Forward Backward Stochastic Differential Equationsに関する一考察

Size: px
Start display at page:

Download "Forward Backward Stochastic Differential Equationsに関する一考察"

Transcription

1 Forward Backward Sochasic Differenial Equaions Backward Sochasic Differenial EquaionsBSDE s Forward Backward Sochasic Differenial Equaions FBSDE s forward process backward process BSDE s FBSDE s BSDE sfbsde s Harrison and Pliska BSDE sfbsde s oshihiro.yoshida@boj.or.jp

2 Backward Sochasic Differenial EquaionsBSDE sforward Backward Sochasic Differenial EquaionsFBSDE sbismu Pardoux and PengMa and Yong Cvianić and KarazasDuffie, Ma and YongOaka and Yoshida Duffie and Epsein BSDE s El Karoui, Peng and Quenez Four Sep Scheme Ma, Proer and Yong BSDE sfbsde s Forward Backward Sochasic Differenial Equaions FBSDE s forward process FBSDE s

3 Forward Backward Sochasic Differenial Equaions FBSDE s T T Y =g(x T ) + h(s, X s,ys,zs)ds Z s. dws. T X = x+ b(s, X s,ys,zs) ds + (s, X s,y s ). dws, X = x. FBSDE s C ( C = ) = ( 1, 2,, n) V = i V = C +V dv = dc + r V d + (b r 1) d + dw = dc + r V d + [ dw + d] = dc + r V d + Z [ dw + d], b r 1=. =, 1, 2 (,, n). n i= + n s s i= ds i i u u Su i, T S ds = r S d, ds i S b i d i = d i, j dw j +, i = 1,, n. j=1

4 BSDE s Backward Sochasic Differenial Equaions filered probabiliy spaceω, F, P, F T my m Z m dbsde s. Y = Y T + T h(s, Y s, Z s ) ds T Z s dw s, Y T =, w dwiener BSDE ssolvabiliy of BSDE s BSDE s1 sandard parameer, h Y, Z L 2 T (Rm ) L 2 T (Rm )F T E ( X 2 ) h Lipschizh (.,, ) H 2 T (Rm ) : H 2 T (Rm ) E T 2 d : Ω [, T ] R m Pardoux and PengTheorem Local Lipschiz Condiion BSDE s1 h(, y 1, z 1 ) h(, y 2, z 2 ) (l)( y 1 y 2 + z 1 z 2 ), y 1, y 2 R m, z 1, z 2 R m d s.. y 1, y 2 l. E X 2 + T h (,, s) 2 ds F k 2 a.e., a.s.

5 Forward Backward Sochasic Differenial Equaions T [, T )T, T Y, Z X 4k a.s., a.e T T = 4C 1 1 log2, C 1 = 1+2 (4k) +2( (4k)) 2 PengCorollary Forward Backward Sochasic Differenial Equaions FBSDE snx X BSDE sy, Z X, Y, Z (.)n d X = x + b (s, X s, Y s, Z s ) ds + (s, X, X s, Y s ). dw s = x, Y = g(x T )+ T h (s, X s,y s, Z s ) ds Z s. dw s. T FBSDE ssolvabiliy of FBSDE s FBSDE s X, Y, Z b (.)h (.) (.)g (.)L (, 1)g C 2+ (R n ) (.)v ( y ) I (, x, y) (, x, y) vi. (, x, z) [, T ) R n R m d v b (, x,, ) + h (, x,, z ) v. Ma and YongChaper 4 Theorem FBSDE sx, Y, Z m = 1 Ma, Proer and YongTheorem

6 X = x + b (s, X s, Y s, Z s ) ds + (s, X s, Y s, Z s ). dw s, X = x, Y = g (X T )+ T h (s, X s, Y s, Z s ) ds T (s, X s, Y s, Z s ). dw s. Four Sep Scheme FBSDE s (.) Y = (, X ) z(.) z(, x, y, p)=p(, x, y). Sep 1 z(.) (, x) k k [ ] r xx ( )(, x, ) k + < b (, x,,z(, x,, x)), x > + h k (, x,, z (, x,, x )) =, 1 k m, (T, x) =g (x ). z(.) (, x) FSDE s X = x + b (s, X s ) ds +. (s, X s ). dw s, b (, x )=b(, x, (, x ), z(, x, (, x ), x (, x ))), (, x )= (, x, (, x )). X Y = (, X ), Z = z(, X, (, X ), x (, X )), Ma, Proer and Yong

7 Forward Backward Sochasic Differenial Equaions Exended Forward Backward Sochasic Differenial Equaions BSDE s(x, Y, Z (.) Exended FBSDE sefbsde s X = x + b( X s, Y s, z) s (dz ) ds + (X s, Y s, z) s (dz ). dw s, X U = x, U Y = g (X T )+ T h ( X s, Y s, z ) s (dz ) ds z s (dz ). dw s. U T U EFBSDE b (.)h (.) (.) xy L = {x, y} ( b (x, y, u) + h (x, y, u) + (x, y, u) ) L, (x, y) R n R m, u U. u UC b (,, u) + h (,, u) + (,, u) C. g Admissible Relaxed Conrol U R A = (Ω, F, P, F, W, )U R Ω, F, P, F W F M (Ω) F Z (du, ) = Z () (u) Ma and Yong (.,)Z () Dirac-

