×××××××××× ×××××××××××××××

Size: px
Start display at page:

Download "×××××××××× ×××××××××××××××"

Transcription

1 Hoizon-penetating Tansonic Accetion Disks aound Rotating Black Holes with Causal Viscosity 高橋労太 ( 東大総合文化 ) ホライズンの内側まで解かれた ADAF の遷音速流のサンプル解 (4 元速度の 成分 )

2 要旨 ブラックホール周りの定常降着流の遷音速解を外側の領域からホライズンの中まで計算できるようになった 以前の計算との大きな違いは 座標特異性がホライズンに位置にないので ブラックホールに流入する降着流の全ての物理量をホライズンの超近傍と真上で正確に評価できるようになったことである shea stess の部分は kinematic viscosity を用いて causality を破らない shea stess として定式化した また よく使われている alpha 粘性の他に 輻射による粘性 convection による粘性なども用いることが出来るような一般的な形で基礎方程式を定式化した 状態方程式も任意のものを用いることが出来る 今回 遷音速解を音速点から内外に数値積分する形で計算する方法を用いているので 外側内側の境界条件に拠らずに方程式系が満たす全ての可能な解を計算することができる 今回は 以上の性質をもつ基礎方程式の定式化と解の計算方法を示した後に 相対論的の状態方程式移流優勢降着流 (ADAF) に対するサンプル解を提示する

3 Ke-Schild 座標 Boye-Lindquist 座標 計量 ( Ke-Schild 座標 ): ホライズンに座標特異性をもたない i i j j ds = α dt + γij dx + β dt dx + β dt 1/2 2m α = 1 + Σ 2m γ = 1 + γ = Σ Σ ( )( ) 2 m / β = Σ m / Σ θθ Asin γ φφ = Σ 2 θ Ke-Schild 座標と Boye-Lindquist 座標の変換則 dt = dt 2m d Δ d = d BL KS KS BL dθ BL KS = dθ KS a dφ = dφ d Δ BL KS KS t θ φ BL BL BL = t = θ = φ KS KS KS 2 2 Δ= 2 m+ a Σ= a cos θ 2 2m γ φ = γφ = a sin θ 1 +. Σ 2m a = + + Δ t Δ φ BL KS KS KS エネルギー E( = u t ) 角運動量 ( = u φ ) は同じ表現 φ 角速度 ( / t Ω= u u ) 成分の4 元速度 ( u u ) は異なる表現 A= ( + a ) a Δsin θ

4 Locally Non-otating Refeence Fame (LNRF) Boye-Lindquist 座標の場合と大きく異なる部分がある! Stationay Conguence (by Futue-diected Obseve othogonal to t = const.) u = α u = ( k = θ φ) t * このconguenceではspin tenso=となるので このconguenceが構成するフレームはLocally Non-otating Refeence Fame (LNRF) と呼ばれる * また specific angula momentum= ともなるので このconguenceを持つ観測者はZeo Angula Momentum Obseve (ZAMO) と呼ばれる * このconguenceを持つ観測者の物理的な意味は Boye-Lindquist 座標を用いた場合とKe-Schild 座標を用いた場合とで大きく異なる 即ち Boye-Lindquist 座標の場合 Ke-Schild 座標の場合 BH k ブラックホール回転による角速度 2ma ω = A で回転する観測者 BH ブラックホールに速度 β θ φ u = u = u = α で落下する観測者

5 Fames & Fame Tansfomations 以下の 3 種類のフレームを用いる Ke-Schild 系 i i j j ds = α dt + γij dx + β dt dx + β dt ( )( ) ほとんどの計算はこのフレームで行う Othonomal 系 (LNRF ZAMO 系 ) 2 tˆ 2 ˆ 2 = [ ] + [ ] ds e dx e dx ˆ ϑ 2 ˆ φ 2 + [ e dx ] + [ e dx ] () t ( x) ( y) ( z) 流体静止系 ( u u u u ) = (1 ) ds = d() t + d( x) + d( y) + d( z) BH テトラド変換 一般相対論的効果 e.g. 重力赤方偏移 Fame Dagging Negative Enegy ローレンツ変換 特殊相対論的効果 e.g. ビーミング効果 通常の輻射プロセス (e.g. シンクロトロン ) 素粒子の相互作用距離 << 時空の曲率半径

