Fourier series to Fourier transform Masahiro Yamamoto September 9, 2016 OB (r j)j r (r i)i Figure 1: normal coordinate, projection, inner product 3 r

Size: px
Start display at page:

Download "Fourier series to Fourier transform Masahiro Yamamoto September 9, 2016 OB (r j)j r (r i)i Figure 1: normal coordinate, projection, inner product 3 r"

Transcription

1 Fourier series to Fourier transform Masahiro Yamamoto September 9, 2016 OB (r j)j r (r i)i Figure 1: normal coordinate, projection, inner product 3 r i.j, k x = r i, y = r j, z = r k r = xi + yj + zk N Fig.1 i, j, k i j = j k = k i = 0 i i = j j = k k = 1 1 f(x) g n (x) f(x) g n (x) (f, g n ) = b a dxf(x)g n(x) (1) f(x) [ l, l] 2l f(x) = n (f, g n )g n = 1 n= 2l n= c ne inπx/l (2) g n = einπx/l 2l (3) c n = (f, g n ) = 1 2l l l dxf(x)e inπx/l (4) 1

2 g n (g n, g m ) = 1 2l l l dxe inπx/l e imπx/l = { 1, (n = m) sin(n m)π 2(n m)π = 0, (n m) c n = c n/ 2l f(x) = (g n, g m ) = δ nm c n = 1 2l n= n= l l c n e inπx/l (5) dxf(x)e inπx/l (6) f(x + 2l) = n= n= c n e inπx/l e i2nπ = f(x) Fig.2 n 1.0 n= n=10 n=100 n= n=1 n=10 n=100 n= Figure 2: Examples of Fourier series Eq.(6) f(x) Eq.(5) c n = 1 2l = l l m= m= dx Eq.(5) c n Eq.(6) m= m= c m δ mn = c n c m e imπx/l e inπx/l f(x) = = n= n= l 1 l dx f(x )e inπx /l e inπx/l 2l l l dx f(x ) 1 2l n= e inπ(x x)/l n= 2

3 = = = l dx f(x ) 1 1 l 2l k l l dx f(x ) 1 2l l l l π n= e ik n(x x) k, n= dke ik(x x) dx f(x ) 1 2π 2πδ(x x) = f(x) ( k n = nπ l, k = π ) l Eq.(5)Eq.(6) L 2l 2 f(x) = c n = 1 L f(x + L) = + n= L/2 + L/2 n= c n e i2πnx/l (7) dxf(x)e i2πnx/l (8) c n e i2πnx/l e i2nπ = f(x) 2l k n nπ/l k, k = π/l 1 f(x) = lim l k f(k) c n / k f(x) =,f(x) f(k) f(x) = = n= n= c n e inπx/l k = lim n= l n= c n k e ik nx k (9) dkf(k)e ikx (10) f(k) = c n 1 l l = lim dxf(x)e iknx = 1 dxf(x)e ikx (11) k l 2l π l 2π = 1 2π dkf(k)e ikx dk 1 2π dx f(x ) 2.1 Gauss f(x) = A 2 πα f(k) = 1 2π = A π 2π dx f(x )e ikx e ikx dke ik(x x) = 1 dx f(x )2πδ(x x) = f(x) 2π f(x) = A exp( αx 2 ), α > 0 (12) α e k 2 dke k2 4α e ikx = kx α(x+i dxe 2α) 2 e k2 4α dxae αx2 e ikx = A 2π A 4α = 2 πα e k 2 4α (13) A 2 dke 1 4α (k 2iαx)2 e αx2 = πα A 2 πα 2 απe αx2 = Ae αx2 3