8 FBSDE s Γ= {(x, g(x)) x R n }(X (T ), Y (T )) Γ ZY (T ) = g (X (T )) J (, x, y; Z(.))=Ef (X (T;, x, y, Z ()),. Y(T ;, x, y, Z (.))). Viscosiy Soluion-Hamilon-Jacobi-Bellman Equaion-Value Funcion FBSDE sefbsde sv(, x, y) V (, x, y ) = inf, P Z (). Z [, T ] J (, x, y; Z ())=J. (, x, y; Z(.)), V (T, x, y) = f (x, y). V(, x, y) viscosiy soluion Z (.) Hamilon-Jacobi-BellmanHJB Value Funcion V (, x, y)+ H (, x, y, DV (, x, y), D 2 V (, x, y)) =, V (T, x, y) = f (x, y), DV = V x D 2, V = V y V xx V T V xy. xy V yy H(.) Hamilonian b(, x, y, z) H(, x, y, q, Q, z) = q, h (, x, y, z) (, x, y, z ) r Q z (, x, y, z ) z T, H (, x, y, q, Q ) = inf H (, x, y, q, Q, z), z R n m R Mayer ype EFBSDE s J = (,, A) = E P [G( T (,, A))], G A

9 Forward Backward Sochasic Differenial Equaions EFBSDE s Solvabiliy of EFBSDE s HJB V (.) nodal se N (.) (, x, y) Ma and YongTheorem X Y Z FBSDE s X dx = r X d, dx i X i b i d d ij dw j = +, i = 1,, n. j=1 X X i (i = 1,, n) Y 1 = ( 1, 2,, n ) = Y 1 n i =1 i Y 1 = Y 1 s n + s i = i dx u i u X u i, dy 1 = r Y 1 d + (b r 1) d +. dw = r Y 1 d +. [dw + d], b r 1 =. risk premium N (V ) = {(, x, y) V (, x, y) =

10 Self-Financing Sraegy (Y 1, ) ( T 2 d < )Y 1, [, T ] feasible Self-Financing Supersraegy cumulaive consumpion processy (Y = ) dy 1 = r Y 1 d dy +. [dw + d ], Y =(Y, Y 1 ) Y, Meron c (Y = c s ds) J (, x, y, Y( ), Z ()) T E U(s, c s) ds B (T, Y 1 T ),.. = + Y, ZU(.) B(.) Harrison and Pliska arbirage opporuniy Hedging Sraegy X 1 T = g(x T ) Y 1, Complee Marke aainable X W n = d Dohan

11 Forward Backward Sochasic Differenial Equaions Complee Marke - Equivalen Maringale Measure Equivalen Maringale MeasureQ Radon-Nikodym derivaive = dq /dp Harrison and PliskaProposiion Corollary Proposiion dq dp T ( W ) exp T s dw 1 s s 2 ds T =. = 2, (.)exponenial maringale PQ E P [ X] = X dp = XdQ = E Q [X]. QdW Q = dw + dw Q Likelihood Raio Process z = E P (dq /dp F ) {x } E P [z x F s ] E P [z F s ] = E Q [x F s ], DohanTheorem Price of Coningen Claim-Hedging Porfolio Coningen Claim Y 1 Harrison and PliskaProposiion Proposiion SDE g (x) = max{x K, }

12 Binomial Model rr = 1+ rd < R< u C B S + B us, p, S ds, 1 p. C u = max[ us K, ],p, C C d = max[ ds K, ], 1 p, us + RB,p, S + B ds + RB, 1 p. C u C d (u d ) S, uc u dc d = B =. (u d) R C = S + B 1 R d u R = C u C d R ( u d) + ( u d). q = R d u d, 1 q u R = u d, 1 C = R [qc u + (1 q ) C d ], < q < 1q qu + (1 q) d = R

13 Forward Backward Sochasic Differenial Equaions n C (n, S, K)recursive formula C (n, S, K) = R 1 [qc (n 1, us, K) + (1 q)c (n 1, ds, K)], Price of American Coningen Claim - Superhedging Porfolio American Coningen Claim Y 1 Z = Y obsacle X dy 1 = h (, Y, Z ) d + dy Z. dw, Y 1 T = g (X T ), X, (Y 1 X ) dy =, X = l (, X ), Y 1 T Y, Z l(.) l : [, T ] R n R l (, x ) K (1+ x p ), [, T ], x R n, l (T, x ) g(x), sopping imed = inf { s T ; Y s1 = X s } Γ = ess sup v Y 1 (v, X v )=Y 1 Γ (D, X D ), X = g(x T )1 = T + X 1 < T. Y 1 El Karoui, Pardoux and QuenezProposiion Y early exercise premium h (, y, z) = r y Y 1 = u (, X ) u min u (, x ) l(, x ), (, x ) L ( u (, x ) h (, x, u (, x ), ( u ) (, x ))) =, u (T, x )= g (x ),