6 保存則と基礎方程式 エネルギー運動量テンソル ( 流体 + 粘性 + 輻射 ) T ν = ρηu u ν + pg ν + t ν + q u ν + q ν u 保存則と基礎方程式静止質量保存 エネルギー運動量保存 * 運動量保存 ( 成分 ) a 今回は赤道面上の flow のみを考える ( ) = u ρ T ν ν = h T ν ν = ϑ ν * 運動量保存 (θ 成分 ) h T = * 運動量保存 (φ 成分 ) h dp h φ ν T = t エネルギーフラックス (t 成分 ) h T ν = ν ρ u ( η j) = tφ + ( q + qφu ) 角運動量保存則 * エネルギー保存 u T ν ν = + ds qvis = ρt + qad d 粘性加熱 = 移流冷却 + 放射冷却 ν M = H u π θ ρ ( ) 熱が質量項となる相対論的効果 = nhi ρη d + 方向の加速度 = 流体の圧力勾配 + 熱慣性 2 2 as ν H = ϑ 2 / 2 * E ( 今回は用いない ) 円盤の厚さ E / M = 1 ( 輻射がなく非相対論的な場合 )

7 Heat Inetia Effects 粘性がある場合に熱が質量項となる相対論的効果 質量降着率が大きく 粘性加熱が BH 近傍で効く場合に重要となる * 運動量保存 ( 成分 ) h T ν = ここで a h dp ν 熱が質量項となる相対論的効果 = nhi ρη d + 方向の加速度 = 流体の圧力勾配 + 熱慣性 n HI は次のように定義され 書き下される 1 ν ν ν nhi h( νt + q u + q u ) ρη Θ u γ ν ν γ = qvis tγ uu νq u νt u γq q q u ρη Θ Θ+ 3 q + vis の項 : 最も重要な項 粘性加熱の効果が慣性項として運動方程式の中で作用する効果を表す項 1 Θ 3 tγ γ の項 : 流体の体積の変化 (expansion 又はcompession) による冷却または過熱が 慣性項として作用するという効果 q を含む項 : 輻射による冷却または過熱が慣性項として作用するという効果

8 Vetical Stuctue (Geneal Fom) 定常降着流の θ 方向の effective な厚さは θ 方向の運動量バランスを仮定することにより導出される ϑ ν * 運動量保存 (θ 成分 ) h T = ν H θ 円盤の厚さ H θ の一般形は次のように与えられる * = a ( E 1) ( θ η ) ( ν ν ) H = a / u u + u u u ln q u + q u θ s * ϑ θ ν θ θ 1 ρη この形は ブラックホールのホライズンでsingulaでないを与える 2 ここで と定義される ここで a = p/ ρ η s H θ *θ 方向の速度成分とその勾配を無視し 輻射の効果も無視すると次のような簡単な式に帰着する 2 H = ϑ a 2 s 2 / 2 * ブラックホールが回転し かつ エネルギーが相対論的になっている場合には このエネルギーの効果により円盤の厚さは厚くなる 同じエネルギーの場合ブラックホールの回転が速いほど厚くなる

9 Tubulent Shea Stess & Causal Viscosity 1. Shea stess tenso は 流体静止系で評価する ( テトラドによる変換 ) ( ) ( ) ( ) ( ) 2 φ φ t φ = e eφ + e eφ t( )( φ) この式には テトラドの微分 t S t φ ここで流体静止系での shea stess はであり と定義する ( )( φ ) ( )( ) 2. 流体静止系で shea stess を拡散過程として計算する τ v S ds u d = S S τ : 拡散の時間スケール v t φ kinematic viscosity より与えられる有限の拡散速度が導入される c v = FS = ( ν / τ ) :shea stess の平衡値 ここでは Navie-Stokes 的に与える この際にも kinematic viscosity の効果が導入される v 1/2 ν : 拡散速度 3. 角運動量保存則からdS/d を計算することによりshea stess S は次のように計算される 2 S + v( u ) ( ln ) u vqs F S ρητ + η + τ = 1 u τ v( 2/ + lnf + lnh θ ) H θ の微分 輻射の効果が含まれる