4 2.2 Gaussian wavepacket f(k ) = 1 2π = A [ 2π exp f(x) = = A 2π exp f(x) = Ae ikx e x2 /2 2 (14) dxae ikx e x2 /2 2 e ik x = A /2)(k k ) 2 ] 2π e[ ( (k k ) 2 = A [ exp 2 2π 2 k2 ] 2π 2 = A [ exp 2π 2 2 (k k ) 2 dk f(k )e ik x = A [ ] + dk exp 2 2π 2 (k k ) 2 [ ] [ k2 exp 2 (k + i ] [ + 2 x)2 dk exp ] [ 2 exp 2 (k + i ] 2π 2 x)2 2 = Ae ikx e x2 /(2 2 ) Ref(x) = A [ ] + dk exp 2 2π 2 (k k ) 2 cos(k x) = A [ ] (δk ) exp 2 2π 2 (k k ) 2 cos(k x) k = k k Ref(x) = A [ ] (δk ) exp 2 2π 2 k 2 cos[(k k )x] k e ik x 2 2 dxe [x i 2 (k k )] 2 ] { k (k + i } ] 2 x)2 k = k k = ndk, (n = N, N + 1,..., 2, 1, 0, 1, 2,..., N 1, N) (15) (16) 2.3 delta function dke ik(x x) L = lim dke ik(x x) 1 = lim x) L L L i(x x) [e il(x e il(x x) ] = lim L 2 sin[l(x x)] (x x) = Cδ(x x) C, X = x x 2 sin(lx)/x 2 sin(lx) 2 sin(lx) lim = 2L, = 0 at X = ± π X 0 X X L L (Fig.3) C Fig.4 C = 2π C dxδ(x) = C = = 2Im dx 2 sin(lx) X dz eilz z = 2Imiπ = 2π = 2Im dke ik(x x) = 2πδ(x x) dz eiz Z, (Z = zl) 4

5 !" )./01$/2/-%-&-&34561*/3 ))7)') """"" ))7)') """" ))7)') """ "!# "!" $"!# &'#()*' ()+*,' -&- """" $%" $ " " " %" x!",- #### $%&'(!# #!",- ##### #!# )* ) # * &'+ Figure 3: FT of Gaussian wave-packet 7 6 2*sin(4*x)/x 2*sin(2*x)/x 2*sin(x)/x Figure 4: functional form of 2 sin(lx)/x 5

6 Imz Rez Figure 5: Contour to calculate e iz /z 2.4 step function, step function ( step function θ(x x 0 ) = { 1, x > x0 0, x < x 0 (17) θ(k) θ(k) = 1 2π dxθ(x x 0 )e ikx = 1 dxe ikx (18) 2π x 0 x = + e ɛx ɛ [ ] 1 + θ(k) = lim dxe i(k iɛ)x 1 e i(k iɛ)x + 1 e i(k iɛ)x 0 = lim = lim (19) ɛ 0 2π x 0 ɛ 0 2π i(k iɛ) ɛ 0 2π i(k iɛ) = i 2π lim e i(k iɛ)x 0 ɛ 0 k iɛ lim ɛ 0 1 x ± iɛ x 0 (20) = P 1 iπδ(x) (21) x P 0-0+ step function θ(k) = θ(k; x 0 ) = i [P 1 ] 2π k + iπδ(k) e ikx 0 (22) θ(k) x 0 θ(k; x 0 ) 1 θ(x) 0 x 0 x Figure 6: step function θ(x x 0 ) θ(k; x 0 ) θ(x x 0 ) θ(x x 0 ) = dkθ(k; x 0 )e ikx = i 2π = i 2π P dk eik(x x 0) + i k = 1 2 i 2π P dk eik(x x 0) k 2π iπ dk [P 1 ] k + iπδ(k) e ik(x x 0) dkδ(k)e ik(x x 0) (23) (24) (25) 6

7 k k k = k +ik x x 0 > 0 e ik(x x 0) = e ik (x x 0 ) e k (x x 0 ) Fig.7 C x x 0 < 0 C x x 0 > 0 Fig.7 k = 0 0 = = P πi = P 0 dk eik(x x 0) k dk eik(x x 0) k dk eik(x x 0) k + dk C1 eik(x x 0) + dk eik(x x 0) C + dk eik(x x 0) k 0+ k k Fig.7 k = 0 (26) πie i0(x x 0) + 0 (27) (28) 2πie i0(x x 0) = P dk eik(x x 0) + πie i0(x x0) + 0 (29) k θ(x x 0 ) = 1 2 i 2π P dk eik(x x 0) k = 1 2 i 2π πi = 1, x x 0 > 0 (30) x x 0 < 0 Fig.7 k = 0 2πie i0(x x 0) πi = P = P dk eik(x x 0) k dk eik(x x 0) k πie i0(x x 0) + 0 (31) (32) k = 0 0 = P dk eik(x x 0) + πie i0(x x 0) k (33) θ(x x 0 ) = 1 2 i 2π P dk eik(x x 0) k = 1 2 i 2π ( πi) = 0, x x 0 < 0 (34) θ(k; x 0 ) θ(x x 0 ) = { 1, x > x0 0, x < x 0 (35) 2.5 Convolution: f(t) r(t) t r(t) = χ f(t) + φ(t t )f(t )dt (36) χ φ(t t ), t t t > t φ(t t ) = 0, t t < 0 r(t) = χ f(t) + φ(t t )f(t )dt (37) 7