14 Iwaki, Kijima and Yoshida = < 1 < < n = TTKT i = T i (i =,, n) S i = S e Xi{X i, i =,, n} X = A(S, T ) Q d Dynamic Programming A (S i, T i = max K S i, e r ( i +1 i ) E Q d [A (S i +1, T i +1 ) S i ], i =,, n 1, s.. A (S, ) = max [K S, ]. ) [ ] G = (G 1,, G n )boundary value G n = K ; e r ( i +1 i ) E Q d (G i e X i +1 [A X i, T i +1 )] = K G i, i = n 1,, 1, G i = G i /SA(S, T )indicaor funcioni {.} A (S, T )=p (S, T )+e(s, T ), p (S, T )=e rt E Q d (K Se X n )I {X n ln G n }, n 1 e (S, T )= e E Q d (K Se X i r i p (Se X i, T i )) I { X 1 > ln G 1,..., X i 1 > ln G i 1, X i ln G i }. i =1 p(s, T )e (S, T ) Incomplee Marke X W n d X j ( j n)primary asse 1 =, 1 2 =( ik ) 2 1 i j, 1 k d =( ik, ) j +1 i n, 1 k d, Z Iwaki, Kijima and YoshidaProposiion

15 Forward Backward Sochasic Differenial Equaions Z = = (1 ) 1 + ( 2 ) 2, admissible sraegy 2 = dy 1 = r Y 1 d + ( 1 ). (dw + d ), Föllmer and Schweizer Hedging Sraegy dy 1 = r Y 1 d + dy +( 1 ) 1. (dw + d ), Y 1 T = g(x T ),. Y Y s 1 dw s Y, 1 Minimal Maringale Measure minimal risk premium 1 Moore-Penrose 1 = ( 1 ) [( 1 )( 1 ) ] 1 1, 1 Ker ( 1 ) Hofmann, Plaen and Schweizer 1 relaive enropy log( dq H (Q P )= )Q (d ), if Q P and dq << L dp dp 1 ( Ω, F, P ), +, oherwise, mean-variance rade-off Delbaen e al.

16 Cvianić and Ma XY, FBSDE s dx = r (, Y, ) X d, dx i = b i (, X, Y, ) d + d ij (, X, Y ) dw j,, i =1,, n. j =1 Y = Four Sep Scheme Y 1 generaor f (.) dy 1 = f (, c, Y 1 ) d Z. dw, Y 1 T = Y 1, recursive uiliy Sandard Addiive Uiliy : f (c, y) =u(c) y. Uzawa Uiliy : f (c, y) = u (c) (c)y. Kreps - Poreus Uiliy : f (c, y) = c y y 1. dy 1 = f (, c, Y 1, ) d Z. dw, Y T 1 = Y 1. Z FBSDE s El Karoui, Peng and Quenez

17 Forward Backward Sochasic Differenial Equaions sochasic volailiykijima and Yoshida S =(1, 2,, m){ n, n =, 1, } F =(f ij ), f ij = Pr [ n+1 = j n = i ] i {X n } X n = u i X n 1 : q i, d i X n 1 : 1 q i, q i = R d i ; q u i d i = u i R 1, i S. i u i d i u i R d i Kn m C i (n, X, K )=R 1 f ij [q i C j (n 1, u i X, K )+(1 q i ) C j (n 1, d i X, K)]. j =1 C i (, X, K )=max {X K, } dx = µ( ) d + ( ) dw, X { } infiniesimal generaorq =(q ij ), q ii = j i q ij i C i (, X, K) m j =1 q ij C j + 2 C i C i i 2 X 2 X + rx C i rc 2 i =, X

18 Kijima and Yoshida Kijima and Yoshida (.) Q =(q ij ) FBSDE sefbsde s Oaka and YoshidaFBSDE sx 1 X 2 FBSDE dx 1 = X 1 (X 1, X 2, ) d X 2 dw 1,, b + dx 2 = X 2 (X 1, X 2, )d (X 1, X 2, ) dw 1, (X 1, X 2, ) dw 2,. W 1, W 2, = (b(x 1, X 2, ) r )/ X 2 v Q v dq v dp T 1 exp s dw 1, s ( s 2 ) ds. + T T = v s dw 2, s 2 + v s 2 dx 1 X 1 r d + X 2 v = dw 1,, dx 2 X 2 = (X 1, X 2, ) 1 2 ) d + (X 1, X 2, ) ( + v v + (X 1, X 2, ) dw 1, (X 1, X 2, ) v dw 2,, Theorem

19 Forward Backward Sochasic Differenial Equaions TK European Call OpionC = C (, x, K, T) Y = Y 1 + X 1 + Y = dy = dy 1 + dx 1 + d = r Y d + A dw 1, B dw 2,, A : v v X 1 C = X 2 ( X ) 1 B := 1 2 X 2 C, X 2 X 2 C X 2, ( ) dy = r Y + X 2 X 1 d A dw 1, B dw 2,, C C X 1 + p X 2 + p = + 1 2, v A, [, T ] dy = (r Y + v B ) d B dw 2,, Duffie, Ma and Yong Hogan Y Y = E e s ru du ds F,

20 dr = (r, Y ) d + (r, Y ). dw. r, Y BSDE sa(.) dy = (r Y 1)d + (r, Y ). dw. r SDEX r = l ( X ) dx = b(x, Y )d + (X, Y ). dw, X = x. FBSDE s dx = b (X, Y )d + (X, Y ). dw, dx = (l (X )Y 1)d + Z. dw, Y a.s. X, Y, Z FBSDE s Oaka and Yoshida FBSDE s{w 1 ( ), }{W 2 ( ), } X =((X 1, X 2 ))FBSDE s dx = b(, X, P (, T )) d + (, X ). dw, dp (, T ) = h (, X, P(, T ))d + Z. dw, X 1 = x 1, X 2 = x 2, P (T, T ) = g (X(T )) = 1, h(, X(), P(, T )) = l(x 1 ) P (, T ) = r P (, T ), 11(, X ) 12 (, X ) (, X ) = (, 22 (, X )) 11 (),. 12 (),. 22 ():posiive. funcions, Z Z 1, Z 2 = ( ), W = ( W 1, W 2 ).