10 Sonic Point とViscous Point での境界条件 1.. Sonic Point での境界条件 流体はブラックホールに超音速で流入するので どこかで亜音速から超音速に移る遷音速点を通る du d = N D s s Sonic Point ( 音速点 ): 流体の速度 = 音速となる点 N = D = 音速点で s s という境界条件を課すことによって音速点をスムーズに通過することが出来る 2.. Viscous Point での境界条件 Viscous Point : 流体の速度 = 拡散速度となる点 今回の定式化では 有限の拡散速度を導入することにより shea stess を計算したので 角運動量の変化を記述する式は 流体の速度 = 拡散速度 となる点で singula になる d d = N D v v Viscous Pointで N v = Dv = という境界条件を課すことによって音速点をスムーズに通過することが出来る 一般に Viscous Point の位置は音速点の外側に存在する

11 計算方法 以上の基礎方程式を以下の手順に従って解き 遷音速解を得る この手順により 方程式系が満たす全ての可能な解を網羅的に得ることができる 手順 1 音速点での物理量を指定まず 音速点の位置 と角運動量の定数 jを選ぶ この値の元で 音速 as ( または温度 T S S) を一時的に適当な値を選ぶ これらの値を 用いて音速点での と ( または ) の微分量を計算する u as 手順 2 Sonic Point とViscous Point の間の解を計算音速点での音速 ( 又は温度 ) の値をいろいろ変えて Sonic Point と Viscous Point での境界条件を満たす解を得る この際 境界条件を満たす解が得られるまで手順 1 を繰り返す 手順 3 Viscous Point より外側の領域の解を計算手順 2で境界条件を満たす解が得られているので 同じ物理量を用いてViscous Point より外側の領域の解を計算する 手順 4 Sonic Point より内側の解をホライズンの中まで計算手順 3と同じようにSonic Point より内側の解を計算する 今回はホライズンでの特異性がないので ホライズンの内側まで計算可能 T

12 サンプル解 (ADAF( ADAF + 相対論的状態方程式の場合 ) 相対論的状態方程式を用いたADAF 解の4 元速度の 成分ホライズンの部分で何も起こらずにスムーズに解が解かれている u

13 サンプル解 (ADAF( ADAF + 相対論的状態方程式の場合 ) 相対論的状態方程式を用いた ADAF のサンプル解の角速度 今回選んだパラメータでは BH スピンの違いはあまりない Boye-Lindquist 座標の場合には ホライズンで BH の角速度と一致する BH スピンの違いがあまり出ないのは Ke-Schild 座標を用いたためである

14 まとめと今後の作業 まとめ 1. 定常降着流の遷音速解を外側の領域からホライズンの中まで計算できるようになった 以前の計算との大きな違いは 座標特異性がホライズンに位置にないので 降着流の全ての物理量をホライズンの超近傍と真上で正確に評価できる 2. shea stess の部分は kinematic viscosity を用いて causality を破らない shea stess として定式化した 3. 相対論的の状態方程式を用いた場合の移流優勢降着流 (ADAF) に対するサンプル解を提示した 今後の作業 ( 例 ) 1. 現在までに求められている様々な降着流モデルに適用する 2. これらの計算結果を用いてブラックホールスピンの変化率と質量降着率の関係を調べていく 3. Shea stess の部分を現実的なものに置き換える

15 補足 :Ke: Ke-Schild 座標での自由落下運動 ホライズンはスムーズに通過する ポテンシャル障壁にぶつかる部分まで解は存在する

Microsoft PowerPoint - RohtaTakahashi

Microsoft PowerPoint - RohtaTakahashi 理論懇シンポジウム @ 京大基研 Neutrino Shadow and Explosion Mechanism of GRB 高橋労太 ( 東大総合文化 ) 長滝重博 ( 京大基研 ) 研究研究研究研究の研究研究研究研究のモチベーションモチベーションモチベーションモチベーションモチベーションモチベーションモチベーションモチベーションガンマ線バーストのセントラル エンジンガンマ線バーストのセントラル

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ = 1 11 11.1 ψ e iα ψ, ψ ψe iα (11.1) *1) L = ψ(x)(γ µ i µ m)ψ(x) ) ( ) ψ e iα(x) ψ(x), ψ(x) ψ(x)e iα(x) (11.3) µ µ + iqa µ (x) (11.4) A µ (x) A µ(x) = A µ (x) + 1 q µα(x) (11.5) 11.1.1 ( ) ( 11.1 ) * 1)