8 C1 C1 C' C'' C' C2 C'' C2 Figure 7: contour to calculate θ(x x 0 ), x > x 0 (left) and θ(x x 0 ), x < x 0 (right) from θ(k), ω r(t)e iωt dt = χ f(t)e iωt dt + r(ω) = χ f(ω) + φ(t t )f(t )dt e iωt dt (38) φ(t t )f(t )e iω(t t ) e iωt dt dt (39) +, T = t t t χ(ω) = χ + φ(ω) r(ω) = χ f(ω) + φ(t )e iωt dt f(t )e iωt dt (40) = χ f(ω) + φ(ω)f(ω) (41) (convolution) φ(t) f(t) = r(ω) = χ(ω)f(ω) (42) φ(t t )f(t )dt (43) φ(t) f(t) φ(ω)f(ω) 2.6 (space-time) k Fourier e ikx (1D), e ikxx e ikyy e ikzz = e ik r (3D) Fourier e ikx (1D), e ikxx e ikyy e ikzz = e ik r (3D) e iωt, e iωt ω 1 F (k, ω) = (2π) 4 dr dtf(r, t) exp[ i(k r ωt)] (44) f(r, t) = dk dωf (k, ω) exp[i(k r ωt)] (45) 3 Fourier ρ(r) Poisson φ(r) [ɛ(r) φ(r)] = ρ(r) ɛ 0 (46) 8

9 if ɛ(r) is position-indepedent 2 φ(r) = ρ(r) ɛ 0 ɛ Fourier Fourier e ikx d n [f(x)/dx n ]dx = (ik) n e ikx f(x)dx k 2 φ(k) ρ(k) ɛ 0 ɛ (47) = 0 (48) φ(k) = ρ(k) ɛ 0 ɛk 2 (49) φ(r) Fourier Fourier 9

10 4 Fourier transform of the periodic system The structure of all crystal can be described in terms of lattice with a group of atoms attached to every lattice point. The group of atoms is called the basis. crystal structure = lattice{r} + basis{τ} (50) A lattice translation vector can be described by the primitive cell vectors R = n 1 a 1 + n 2 a 2 + n 3 a 3 (51) Any function f invariant under a lattice translation R may be expanded in a Fourier series of the form f(r) = G f(g) exp(ig r) (52) f(r + R) = f(r) (53) exp(ig R) = 1 (54) 1 f(g) = drf(r)e ig r = 1 drf(r)e ig r (55) Ω cell cell Ω f(g) = f(g 1 ) dre i(g G) r = f(g) (56) Ω G cell cell }{{} δ G,G Ω cell f(r) = 1 dr f(r )e ig r e ig r (57) Ω G cell cell 1 = dr f(r 1 ) e ig (r r ) (N cell Ω cell = Ω) (58) N cell Ω cell G }{{} Ωδ r,r e ig (r r ) G = f(r) (59) 1 = e ig (r r ) G x G y G z = Ω G x G y G z 8π 3 dge ig (r r ) = 8π3 Ω 8π 3 δ(r r ) If we define the reciprocal lattice( The primitive translation vectors of the reciprocal lattice are G a i b j = 2πδ ij (60) b 1 = 2π a 2 a 3 a 1 a 2 a 3 b 2 = 2π a 3 a 1 a 1 a 2 a 3 b 3 = 2π a 1 a 2 a 1 a 2 a 3 (61) Here a 1, a 2, a 3 are the primitive translation vectors of the crystal lattice. A reciprocal lattice vector has the form G = hb 1 + kb 2 + lb 3, (62) where h, k, l are integers or zero. This equation satisfies exp(ig R) = 1. If we consider a 1 /h, a 2 /k, a 3 /l plane (hkl Miller index: ), the reciprocal lattice vector G hkl = hb 1 + kb 2 + lb 3 is perpendicular to this plane. The distance between the two adjacent parallel planes of the lattice is d(hkl) = 2π/ G hkl. 1 1 proof: An arbitary vector t in the (hkl) plane can be described The inner product t = α(a 1 /h a 2 /k) + β(a 2 /k a 3 /l) (63) G hkl t = 2πα(h/h k/k) + 2πβ(k/k l/l) 10