21 Forward Backward Sochasic Differenial Equaions 1(, X )(X 2 X 1 ) b(, X, P(, X()) = 2(, X )( (, X, P(, T )) X 2 ), Vasicek X 1 = r 2 (.) = l (X 1 ) = X 1 11 Cox, Ingersoll and Ross Model Vasicek 11 (, X ) = X 1 Hull-Whie Vasicek 1 (, X ) = 1 ( ) 2 (, X )(, X, P(,T )) = ( ) 22 (.) = Black-Karasinski Hull-Whie l (X 1 ) = exp (X 1 ) Duffie-Kan h (, X, P(,T )) P(,T ) X 1 X 2 (.) Moneary Policy Rules SvenssonX insrumensi X +1 = AX + Bi + +1, i = fx. Σ iid X E (1 δ ) δ = L + F, L =(Y Y ) K(Y Y ), Y = CX + Di. Oaka and Yoshida

22 ( < < 1) CDK Y Svensson y i +1= + α y y + +1, ( +1 = E [ +1 F ] = + α y ), y +1 = y y + z z r (i r )+ +1, z z z = +1 y y > y r > z < 1r 2 iid 2 iid 2 L = 1 2 [ ] ( ) 2 + y 2. i = r c ( ) y r ( ) + y 1+ 1 c ( ) y r + y r y + z r z, c ( ) = 2 y k ( ), + δ k( ) = ( 1 δ ) δ 2 y ( 1 δ ) δ 2 y y 1. m log moneary aggregae money growh = m m 1 L = 1 2 ( ) 2, money demand

23 Forward Backward Sochasic Differenial Equaions +1 = m +1 m = +1 + y ( y y 1 ) i ( i i 1 ) ( +1 ), y > i > 2 iid i i = 1 1 ( +1 )+ i y i 1 i (y y ) = +1 + y (y y 1) r c ( ) ( )+ i +1 y r y y + r z r z i 1 +. Taylor rule i = i ( )+.5 y. i Henderson-McKibbin rule i = i + 2 ( + y ( + y)). QPMBank of Canada, Reserve Bank of New Zealand i = r L + (E Q [ +T F ] ), r L () Oaka and Yoshida r r ins (X 1 X 2 )=(ln r, ln r ins )

24 ins r arge = i = ln P(, T )/( T ) T = Y (, T ) T, Y (, T ) (T ) T Oaka and Yoshida T = Y(, T )(1 e 1(T ) ), 1 (, X(), P (, T )) = ins ln r arge = ln i = ln Y (, T ) 1 (T ). Y (, T ) sliding bond yield lnp (, +T )/T JGB Heah-Jarrow-Moron D (, T ) = P(, +T ) dd(, T ) = D(, T )((r () f (, +T ))d + (, +T ). dw()), f (, T )Rukowski Four Sep Scheme Jensen Y (, T )= ln P (, T ) T = 1 T T ln E Q [ e r (u) du F ] E Q [r ( ω ) F ]=C (r,, T). r () = sup u [, ] r (u,), Ω lim C (r,, T ) = r C (r,, T) = r 1 [ ] (, T )= ln e r (, T )(T ) T 1 = ln E Q e r ( ω) ( T ) [ F ] Y (, T ). T r () = inf u [, ] r (u,), Ω lim C (r,, T ) = r

25 Forward Backward Sochasic Differenial Equaions [L T 1, U T 1 ] [L T 2, U T 2 ]T X 1 ( )X 2 ( ) L T 1 U T 1 L T 2 U T 2 T Problem B s dx () = b(, X(), P(, T ))d +. dw(), dp(, T) = h(x(), P(, T )) d + Z(). dw(), h(x(), P(, T )) = e X1( ) P (, T ) = r() P(, T ), X 1 () = ln r() = lnr, X 2 () lnr ins () = lnr, P(T, T) = g(x(t )) = 1, = ins X() D = { X() L T 1 X 1 () U1 T, L T 2 X 2 () U2 T }, 1(X 2 () X 1 ()) b (, X(), P(, X())) = (, 2(ln Y(, T) 1(T ) X 2 ()) ) 1 >, = ( ) , 11, 12, 22 >, Z() (Z 1 (), Z 2 ()),W() W 1 (), W 2 = = ( ()). Four Sep Scheme P(, T ) = (X(), ) P(, T ) dp(, T ) = d (X(), ) = (X(), ) +1(X 2 () X 1 ()) x 1 (X(), ) + 2(ln( ln (X(), )/ (T )) 1(T ) X 2 ()) x 2 (X(), ) 1 2 ( ) x1 x 1 (X(), ) 1222 x 1x 2 (X(), ) x d 2 2 x 2 (X(), ) + 11 x 1 (X(), ) dw 1 () + ( 12 x1 (X(), ) +22 x 2 (X(), )) dw 2 ().