More information

ポリトロープ、対流と輻射、時間尺度

ポリトロープ、対流と輻射、時間尺度 宇宙物理学 ( 概論 ) 6/6/ 大阪大学大学院理学研究科林田清 ポリトロープ関係式 1+(1/) 圧力と密度の間にP=Kρ という関係が成り立っていると仮定する K とは定数でをポリトロープ指数と呼ぶ 5 = : 非相対論的ガス dlnp 3 断熱変化の場合 断熱指数 γ, と dlnρ 4 = : 相対論的ガス 3 1 = の関係にある γ 1 等温変化の場合は= に相当 一様密度の球は=に相当

More information

ブラックホール近傍の相対論的光軌道

ブラックホール近傍の相対論的光軌道 ラックホールに落下するガスの blob 2014 年 2 月 2 日京都大学宇宙物理学教室修士 1 年森山小太郎 本研究 遠方 S 降着円盤 B ガスの塊 ( 以降 spot) 最内縁安定円軌道からずれて BH に落ち込むガスの塊について考える 遠方からどう観測されるか理論的に研究する a の決定に用いる 円運動する Spot からの 光のエネルギーフラックス スタート地点 B S a=0.9981m

More information

Microsoft PowerPoint - 夏の学校(CFD).pptx

Microsoft PowerPoint - 夏の学校(CFD).pptx /9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074> 宇宙工学基礎 ( 軌道の基礎 松永三郎 機械宇宙学科 機械宇宙システム専攻 ニュートンの法則 第 法則 力が作用作用しないしない限り 質点質点は静止静止ないしはないしは一定速度一定速度で運動するする ( 慣性の法則 慣性空間 慣性座標系慣性座標系の定義第 法則 慣性座標系におけるにおける質点質点の運動 p F ( pɺ t ( F: 全作用力, pmv: 並進運動量 ( 質量と速度速度の積 慣性系を規準規準としてとして時間微分時間微分を行うことにことに注意第

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

物性基礎

物性基礎 水素様原子 水素原子 水素様原子 エネルギー固有値 波動関数 主量子数 角運動量 方位量子数 磁気量子数 原子核 + 電子 個 F p F = V = 水素様原子 古典力学 水素様原子 量子力学 角運動量 L p F p L 運動方程式 d dt p = d d d p p = p + dt dt dt = p p = d dt L = 角運動量の保存則 ポテンシャルエネルギー V = 4πε =

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

銀河風の定常解

銀河風の定常解 2011年 国立天文台プラズマセミナー 2011/12/02 球対称定常銀河風の遷音速解 銀河の質量密度分布との関係 筑波大学 教育研究科 教科教育専攻 つちや まさみ 理科教育コース 2年 土屋 聖海 共同研究者 森正夫 筑波大学 新田伸也 筑波技術大学 発表の流れ はじめに 銀河風とは 流出過程 エネルギー源 周囲に及ぼす影響 研究内容 問題の所在 研究の目的 方法 理論 銀河の質量密度分布 研究成果

More information

Microsoft PowerPoint - siryo7

Microsoft PowerPoint - siryo7 . 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/

More information

Microsoft PowerPoint - qchem3-9

Microsoft PowerPoint - qchem3-9 008 年度冬学期 量子化学 Ⅲ 章量子化学の応用 4.4. 相対論的効果 009 年 月 8 日 担当 : 常田貴夫准教授 相対性理論 A. Einstein 特殊相対論 (905 年 ) 相対性原理: ローレンツ変換に対して物理法則の形は不変 光速度不変 : 互いに等速運動する座標系で光速度は常に一定 ミンコフスキーの4 次元空間座標系 ( 等速系のみ ) 一般相対論 (96 年 ) 等価原理

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

浅水方程式 順圧であるためには, 静水圧近似が必要 Dw Dt + コリオリ力 = 1 p + 粘性 g ρ z w が u, v に比べて小さい 運動の水平距離に対して水深が浅い 浅水 海は深いが, 水平はさらに広い 最大 1 万 km 浅水方程式 : u, v, の式 水平 2 次元の解 D D

