iss-clf ISS R + : 0 K: γ: R + R + K γ γ(0) = 0 K : γ: R + R + K γ K γ(r) (r ) FB K K K K R

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

低金利環境下でのフィット向上を目指した最近のイールド・カーブ・モデル群

低金利環境下でのフィット向上を目指した最近のイールド・カーブ・モデル群 IMES DISCUSSION PAPER SERIES 低金利環境下でのフィット向上を目指した最近のイールド カーブ モデル群 ふじわらしげあき 藤原茂章 Discussio Paper No. 7-J- INSIUE FOR MONEARY AND ECONOMIC SUDIES BANK OF JAPAN 日本銀行金融研究所 3-866 日本橋郵便局私書箱 3 号 日本銀行金融研究所が刊行している論文等はホームページからダウンロードできます

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

「国債の金利推定モデルに関する研究会」報告書

「国債の金利推定モデルに関する研究会」報告書 : LG 19 7 26 2 LG Quadratic Gaussian 1 30 30 3 4 2,,, E-mail: kijima@center.tmu.ac.jp, E-mail: tanaka-keiichi@tmu.ac.jp 1 L G 2 1 L G r L t),r G t) L r L t) G r G t) r L t) h G t) =r G t) r L t) r L t)

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Black-Scholes 1 ( )

Black-Scholes 1 ( ) Black-Scholes Takaoka[T] Black- Scholes B S α B t = e rt S α t = S e αrt exp σw t + Ct } 2 σ2 t λdσ λ Λ 2 :=,, B, σ 2 λdσ < } W t } Ω, F, P; F t T > t [, T ], α R, r C, S F - S α dst α = αr+cφtst α dt+φtst

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

財政赤字の経済分析:中長期的視点からの考察

財政赤字の経済分析:中長期的視点からの考察 000 364 645 (ax smoohing (Barro(979 Barro(979 (consumpion smoohing Hall(978 Campbell(987 Barro(979 Hall(978 Campbell(987 Campbell(987 B ( r B G T ( ( r E B G T Y T/Y r ( No Ponzi Game ( [ Ω ] Y ( lim (

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

Forward Backward Stochastic Differential Equationsに関する一考察

Forward Backward Stochastic Differential Equationsに関する一考察 Forward Backward Sochasic Differenial Equaions Backward Sochasic Differenial EquaionsBSDE s Forward Backward Sochasic Differenial Equaions FBSDE s forward process backward process BSDE s FBSDE s BSDE sfbsde

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

○松本委員

○松本委員 CIRJE-J-100 2003 11 CIRJE hp://www.e.u-okyo.ac.jp/cirje/research/03research02dp_j.hml Credi Risk Modeling Approaches 2003 11 17 Absrac This aricle originaes from a speech given by he auhor in he seminar

More information

金融政策の波及経路と政策手段

金融政策の波及経路と政策手段 Krugman(988) Woodford(999) (2000) (2000) 4 rae-of-reurn dominance 405 4 406 (i) a 2 cash good credi good b King and Wolman(999) (ii) 407 3 4 90 (iii) (iv) 408 λ κ (2.8) π x π λ = x κ Svensson 999 sric

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information