26 B s (X(), ) ( ) x 1 x x 1 x x 2 2 x (X 2 () X 1 ()) x (ln ( ln / (T )) 1 (T ) X 2 ()) x 2 e X 1 ( ) =, (X (T ), T) =1, Z = x (X ( ), ).. B s PDE ( ) x 1 x x 1 x x 2 2 x (x 2 () x 1 ()) x1 + 2 (ln ( ln / (T )) 1(T ) x 2 ()) x 2 e x 1 ( ) =, (x, T )= 1. SDE dx 1 () = 1 (X 2 () X 1 ()) d + 11 dw 1 ()+ 12 dw 2 (), dx 2 () = 2 (ln( ln (X (), ) /(T )) 1(T ) X 2 ()) d + 22 dw 2 (), X 1 () =ln r () =ln r, X 2 () =l n r ins () =lnr ins. P(, T ) = (X(), ), Z = x (X(), ).. BSDE s FBSDE s BSDE s BSDE s

27 Forward Backward Sochasic Differenial Equaions BSDE s FBSDE s EFBSDE s

28 FBSDE s Schwarz Disribuion locally convex linear opological spaced(ω) T Ω f (x) Ωa.e.dx = dx 1 dx 2,,dx n locally inegrable T f ( ) = Ω f (x ) (x) dx, D ( Ω), T f generalized funcion m (B) R n ΩBaireB complex-valued measure, D ( Ω), T m ( ) = (x )m (dx ) Ω T m T p () = (p) p Ω D(Ω) T p Dirac disribuion Weak Derivaivef (x) C k T D p f () = ( 1) p T f (D p ) p k (D p T f ) () = ( 1) p T f (D p )(), D(Ω), R n Ω(x){x (x) } Ω(x) supp() p = (p 1,,p n ) p =p p n p k C k (D p )(x) = p (x)/ x p1 1,, x pn n (D (,, ) )(x) = (x ) D(Ω)ΩC (x) m T( m ). D(Ω)YosidaProposiion

29 Forward Backward Sochasic Differenial Equaions D p T f f derivaive in he sense of disribuion Schwarz Disribuion wih Parameers T D(Ω) T () T () T D p x T D p x T / = D p x ( T / ) T [a, b]d(ω) D (Ω) T = b a T s ds D (Ω) T ( ) = b a T s ( )ds, Weak Soluion {(X, W ), (Ω, F, P), F } dx = b(, X )d + (, X ). dw. Ω, F, P F filraion X = {X ; < }F R n W = {W ; < } d P[ { b i (s, X s ) + 2 ij (s, X s )} ds < ] = 1 i n, 1 j d X = X + b (s, X s ) ds + (s, X s ). dw s, < almos surely (Γ)= P [ X Γ], Γ B n iniial disribuion D p = (p) dx + /dx = 1x + x xx < d1(x) / dx = 1(x)Heavisie

30 Pahwise Uniqueness{(X, W ), (Ω, F, P), F } {( X, W ), (Ω, F, P), F }Ω, F, P P[X = X ] = 1P[X = X, < ] = 1 Uniqueness in Disribuion {(X, W ), (Ω, F, P), F } {( X, W ), ( Ω, F, P ), F } P[X Γ] = P [ X Γ] ; Γ B (R d ), XX WeakUniquness Space-Time-Harmonic FuncionL diffusion operaor C 1, 2 (R +,R n )space-imeharmonic ( + L ) (, x ) =. Parabolic Operaor - Semimaringale n X P[X Γ ] = 1 C 1, 2 (R +, R n ) n d (, X ) = ( + L ) (, X ) d + [ i (, X ij ] dw j ) (, X ).. i =1 j=1 d E [ ( i (s, X s ) ij (s, X s )) 2 ds ] < X = (, X ) (, X ) ( s + L s ) (s, X s ) ds maringale von Weizsäcker and WinklerTheorem Maringale Problem X diffusion process C (R n ) Q X =(X ) (X ) L s (X s ) ds. Maringale Problem-Weak Soluion R n QC (R +, R n )

31 Forward Backward Sochasic Differenial Equaions iniial disribuionvq v = Z T dp x (dx) Z T = dq x / dp x vq v C 1, 2 (R +, R n ) (, X ) (, X ) ( s + L s ) (s, X s ) ds. (Ω, F, P), F W SDE dx = b(, X )d + (, X ). dw, (X, W)(Ω, F, Q v ), F von Weizsäcker and WinklerTheorem P x { X, F ; T }, (Ω, F ) n SDE dx = b(, X )d + dw, P x [X = x] = 1, b (, x ) K(1 + x ) Q x W Q x [W = ] = 1 Z T = dq x / dp x T 1 T Z T = exp b (s, X dx s b 2 s ). ds, 2 (s, X s ) a = Ω = C (R +, R n ), P = QW = a 1 (s, X s ). dy s,y = X b(s, X s ) ds Karazas and ShreveDefiniion Karazas and ShreveProposiion