浅水方程式 順圧であるためには, 静水圧近似が必要 Dw Dt + コリオリ力 = 1 p + 粘性 g ρ z w が u, v に比べて小さい 運動の水平距離に対して水深が浅い 浅水 海は深いが, 水平はさらに広い 最大 1 万 km 浅水方程式 : u, v, の式 水平 2 次元の解 D D 流体地球科学第 11 回 東京大学大気海洋研究所准教授藤尾伸三 ttp://ovd.aori.u-tokyo.ac.jp/ujio/2015ciba/ ujio@aori.u-tokyo.ac.jp 2016/1/8 順圧流の運動方程式 流体の密度が一様ならば, 圧力 静水圧 の水平勾配は鉛直一様 海面の高さによる水平圧力勾配のみ ηx,y px, y, z = ρ g dz = ρgη z p x

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E >

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E > バットの角度 打球軌道および落下地点の関係 T999 和田真迪 担当教員 飯田晋司 目次 1. はじめに. ボールとバットの衝突 -1 座標系 -ボールとバットの衝突の前後でのボールの速度 3. ボールの軌道の計算 4. おわりに参考文献 はじめに この研究テーマにした理由は 好きな野球での小さい頃からの疑問であるバッテングについて 角度が変わればどう打球に変化が起こるのかが大学で学んだ物理と数学んだ物理と数学を使って判明できると思ったから

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 =1.055 10 34 J sec =6.582 10 22 MeV sec c = 197.33 10 15 MeV m = c = c =1 1 m p = c(mev m) 938M ev = 197 10 15 (m) 938 =0.2 10 13 (cm) 1 m p = (MeV sec) 938M ev = 6.58

More information

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧 2. 潜水方程式系の導出 見延庄士郎 ( 海洋気候物理学研究室 ) minobe@mail.sci.okudai.ac.jp 第 1 回まとめ 1/2 二つの変数の関係の強さを表す統計量は相関であり, 最小値は -1, 最大値は +1, 無相関は である. 過去数十年間の ( 気象庁は 3 年 ) 月ごとの平均値を, 月平均データの平年値または気候値という. 観測値から平年値を引いたものが, 偏差である.

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds) 1 1 CP 1.1 SU() U(1) U(1) W ±,Z 1 [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (1.1a) (1.1b) u d u d +W u s +W s u (udd) (Λ = uds) n + e + ν e d u +W u + e + ν e (1.a) Λ + e + ν e s u +W u + e

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

Q

Q 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 剛体の重心と自由運動 -1/8 テーマ 07: 剛体の重心と自由運動 一般的に剛体が自由に運動できる状態 ( 非拘束の状態 ) で運動するとき, 剛体は回転運動を伴った運動をします. たとえば, 棒の端を持って空中に放り投げると, 棒はくるくる回転しながら上昇してやがて地面に落ちてきます. 剛体が拘束されない状態で運動する様子を考察してみましょう.

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

機構学 平面機構の運動学

機構学 平面機構の運動学 問題 1 静止座標系 - 平面上を運動する節 b 上に2 定点,Bを考える. いま,2 点の座標は(0,0),B(50,0) である. 2 点間の距離は 50 mm, 点の速度が a 150 mm/s, 点 Bの速度の向きが150 である. 以下の問いに答えよ. (1) 点 Bの速度を求めよ. (2) 瞬間中心を求めよ. 節 b a (0,0) b 150 B(50,0) 問題 1(1) 解答 b

More information

Korteweg-de Vries

Korteweg-de Vries Korteweg-de Vries 2011 03 29 ,.,.,.,, Korteweg-de Vries,. 1 1 3 1.1 K-dV........................ 3 1.2.............................. 4 2 K-dV 5 2.1............................. 5 2.2..............................