11 5 Electrostatic Potential The Poisson equation is given in the SI unit if ɛ(r) is position-indepedent [ɛ(r) φ(r)] = ρ(r) ɛ 0 (66) 2 φ(r) = ρ(r) ɛ 0 ɛ The Fourier transform of the above equation becomes φ and ρ is [ G 2 G G 2 φ(g) ρ(g) ɛ 0 ɛ (67) φ(g) exp(ig r) = 1 ρ(g ) exp(ig r) (68) ɛ 0 ɛ G ] exp(ig r) = 0 (69) φ(g) = ρ(g) ɛ 0 ɛg 2 (70) Then we will back-fourier transform of the rhs of the above equation, we can get φ(r) In the 3-d FFT program f(g) = 1 Ω cell cell drf(r)e ig r is forward transformation and f(r) = f(g) exp(ig r) is backward transformation. G 6 Electrostatic Free Energy E elst = 1 drρ(r)φ(r) + drρ(r)v ext (r) (71) 2 = Ω ρ (G)φ(G) + Ω ρ (G)V ext (G) (72) 2 G G divd = ρ, D = ɛ 0 ɛ(r)e(r), E = gradφ(r) (73) ɛ(r) φ(r) = ρ(r) (74) ɛ 0 ρ(g ) exp(ig r) = ɛ 0 ɛ(g) exp(ig r) φ(g ) exp(ig r) (75) G G G = 0 (64) Thereby G hkl is perpendicular to the (hkl) plane. If we define the vector d is the one from the origin to the intersection of (hkl) plane and the vector G d = G hkl G hkl d(hkl) G hkl G hkl d = d(hkl) d = a1 h + tintersect G hkl d = G hkl a 1 + G hkl t intersect h = 2πh + 0 = 2π then h 2π d(hkl) = G hkl (65) 11

12 2D-case :MPA on Au(111) f(r) = f(r, z) (76) f(r + R, z) = f(r, z) (77) f(r, z) = f(g, z)e ig r G (78) f(g, z) = 1 Ω = 1 Ω dr f(r, z)e ig r (79) dr f(g, z)ei(g G ) r (80) φ(r, z) = = G G f(g, z) 1 Ω dr e i(g G ) r = f(g, z) (81) } {{ } Ω δ G,G ( i x + j y + k ) φ(g z, z)e i(g xx+g yy) G = (ig )φ(r, z) + k φ(g, z) e i(g xx+g y y) z G (82) (83) Then the PB equation becomes ɛ(z) φ(r, z) = ρ(r, z) ɛ 0 ρ(g, z) e ig r = (i ɛ G 0 x + j y + k [ z ) ɛ(z) (i(ig x ) + j(ig y ))φ(g, z)e i(gxx+gyy) G +k φ(g ], z) e i(g xx+g y y) z = G [ ɛ(z)g 2 φ(g, z) dɛ(z) dz φ(g, z) z (84) (85) ] ɛ(z) 2 φ(g, z) z 2 e ig r (86) ρ(g, z) = ɛ(z)g 2 ɛ φ(g, z) dɛ(z) φ(g, z) ɛ(z) 2 φ(g, z) 0 dz z z 2 (87) ρ(r) = i z i en i (r) + R,I ez I δ(r R r I ) + σ M δ(z) (88) ɛ 0 ɛ 2 φ(z + ) z D + z D z = σ 12 (89) ɛ 0 ɛ 2 E + z ɛ 0 ɛ 1 E z = σ 12 (90) + ɛ 0 ɛ 1 φ(z ) z = σ 12 (91) 12

13 7 FFT ( ) : ( modified with Numerical Redcipe by MY FFT FFT FFT 7.1 Fourier FFT Fourier Fourier Fourier FFT Fourier DFT Fourier DFT DFT Fourier DFT Fourier DFT m N DFT N m 1 N e CN N Fourier f max N 2f max ( ) N Fourier DFT DFT Fourier Fourier DFT Fourier DFT ( ) DFT Fourier DFT N DFT N N DFT DFT Fourier 2 H(ω) = = H(f) = h(t) = 1 2π = 2 dth(t)e iωt (92) dth(t)e i2πft, ω = 2πf (93) dωh(ω)e iωt (94) dfh(f)e i2πft (95) f(k, ω) = f(r, t) = 1 drdtf(r, t)e i(k r ωt) (2π) 4 dkdωf(k, ω)e i(k r ωt) (1/2π) e i.. e i.. 13