32 Fundamenal SoluionG(, x ;, ), < T, x R n, R n ( + L )V (, x ) = kv (, x ). G(, x ;, )f C (R n ) V(, x) = R lim V(, x) = f (x ), G(, x ;, )f ( )d, n G(, x ;, )ransiion probabiliy densiy Cauchy Problem f (x) : R n R, g (, x) : [, T ] R n R f (x ) L(1 + x 2 ), 1, g (, x) ; g (, x) L(1 + x 2 ), 1, g (, x) ; ( + L )V(, x) = kv (, x) + g, V(T, x) = f (x ), max V(, x) M (1 + x 2 ), M>, 1, T V(, x) = R ng(, x ; T, ) f ( )d + T G(, x ;, ) g (, )d d R n T = E, x f (X T )exp k(, X ) d T + g (s, X s ) exp k(, X ) d ds s. Karazas and ShreveTheorem xx, x P[X, x A]= A G(, x ;, )d,

33 Forward Backward Sochasic Differenial Equaions M ([, T ] U) (, A) = s (A) ds L(Ω) L(Ω )L ([, T ] U ) M (Ω) M (Ω ) = (, A, ) (, A, ) P a.e. Ω s (A, )ds, a. s. P, = s (A, ) ds, a.s.p, A B(U ) (, T ]. (A, ) A B(U) lim (A, )= (A, ) modificaion (A, )P a.e. Ω. M(Ω). M(Ω ) M ([, T ] U ) Ma and YongLemma (, A) (, A) = A B(U) (, U) = (,.) B(U) (, A)A B(U ) sup A B(U) (s, A) (, A) = s

34 Bismu, J. M., An Inroducory Approach o Dualiy in Opimal Sochasic Conrol, SIAM Review, 2, 1978, pp Cvianić, J. and I. Karazas, Hedging Coningen Claims wih Consrained Porfolio, Annals of Applied Probabiliy, 3, 1993, pp ,, and H. M. Soner, Backward Sochasic Differenial Equaions wih Consrains on he Gains-process, Working Paper, Columbia Universiy, 1997., and J. Ma, Hedging Opions for a Large Invesor and Forward-Backward SDE s, Annals of Applied Probabiliy, 6, 1996, pp Delbaen, F., P. Grandis, T. Rheinländer, D. Samperi, M. Schweizer, and C. Sricker, Exponenial Hedging and Enropic Penalies, Mahemaical Finance, 12, 22, pp Dohan, M. U., Prices in Financial Markes, Oxford Universiy Press, 199. Duffie, D., and L. Epsein, Sochasic Differenial Uiliy, Economerica, 6, 1992, pp , J. Ma, and J. Yong, Black s Console Rae Conjecure, Annals of Applied Probabiliy, 5, 1994, pp El Karoui, N., E. Pardoux, and M. C. Quenez, Refleced Backward SDE s and American Opions, Numerical Mehods in Finance, ed. L. C. G. Rogers and D. Talay, 1997, pp , S. Peng, and, Backward Sochasic Differenial Equaions in Finance, Mahemaical Finance, 7, 1997, pp Gilbarg, D., and N. Trudinger, Ellipic Parial Differenial Equaions of Second Order, Springer, Harrison, M., and S. R. Pliska, Maringales and Sochasic Inegrals in he Theory of Coninuous Trading, Sochasic Processes and heir Applicaions, 11, 1981, pp Hofmann, N., E. Plaen, and M. Schweizer, Opion Pricing Under Incompleeness and Sochasic Volailiy, Mahemaical Finance, 2/3, 1992, pp Hogan, M., Problems in Cerain Two-Facor Term srucure Models, Annals of Applied Probabiliy, 3, 1993, pp Iwaki, H., M. Kijima and T. Yoshida, American Pu Opions wih a Finie Se of Exercisable Time Epochs, Mahemaical Compuing and Modelling, 22, 1995, pp Jos, J., Parial Differenial Equaions, Springer, 22. Karazas, I., and S. E. Shreve, Brownian moion and sochasic calculus, Springer-Verlag, Kijima, M., and T. Yoshida, A Simple Opion Pricing Model wih Markovian Volailiies, Journal of he Operaions Research Sociey of Japan, 36, 1993, pp Ma, J., and J. Yong, Solvabiliy of Forward Backward SDEs and he Nodal Se of Hamilon- Jacobi-Bellman Equaions, IMA preprin #1117, 1993., P. Proer and, Solving Forward-Backward Sochasic Differenial Equaions Explicily - A Four Sep Scheme, Probabiliy Theory and Relaed Fields, 15, 1994, pp

35 Forward Backward Sochasic Differenial Equaions, and J. Yong, Forward backward sochasic differenial equaions and heir applicaions, Springer, Oaka, M., and T. Yoshida, Sudy on Opion Pricing Model in an Incomplee Marke wih Sochasic Volailiy based on Risk Premium Analysis, Mahemaical Compuing and Modelling, 38, 23, pp , and, Term Srucure Models wih an Ineres Rae Conrolled by he Moneary Auhoriy, Proceedings of he Join Conference of Quaniaive Mehods in Finance and Bernoulli Sociey 2, 2, pp Pardoux, E., and S. Peng, Adaped Soluion of a Backward Sochasic Differenial Equaion, Sysems and Conrol Leers, 14, 199, pp Peng, S., Backward Sochasic Differenial Equaion and Is Applicaion in Opimal Conrol, Applied Mahemaics and Opimizaion, 27, 1993, pp Revuz, D., and M. Yor, Coninuous Maringales and Brownian Moion, Springer, Rukowski, M., Self-financing Trading Sraegies for Sliding, Rolling-horizon, and Consol Bonds, Working Paper of Universiy of New Souh Wales, Svensson, L. E. O., Inflaion Targeing as a Moneary Policy Rule, Working Paper of Sockholm Universiy, von Weizsäcker, H., and G. Winkler, Sochasic Inegrals, Friedr. Vieweg & Sohn Verlagsgesllschaf, 199. Yosida, K., Funcional Analysis, Springer, 198.