More information

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方 大阪大学物理 8 を解いてみた Ⅰ. 問 g 最高点の座標を y max とすると, 力学的エネルギー保存則より \ y m mgy 補足 max g max 小物体の運動方向に対する仕事は重力 ( 保存力 ) の斜面に沿った成分のみであり, 垂直抗力 ( 非保存力 ) の仕事は である よって, 力学的エネルギー保存則が成り立つ これを確かめてみよう 小物体は重力の斜面に沿った外力を受けながらその運動エネルギーを失っていく

More information

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 剛体過去問解答例. 長さの棒の慣性モーメントは 公式より l G l A 点のまわりは平行軸の定理より A l l l B y 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 運動方程式は 方向 : R f, y 方向 : y N l 回転 : G { N f R cos } A 静止しているとき 方向の力と 力のモーメントがつり合うので y ~ より R ' また 摩擦力が最大静止摩擦力より大きいとはしごは動き出すので

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回 素粒子物理学 素粒子物理学序論B 010年度講義第4回 レプトン数の保存 崩壊モード 寿命(sec) n e ν 890 崩壊比 100% Λ π.6 x 10-10 64% π + µ+ νµ.6 x 10-8 100% π + e+ νe 同上 1. x 10-4 Le +1 for νe, elμ +1 for νμ, μlτ +1 for ντ, τレプトン数はそれぞれの香りで独立に保存

More information

. µ, v i E i p i µ µv i p i p f µv i, momentum tansfe q p p i p f q p i cos Θ) 4p i sin Θ/) q p i sinθ/) p f p i q z ) q F z dt φ φ z z e cos ρdt d L

. µ, v i E i p i µ µv i p i p f µv i, momentum tansfe q p p i p f q p i cos Θ) 4p i sin Θ/) q p i sinθ/) p f p i q z ) q F z dt φ φ z z e cos ρdt d L Ruthefod v pojectiletaget a, impact paamete a ) > a ) a ) σ π a ) a σ l σl B σln n cm 3 mean fee path)λ l σln nσ dx di Ix)σndx Ix) I e nσx /e e e nσx x λ/e nσ mean fee timeτ λ v nσv collision fequency

More information

Microsoft Word - 力学12.doc

Microsoft Word - 力学12.doc 慣性モーメント. 復習 角運動量と角速度 L p υ, L 質点の角運動量 : ( ) ( ) 剛体の角運動量 L ( ) ρ ( ) ( ) d 注 ) この積分は普通の三重積分 d d d ( ) ( ) A B C A C B A B より ベクトル三重積の公式 ( ) ( ) ( )C ( ) L ( ) ( ) R 但し 慣性モーメント (oent of net): I R( ) ρ ;

More information

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) "! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. # " %&! (' $! #! " $ %'!!!

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) ! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. #  %&! (' $! #!  $ %'!!! 物理学 II( 熱力学 ) 期末試験問題 & 解答 (1) 問 (1): 以下の文章の空欄に相応しい用語あるいは文字式を記入しなさい. 温度とは物体の熱さ冷たさを表す概念である. 物体は外部の影響を受けなければ, 十分な時間が経過すると全体が一様な温度の定常的な熱平衡状態となる. 物体 と物体 が熱平衡にあり, 物体 と物体 が熱平衡にあるならば, 物体 と物体 も熱平衡にある. これを熱力学第 0

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

今回の目的 ブランドフォード ナエク機構での電磁場エネルギー密度 e EM - ボイヤ リンキスト座標 : e EM < 0 - カー シルト座標 : e EM > 0! 果たして, そういうことはありえるのか? はっきりさせる. 今回, カー シルト座標における電磁エネルギー密度とエネルギー流束の

今回の目的 ブランドフォード ナエク機構での電磁場エネルギー密度 e EM - ボイヤ リンキスト座標 : e EM < 0 - カー シルト座標 : e EM > 0! 果たして, そういうことはありえるのか? はっきりさせる. 今回, カー シルト座標における電磁エネルギー密度とエネルギー流束の 第 9 回ブラックホール磁気圏勉強会 2016.3.2( 水 )@ 夕張マウントレースイホテル ブラックホール回転エネルギーの 電磁場による因果的引抜き Ⅱ 熊本大学理学部小出眞路 2 年前の第 7 回磁気圏ブラックホール研究会において, 電磁エネルギー密度とエネルギー流束密度の関係式を示しまだ, この論文を読み込んでいません, ブラックホール地平面においては負の電磁気的エネルギーがブラックホールに

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

外から中心に投げたボールの動画 1 中心に向かってまっすぐ投げる 回転盤でボールをキャッチ 円盤の回転速度とボールの速度を合わせれば, 投げたボールを取れる ( 投げた人にはボールが回ってくるように見える ) 投げてからの時間は, 回転の半周期 円盤の外から見る図斜めに飛んでいく 投げた人が見る図コ