14 H(f) T/2 T/2 = t j=0 = t j=0 dth(t)e i2πft = t h(t)e i2πft (96) h( T/2 + j t )e i2πf( T/2+j t) (97) h(j t )e i2πfj t [t t + T/2] (98) t = T N, t(j) = j t, (j = 0, 1, 2, 3,..., N 2, N 1) (99) f min = 1 T = f, (f = 0, f, 2 f, 3 f,..., f max ) (100) f max = f max /f min = N 2T T = N 2 1 = N, Nyquist critical frequency. See Fig.2 below. (101) 2 t 2T (102) f(k) = k f = k 1 T, (k = N 2, N 2 + 1,...N 2 2, N 1) (103) 2 (N = even is assumed.) (104) H(f(k)) = t H k j=0 h(j t )e i2πjk t f = t j=0 h(j t )e ( i2π/n)jk (105) = t H k (106) j=0 h j e ( i2π/n)jk = j=0 h j (W N ) jk, W N e i2π/n (107) H k = H k+n, (W N ) k+n = (W N ) k (W N ) N = (W N ) k }{{} (108) =1 H k+n = H k, (W N ) k+n = (W N ) k (W N ) N = (W N ) k }{{} (109) =1 h(t(j)) = f H(f(k))e 2πif(k)t(j) (110) k=0 = f = 1 N k=0 k=0 t H k e 2πikj f t (111) H k e (2πi/N)kj = 1 N k=0 H k (W N ) kj (112) h j+n = h j, h j = h j+n (113) DFT DFT Fourier - Discrete Fourier Transform Fourier Fourier Fourier (a 0, a 1,..., a N 1 ) (A 0, A 1, A 2,..., A N 1 ) N DFT A k = j=0 a j (W N ) jk, W N = e 2πi/N (114) 14

15 cos(x) Figure 8: (left) Critical sampling of a cosine wave is two sample points per cycle. (peak to peak). Nyquist critical wavelength is 2 t. (right) DFT mesh a k = 1 N j=0 A j (W N ) jk (115) DFT (1/N, (1/N)) FFT DFT A k N W N N = 1 A k A N k A N+k A k N DFT 0 N 1 N/2 N/2 1 ( ) DFT A k = j=1 a j W (j+δ 1)(k+δ 2 ) N, W N = e 2πi/N (116) δ 1, δ 2 1/2 Odd DFT DFT DFT FFT DFT Fourier Fourier / a j A k A k = = j=1 j=1 a j(e 2πi/N ) jk (117) a j (e 2πi/N ) j( k) (118) = A k = A N k (119) 15

16 A 0, A N/2 a j A k a j (a j = a N j ) A k a j (a j = a N j ) A k 1 DFT Fourier DFT (Digital Convolution) a j h j N y k = j=0 a j h k j (120) a j h j y j a j h j NN Fourier DFT y j DFT Y k a j,h j DFT A k, H k Y k = A k H k (121) Y k DFT FFT Prime Factor FFT 8 Cooley-Tukey FFT FFT 1965 J.W.Cooley J.W.Tukey 3 FFT FFT N Fourier N 2 FFT N log(n) 10 9 N = 2 30 Fourier 30 3 FFT Cooley Tukey FFT 8.1 N DFT A k = j=0 a j (W N ) jk, W N = e 2πi/N (122) A 0 A N 1 N N 2 N 2 k N DFT N/2 DFT A 2k = A 2k+1 = N/2 1 j=0 N/2 1 j=0 (a j + a N/2+j )(W N/2 ) jk (123) [(a j a N/2+j )(W N ) j ](W N/2 ) jk (124) (125) N/2 DFT N 2 /4 2, 3,... 16