36

CEV(Constant Elasticity of Variance) FE 1

CEV(Constant Elasticity of Variance) FE 1 23 6 1 CEV(Consan Elasiciy of Variance) FE 1 1 (Karazas and Shreve[1998] Carr, Jarrow and Myneni[1992] J. Huang, Subrahmanyam and Yu[1996] ) S 1 ds =(r δ)s d + σ(s )dw,s = x(> ) r δ K T sup E[e rτ (K S

More information

218.8.21 1 2, (Theorem 1) (Theorem 2) 1 2, (Theorem 1) (Theorem 2) . (c.f. De Donno and Praelli, 24) (Ω, F, (F ) [,T ], P):, usual condiions, T < P : predicable σ-field on Ω [, T ] H 2 = { } X : (index

More information

○松本委員

○松本委員 CIRJE-J-100 2003 11 CIRJE hp://www.e.u-okyo.ac.jp/cirje/research/03research02dp_j.hml Credi Risk Modeling Approaches 2003 11 17 Absrac This aricle originaes from a speech given by he auhor in he seminar

More information

デフォルト相関係数のインプライド推計( )

デフォルト相関係数のインプライド推計( ) ,,,.,.,.,,.,,.,,.,,. :,, OU, SUR,.,.,,.,.., 62 1, BIS,.,.,,,,.,,.,.,, [33],,,.,,.,,,,.,,.,,,.. 2,. 3,. 4,,. 5. 2,,.,. 2.1,.,,.,. Giesecke [10] dependen defaul.,,,, GDP,.,,.,...,,,.,.,.,,.,,. Giesecke [10],

More information

低金利環境下でのフィット向上を目指した最近のイールド・カーブ・モデル群

低金利環境下でのフィット向上を目指した最近のイールド・カーブ・モデル群 IMES DISCUSSION PAPER SERIES 低金利環境下でのフィット向上を目指した最近のイールド カーブ モデル群 ふじわらしげあき 藤原茂章 Discussio Paper No. 7-J- INSIUE FOR MONEARY AND ECONOMIC SUDIES BANK OF JAPAN 日本銀行金融研究所 3-866 日本橋郵便局私書箱 3 号 日本銀行金融研究所が刊行している論文等はホームページからダウンロードできます

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

金融政策の波及経路と政策手段

金融政策の波及経路と政策手段 Krugman(988) Woodford(999) (2000) (2000) 4 rae-of-reurn dominance 405 4 406 (i) a 2 cash good credi good b King and Wolman(999) (ii) 407 3 4 90 (iii) (iv) 408 λ κ (2.8) π x π λ = x κ Svensson 999 sric

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 03 IMES Discussion Paper Series 99-J- 9 -J-19 1999 6 * * [1999] *(E-mail:

More information

βdxβ r a, < E e uγ r ha d E e r dx e r γd e r βdx 3.2 a = {a} γ = {γ} max E e r dx e r γd e r βdx, 2 s.. dx = qand + σndz, 1 E e r uγ ha d, 3 a arg maxã E e r uγ hã d. 4 3.3 γ = {γ : γ, γ} a = {a : a,

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

財政赤字の経済分析:中長期的視点からの考察

財政赤字の経済分析:中長期的視点からの考察 000 364 645 (ax smoohing (Barro(979 Barro(979 (consumpion smoohing Hall(978 Campbell(987 Barro(979 Hall(978 Campbell(987 Campbell(987 B ( r B G T ( ( r E B G T Y T/Y r ( No Ponzi Game ( [ Ω ] Y ( lim (

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1 206 B S option) call option) put option) 7 973 Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 997 Robert Merton A 20 00 30 00 50 00 50 30 20 S, max(0, S-) C max(0,s

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

16 7 5

16 7 5 16 7 5 1 2 1.1.......................................... 2 1.2....................................... 5 1.2.1.................................... 5 1.2.2............................... 6 1.2.3...............................

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

2 A A 3 A 2. A [2] A A A A 4 [3]

2 A A 3 A 2. A [2] A A A A 4 [3] 1 2 A A 1. ([1]3 3[ ]) 2 A A 3 A 2. A [2] A A A A 4 [3] Xi 1 1 2 1 () () 1 n () 1 n 0 i i = 1 1 S = S +! X S ( ) 02 n 1 2 Xi 1 0 2 ( ) ( 2) n ( 2) n 0 i i = 1 2 S = S +! X 0 k Xip 1 (1-p) 1 ( ) n n k Pr

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon Recovery Theorem Forward Looking Recovery Theorem Ross [2015] forward looking Audrino et al. [2015] Tikhonov Tikhonov 1. Tikhonov 2. Tikhonov 3. 3 1 forward looking *1 Recovery Theorem Ross [2015] forward