外から中心に投げたボールの動画 1 中心に向かってまっすぐ投げる 回転盤でボールをキャッチ 円盤の回転速度とボールの速度を合わせれば, 投げたボールを取れる ( 投げた人にはボールが回ってくるように見える ) 投げてからの時間は, 回転の半周期 円盤の外から見る図斜めに飛んでいく 投げた人が見る図コ 流体地球科学第 6 回 外から中心に投げたボールは? 回転盤の外から見た図 ( ) 期待される位置, ( ) 実際の位置 間違った図 1 間違った図 2 正しい図 東京大学大気海洋研究所准教授藤尾伸三 http://ovd.aori.u-tokyo.ac.jp/ujio/215chiba/ ujio@aori.u-tokyo.ac.jp 215/11/2 最終更新日 215/11/24 ボールは左

More information

運動方程式の基本 ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧力傾度力 + 摩擦力 流体の運動

運動方程式の基本 ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧力傾度力 + 摩擦力 流体の運動 2. 浅水方程式系の導出 見延庄士郎 ( 海洋気候物理学研究室 ) 第 1 回まとめ 1/2 二つの変数の関係の強さを表す統計量は相関であり, 最小値は -1, 最大値は +1, 無相関は である. 過去数十年間の ( 気象庁は 3 年 ) 月ごとの平均値を, 月平均データの平年値または気候値という. 観測値から平年値を引いたものが, 偏差である. 連続する n 個のデータを平均して, 中央のデータの値に置き換える平滑化が,

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 37 分第 7 章 : 量子力学とディラック方程式 ( 学部 4 年次向 ) 第 7 章量子力学とディラック方程式 Ⅰ. クライン ゴルドン方程式の完全平方化 素粒子場 : y ( x,t ) の従うクライン ゴルドン方程式は

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 37 分第 7 章 : 量子力学とディラック方程式 ( 学部 4 年次向 ) 第 7 章量子力学とディラック方程式 Ⅰ. クライン ゴルドン方程式の完全平方化 素粒子場 : y ( x,t ) の従うクライン ゴルドン方程式は /7 平成 9 年 月 5 日 ( 土 ) 午前 時 7 分第 7 章 : 量子力学とディラック方程式 ( 学部 4 年次向 ) 第 7 章量子力学とディラック方程式 Ⅰ. クライン ゴルドン方程式の完全平方化 素粒子場 : y ( x,t ) の従うクライン ゴルドン方程式は 素粒子を質量 とすると ì x : ( ct, x, y, z) :,,, ì c ct ç + y (, t) ç å

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a

Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t 1 t 2 h 1 h 2 a 1 1 1.1 (Darcy) v(cm/s) (1.1) v = ki (1.1) v k i 1.1 h ( )L i = h/l 1.1 t 1 h(cm) (t 2 t 1 ) 1.1 A Q(cm 3 /s) 2 1 1.1 Q = va = kia (1.2) 1.2 ( ) 2 ( 1.2) 1.2(a) (1.2) k = Q/iA = Q L/h A (1.3) 1.2(b) t

More information

3. 重力波と沿岸 赤道ケルビン波 2014 年 9 月 30 日 16:35 見延庄士郎 ( 海洋気候物理学研究室 ) 予習課題 : 以下の you tube のビデオを見ておくこと. 個々のビデオは全部は見ずに, 雰囲気がつかめる程度見ればいい.

3. 重力波と沿岸 赤道ケルビン波 2014 年 9 月 30 日 16:35 見延庄士郎 ( 海洋気候物理学研究室 ) 予習課題 : 以下の you tube のビデオを見ておくこと. 個々のビデオは全部は見ずに, 雰囲気がつかめる程度見ればいい. 3. 重力波と沿岸 赤道ケルビン波 2014 年 9 月 30 日 16:35 見延庄士郎 ( 海洋気候物理学研究室 ) minobe@sci.hokudai.ac.jp 予習課題 : 以下の you ube のビデオを見ておくこと. 個々のビデオは全部は見ずに, 雰囲気がつかめる程度見ればいい. 大気の重力波 : hp://www.youube.com/wach?v=yxnkzecu3be 津波シミュレーション

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする 相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