17 1/4, 1/8,... Cooley-Tukey FFT ( 2, Cooley-Tukey FFT) N = 8 (N 1 ) W 8 = e iπ/4 = U A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A k = = = j=0 (W N ) kj a j, W N = e 2πi/N W 0,0 8 W 0,1 8 W 0,2 8 W 0,3 8 W 0,4 8 W 0,5 8 W 0,6 8 W 0,7 8 W 1,0 8 W 1,1 8 W 1,2 8 W 1,3 8 W 1,4 8 W 1,5 8 W 1,6 8 W 1,7 8 W 2,0 8 W 2,1 8 W 2,2 8 W 2,3 8 W 2,4 8 W 2,5 8 W 2,6 8 W 2,7 8 W 3,0 8 W 3,1 8 W 3,2 8 W 3,3 8 W 3,4 8 W 3,5 8 W 3,6 8 W 3,7 8 W 4,0 8 W 4,1 8 W 4,2 8 W 4,3 8 W 4,4 8 W 4,5 8 W 4,6 8 W 4,7 8 W 5,0 8 W 5,1 8 W 5,2 8 W 5,3 8 W 5,4 8 W 5,5 8 W 5,6 8 W 5,7 8 W 6,0 8 W 6,1 8 W 6,2 8 W 6,3 8 W 6,4 8 W 6,5 8 W 6,6 8 W 6,7 8 W 7,0 8 W 7,1 8 W 7,2 8 W 7,3 8 W 7,4 8 W 7,5 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 1 U 2 U 3 U 4 U 5 U 6 U 7 U 0 U 2 U 4 U 6 U 8 U 10 U 12 U 14 U 0 U 3 U 6 U 9 U 12 U 15 U 18 U 21 U 0 U 4 U 8 U 12 U 16 U 20 U 24 U 28 U 0 U 5 U 10 U 15 U 20 U 25 U 30 U 35 U 0 U 6 U 12 U 18 U 24 U 30 U 36 U 42 U 0 U 7 U 14 U 21 U 28 U 35 U 42 U 49 (W N ) j = (W N ) j N = (W N ) j 2N... A 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 A 1 U 0 U 1 U 2 U 3 U 4 U 5 U 6 U 7 A 2 U 0 U 2 U 4 U 6 U 0 U 2 U 4 U 6 A 3 A = U 0 U 3 U 6 U 1 U 4 U 7 U 2 U 5 4 U 0 U 4 U 0 U 4 U 0 U 4 U 0 U 4 A 5 U 0 U 5 U 2 U 7 U 4 U 1 U 6 U 3 A 6 U 0 U 6 U 4 U 2 U 0 U 6 U 4 U 2 A 7 U 0 U 7 U 6 U 5 U 4 U 3 U 2 U 1 8 W 7,6 8 W 7, (= N N) a 0 A 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 a 1 a A 2 A 4 = U 0 U 2 U 4 U 6 U 0 U 2 U 4 U 6 2 U 0 U 4 U 0 U 4 U 0 U 4 U 0 U 4 a 3 a 4 A 6 U 0 U 6 U 4 U 2 U 0 U 6 U 4 U 2 a 5 a 6 a 7 U 1 A 0 U 0 U 0 U 0 U 0 a 0 + a 4 A 2 A 4 = U 0 U 2 U 4 U 6 a 1 + a 5 U 0 U 4 U 0 U 4 a 2 + a 6 A 6 U 0 U 6 U 4 U 2 a 3 + a 7 a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7 U 2 = V (= W 4 ) A 0 A 2 A 4 = A 6 V 0 V 0 V 0 V 0 V 0 V 1 V 2 V 3 V 0 V 2 V 0 V 2 V 0 V 3 V 2 V 1 a 0 + a 4 a 1 + a 5 a 2 + a 6 a 3 + a 7 17