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

# GDP 1 GDP 1992 GDP Hamilton and Flavin (1986) Doi and Ihori(2003) (2007) 2 Bohn(1998) /GDP Bohn # 1 2 Broda

# GDP 1 GDP 1992 GDP Hamilton and Flavin (1986) Doi and Ihori(2003) (2007) 2 Bohn(1998) /GDP Bohn # 1 2 Broda # masaya@econ.keio.ac.jp GDP 1 GDP 1992 GDP 1 2006 Hamilon and Flavin (1986) Doi and Ihori(2003) 1965 2003 (2007) 2 Bohn(1998) /GDP Bohn # 1 2 Broda and Weinsein (2005) (2007) 1 Hamilon and Flavin(1986)

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an CDO 2010 5 18 CDO(Collateralized Debt Obligation) Duffie and Garleânu[4] CDO CDS(Credit Default Swap) Duffie and Garleânu[4] 4 CDO CDS CDO CDS CDO 2007 CDO CDO CDS 1 1.1 2007 2008 9 15 ( ) CDO CDO 80 E-mail:taiji.ohka@gmail.com

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

2000 7 2000 4 6 2000 3 27 1999 11 24 (juno@opimark.co.jp) QUICK 1 1.1 1.2 2.1 2.2 2.3 2.4 3.1 3.2 3.3 4.1 4.2 4.3 2 1.1 ( ) ( ) ( ) 1 1 3 1.2 2 3 Parlour[1998] 4 Parlour[1998] Biais/Hillion/Spa[1995] NYSE

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

II III II 1 III ( ) [2] [3] [1] 1 1:

II III II 1 III ( ) [2] [3] [1] 1 1: 2015 4 16 1. II III II 1 III () [2] [3] 2013 11 18 [1] 1 1: [5] [6] () [7] [1] [1] 1998 4 2008 8 2014 8 6 [1] [1] 2 3 4 5 2. 2.1. t Dt L DF t A t (2.1) A t = Dt L + Dt F (2.1) 3 2 1 2008 9 2008 8 2008

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199 Nelson-Siegel Nelson-Siegel 1992 2007 15 1 Nelson and Siegel(1987) 2 FF VAR 1996 FF B) 1 Nelson-Siegel 15 90 1 Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

論文 多重集合を応用した業務プロセスの記述とデータモデル認識 * 中西昌武 Business Process Description Applied with Bag and Capture of Data Model NAKANISHI, Masatake Chen, P.

論文 多重集合を応用した業務プロセスの記述とデータモデル認識 * 中西昌武 Business Process Description Applied with Bag and Capture of Data Model NAKANISHI, Masatake Chen, P. 4 07 3 論文 多重集合を応用した業務プロセスの記述とデータモデル認識 * 中西昌武 Business Process Descripion Applied wih Bag and Capure of Daa Model NAKANISHI, Masaake Chen, P. [] ER : Eniy-Relaionship Marin, J. [] Finkelsein, C. [3] [4,

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

財政赤字の経済分析:中長期的視点からの考察

財政赤字の経済分析:中長期的視点からの考察 1998 1999 1998 1999 10 10 1999 30 (1982, 1996) (1997) (1977) (1990) (1996) (1997) (1996) Ihori, Doi, and Kondo (1999) (1982) (1984) (1987) (1993) (1997) (1998) CAPM 1980 (time inconsistency) Persson, Persson

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

土地税制の理論的・計量的分析

土地税制の理論的・計量的分析 54 III 1971 1988 III 1971 m 2 16,000 1988 109,000 17 6.6 4.5 1974 197173 17) 197881 198687 17 1950 III ( m 2 ) () 1971 16,470 15.53 1972 21,550 30.84 1973 26,817 24.44 1974 24,973 6.88 1975 25,549 2.31

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

LIBORマーケット・モデルのインプリメンテーションについて―本邦の金利派生商品データを用いた具体例を基に―

LIBORマーケット・モデルのインプリメンテーションについて―本邦の金利派生商品データを用いた具体例を基に― LIBOR LIBOR LIBOR E-mal: shyama@po.msec.co.p LIBORLIBORLondon InerBank Offered Rae BGMBrace, Gaarek and Musela LIBOR LIBOR BlackBlack and Scholes LIBOR LIBORLIBOR LIBOR LIBOR LIBOR LIBOR Brace, Gaarek

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 常微分方程式の局所漸近解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/007651 このサンプルページの内容は, 初版 1 刷発行当時のものです. i Leibniz ydy = y 2 /2 1675 11 11 [6] 100 Bernoulli Riccati 19 Fuchs

More information

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6])

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6]) Generalized Recovery Theorem Ross[11] Recovery Theorem(RT) RT forward looking Kiriu and Hibiki[8] Generalized Recovery Theorem(GRT) Jensen et al.[6] GRT RT Kiriu and Hibiki[8] 1 backward looking forward

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

jpxwp_032917r3_upload

jpxwp_032917r3_upload : ( ),, CRESTJST 2017 4 28 ( ) 2017 4 28 1/21 (lead-lag).., Hoffman, Rosenbaum and Yoshida (2013) Dobrev and Schaumburg (2015) H. and Koike (2016) (Cross-marke, single-asse analysis) 3 (, Japannex,Chi-XJapan)

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information