Kerr 時空における球対称流に対するコリメーション効果 ( CQG, 26, , 2009 ) 髙見健太郎 ( 広島大学 / Albert-Einstein-Institute) 共同研究者 : 小嶌康史 ( 広島大学 ) 2009 年 10 月 01 日駒場宇宙コロキウム

Kerr 時空における球対称流に対するコリメーション効果 ( CQG, 26, , 2009 ) 髙見健太郎 ( 広島大学 / Albert-Einstein-Institute) 共同研究者 : 小嶌康史 ( 広島大学 ) 2009 年 10 月 01 日駒場宇宙コロキウム Kerr 時空における球対称流に対するコリメーション効果 ( CQG, 26, 085013, 2009 ) 髙見健太郎 ( 広島大学 / Albert-Einstein-Institute) 共同研究者 : 小嶌康史 ( 広島大学 ) 2009 年 10 月 01 日駒場宇宙コロキウム 目 次 導入 Kerr 時空と測地線方程式 粒子のコリメーション条件 粒子流に対するコリメーション効果 まとめ

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

<4D F736F F F696E74202D208BAB8A458FF08C8F82CC8AEE916282C68C8892E896402E707074>

<4D F736F F F696E74202D208BAB8A458FF08C8F82CC8AEE916282C68C8892E896402E707074> No.07-131 講習会 ( 流体工学部門企画 ) 境界条件の基礎と決定法 千葉科学大学 戸田和之 講演の流れ 数値解析とは何か 境界条件の役割と目的 境界の分類 計算法による 設定の違い 非圧縮流れ解析における境界条件の設定法 乱流解析における境界条件の設定法 圧縮性流れ解析における境界条件の設定法 1 流れの数値解析とは 偏微分型で書かれた基礎方程式を解く作業 連続の式 υ = 0 υ: 速度ベクトル

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

流体地球科学第 7 回 力のバランス永遠に回れるバランス ( 以下, 北半球 =コリオリ力は進行方向の右向き ) 慣性振動 : 遠心力 =コリオリ力 地衡風 : コリオリ力 = 圧力傾度力 東京大学大気海洋研究所准教授藤尾伸三

流体地球科学第 7 回 力のバランス永遠に回れるバランス ( 以下, 北半球 =コリオリ力は進行方向の右向き ) 慣性振動 : 遠心力 =コリオリ力 地衡風 : コリオリ力 = 圧力傾度力 東京大学大気海洋研究所准教授藤尾伸三 流体地球科学第 7 回 力のバランス永遠に回れるバランス ( 以下, 北半球 =コリオリ力は進行方向の右向き ) 慣性振動 : 遠心力 =コリオリ力 地衡風 : コリオリ力 = 圧力傾度力 東京大学大気海洋研究所准教授藤尾伸三 http://ovd.aori.u-tokyo.ac.jp/fujio/205chiba/ fujio@aori.u-tokyo.ac.jp F C F A 旋衡風 : 遠心力

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

ハートレー近似(Hartree aproximation)

ハートレー近似(Hartree aproximation) ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

スライド 1

スライド 1 非線形数理秋の学校 パターン形成の数理とその周辺 - 反応拡散方程式理論による時 空間パターンの解析を中心に - 2007 年 9 月 25 日 -27 日 モデル方程式を通してみるパターン解析ー進行波からヘリカル波の分岐を例としてー 池田勉 ( 龍谷大学理工学部 ) 講義概要, 講義資料, 講義中に使用する C 言語プログラムと初期値データ, ヘリカル波のアニメーションをウェブで公開しています :

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

Microsoft PowerPoint - Š’Š¬“H−w†i…„…C…m…‰…Y’fl†j.ppt

Microsoft PowerPoint - Š’Š¬“H−w†i…„…C…m…‰…Y’fl†j.ppt 乱流とは? 不規則運動であり, 速度の時空間的な変化が複雑であり, 個々の測定結果にはまったく再現性がなく, 偶然の値である. 渦運動 3 次元流れ 非定常流 乱流は確率過程 (Stochastic Process) である. 乱流工学 1 レイノルズの実験 UD = = ν 慣性力粘性力 乱流工学 F レイノルズ数 U L / U 3 = mα = ρl = ρ 慣性力 L U u U A = µ

More information