18 A 0 A 2 A 4 A 6 = A 2k = N/2 1 j=0 W 0,0 4 W 0,1 4 W 0,2 4 W 0,3 4 W 1,0 4 W 1,1 4 W 1,2 4 W 1,3 4 W 2,0 4 W 2,1 4 W 2,2 4 W 2,3 4 W 3,0 4 W 3,1 4 W 3,2 4 W 3,3 4 a 0 + a 4 a 1 + a 5 a 2 + a 6 a 3 + a 7 (W N/2 ) kj (a j + a N/2+j ) (126), A 1 A 3 A 5 A 7 = = = U 0 U 1 U 2 U 3 U 4 U 5 U 6 U 7 U 0 U 3 U 6 U 1 U 4 U 7 U 2 U 5 U 0 U 5 U 2 U 7 U 4 U 1 U 6 U 3 U 0 U 7 U 6 U 5 U 4 U 3 U 2 U 1 U 0 U 0 U 0 U 0 U 4 U 4 U 4 U 4 U 0 U 2 U 4 U 6 U 4 U 6 U 0 U 2 U 0 U 4 U 0 U 4 U 4 U 0 U 4 U 0 U 0 U 6 U 4 U 2 U 4 U 2 U 0 U 6 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 2 U 4 U 6 U 0 U 2 U 4 U 6 U 0 U 4 U 0 U 4 U 0 U 4 U 0 U 4 U 0 U 6 U 4 U 2 U 0 U 6 U 4 U 2 a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7 U 0 a 0 U 1 a 1 U 2 a 2 U 3 a 3 U 0 a 4 U 1 a 5 U 2 a 6 U 3 a 7 U 0 a 0 U 1 a 1 U 2 a 2 U 3 a 3 U 0 a 4 U 1 a 5 U 2 a 6 U 3 a 7 U 0 = U 4, U 6 = U 2 1 A 1 U 0 U 0 U 0 U 0 U 0 (a 0 a 4 ) A 3 A 5 = U 0 U 2 U 4 U 6 U 1 (a 1 a 5 ) U 0 U 4 U 0 U 4 U 2 (a 2 a 6 ) A 7 U 0 U 6 U 4 U 2 U 3 (a 3 a 7 ) U A 1 A 3 A 5 A 7 = A 2k+1 = N/2 1 j=0 W 0,0 4 W 0,1 4 W 0,2 4 W 0,3 4 W 1,0 4 W 1,1 4 W 1,2 4 W 1,3 4 W 2,0 4 W 2,1 4 W 2,2 4 W 2,3 4 W 3,0 4 W 3,1 4 W 3,2 4 W 3,3 4 (W N/2 ) kj [(W N ) j (a j a N/2+j )] W 0 8 (a 0 a 4 ) W 1 8 (a 1 a 5 ) W 2 8 (a 2 a 6 ) W 3 8 (a 3 a 7 ) 18

19 8.2 2D FFT: example FFT f(x, y) = I A I exp[ {(x x I ) 2 + (y y I ) 2 }/σ] (127) A I = 255, σ = 5, L x = L y = 512 (128) (Eq.134-Eq.135) σ 1 f(k) = (2π) 2 dre ik r f(r) (129) f(r) = [ A I exp (r R I) 2 ] (130) σ I 1 [ f(k) = (2π) 2 A I dre ik r exp (r R I) 2 ] = 1 [ σ (2π) 2 A I e ik R I dre ik (r RI) exp (r R I) 2 ] σ I I πσ /4 = (2π) 2 e σk2 A I e ik R I I = σ 4π e σk2 /4 S(k) (131) S(k) = I A I e ik R I (structure factor) (132) f(k) = σ 4π e σk2 /4 S(k) (133) Gauss f(k) = 1 2π = A π 2π f(x) = A exp( αx 2 ), α > 0 (134) α e k 2 kx α(x+i dxe 2α) 2 e k2 4α dxae αx2 e ikx = A 2π A 4α = 2 πα e k 2 4α (135) f(x) = A + 2 dke k2 4α e ikx = πα A 2 dke 1 4α (k 2iαx)2 e αx2 = πα A 2 πα 2 απe αx2 = Ae αx2 19

20 For FFT cal. 2 n x 2 m size bmp file is required. Original B min-11.bmp (541x621 image) For 2D FFT calculation B min-11_512x512.bmp (512x512 image)

21 F(k) FFT image max is normalized by 1/500 of the peak value

22 Inverse-FFT image F(k) f ( r ) Inverse FT from the FT image we can get the almost same image as original one. So our FFT calculation may be right.

23 Real space f (r )" Gaussian peak with λ x,y = L" L F(k) k x,y = 2π / λ x,y = 2π / L pixcel =2π / L L L

24 Real space f (r )" Gaussian peak with λ x,y = L / 2" F(k) k x,y = 2π / λ x,y = 4π / L pixcel =2π / L L/2 L

25 Real space f (r )" Gaussian peak with λ x,y = L / 3" F(k) k x,y = 2π / λ x,y = 6π / L pixcel =2π / L

26 Real space f (r )" Gaussian peak with λ x,y = L / 4" F(k) k x,y = 2π / λ x,y = 8π / L pixcel =2π / L

27 Real space f (r )" Gaussian peak with λ x,y = L / 5" F(k) k x,y = 2π / λ x,y = 10π / L pixcel =2π / L

28 Real space f (r )" Gaussian peak with λ x,y = L / 8" F(k) k x,y = 2π / λ x,y = 16π / L pixcel =2π / L

29 Real space f (r )" Gaussian peak with λ x,y = L / 10" F(k) k x,y = 2π / λ x,y = 20π / L pixcel =2π / L

30 Real space f (r )" Gaussian peak with λ x,y = L / 20" F(k) k x,y = 2π / λ x,y = 40π / L pixcel =2π / L

31 Real space f (r )" Gaussian peak with λ x,y = L / 30" F(k) k x,y = 2π / λ x,y = 60π / L pixcel =2π / L

32 The other example original FFT FFT by our code IFFT in our code

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr This manuscript is modified on March 26, 2012 3 : 53 pm [1] 1 ( ) Figure 1: (longitudinal wave) (transverse wave). P 7km S 4km P S P S x t x u(x, t) t = t 0 = 0 f(x) f(x) = u(x, 0) v +x (Fig.2) ( ) δt

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

ssp2_fixed.dvi

ssp2_fixed.dvi 13 12 30 2 1 3 1.1... 3 1.2... 4 1.3 Bravais... 4 1.4 Miller... 4 2 X 5 2.1 Bragg... 5 2.2... 5 2.3... 7 3 Brillouin 13 3.1... 13 3.2 Brillouin... 13 3.3 Brillouin... 14 3.4 Bloch... 16 3.5 Bloch... 17

More information

EGunGPU

EGunGPU Super Computing in Accelerator simulations - Electron Gun simulation using GPGPU - K. Ohmi, KEK-Accel Accelerator Physics seminar 2009.11.19 Super computers in KEK HITACHI SR11000 POWER5 16 24GB 16 134GFlops,

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a 13/7/1 II ( / A: ) (1) 1 [] (, ) ( ) ( ) ( ) etc. etc. 1. 1 [1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

09 8 9 3 Chebyshev 5................................. 5........................................ 5.3............................. 6.4....................................... 8.4...................................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

power.tex

power.tex Contents ii 1... 1... 1... 7... 7 3 (DFFT).................................... 8 4 (CIFT) DFFT................................ 10 5... 13 6... 16 3... 0 4... 0 5... 0 6... 0 i 1987 SN1987A 0.5 X SN1987A

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

numb.dvi

numb.dvi 11 Poisson kanenko@mbkniftycom alexeikanenko@docomonejp http://wwwkanenkocom/ , u = f, ( u = u+f u t, u = f t ) 1 D R 2 L 2 (D) := {f(x,y) f(x,y) 2 dxdy < )} D D f,g L 2 (D) (f,g) := f(x,y)g(x,y)dxdy (L

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c 29 2 1 2.1 2.1.1.,., 5.,. 2.1.1,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c v., V = (u, w), = ( / x, / z). 30 2.1.1: 31., U p(z),

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

III,..

III,.. III,.. 7.1, :. j I (= ) : [Ω, Ω + dω] dw dω = sin θ dθ dφ dw j I [1/s] [1/s m 2 ] = dσ [m2 ]. dσ dω [m2 ] :., σ tot = dσ = dω dσ dω [m2 ] :. 2.4 章では非定常状態の摂動論を用いて 入射平面波 eik x 摂動 ON 入射平面波 + 散乱平面波 X k0 0

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

2012専門分科会_new_4.pptx

2012専門分科会_new_4.pptx d dt L L = 0 q i q i d dt L L = 0 r i i r i r r + Δr Δr δl = 0 dl dt = d dt i L L q i q i + q i i q i = q d L L i + q i i dt q i i q i = i L L q i L = 0, H = q q i L = E i q i i d dt L q q i i L = L(q

More information

i

i 18 16 i 1 1 1.1....................................... 1 1.................................. 3 1.3............................. 5 1.4........................................... 6 7.1..................................

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

nosenote3.dvi

nosenote3.dvi i 1 1 2 5 3 Verlet 9 4 18 5 23 6 26 1 1 1 MD t N r 1 (t), r 2 (t),, r N (t) ṙ 1 (t), ṙ 2 (t),, ṙ N (t) MD a 1, a 2, a 3 r i (i =1,,n) 1 2 T =0K r i + m 1 a 1 + m 2 a 2 + m 3 a 3 (m 1,m 2,m 3 =0, ±1, ±2,,

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information