2015 : x 1 + x 2 = 1 (1) x 2 = 2x x 1 x 2 (x 1, x 2 ) N x y = Ax (2) M y A M N x 1 3

Size: px
Start display at page:

Download "2015 : x 1 + x 2 = 1 (1) x 2 = 2x x 1 x 2 (x 1, x 2 ) N x y = Ax (2) M y A M N x 1 3"

Transcription

1 05 : x + x = x = x + x x x, x N x y = Ax M y A M N x mohzei@i.yoto-u.ac.jp 3

2 M = N M N M < N. N x 0 0 K M K M < N M > K N x M y M N A y = Ax 3 M < N x K M > K K N K y = Ax N K N K K y = Ax.3 L L0 x 0 x L 0 x min x x 0 s.t. y = Ax 4 0 L 0 L L x = x + x + + x N 5 4

3 L L 0 L L L 0 min x x s.t. y = Ax 6 x x L x L L x = x + x + + x N 7 L? L 0? min x x s.t. y = Ax 8 x x L x L L CS-I:L L min x + x } s.t. y = Ax 9 x,x } min x x,x + x s.t. y = Ax 0 A A = y = y = Ax = x + x x, x x A y y x y x x = x + 3 5

4 L x + x + 4 3x / x x + x + = x + 0 x < / 3x x < 0 5 x, x x, x = /, 0 L x + x + = 5 x x, x x, x = /5, /5 L 6.4 x, x CS-I x = x + L x + x = r r L x x L L p x p = p x p + x p + + x N p 7 p p 0 L 0 L 0 fax = a fx L 0 0 p L 3 6

5 : L : L.5 N x 0 A M y y = Ax 0 8 7

6 3: L p x 0 L x x = x 0 N = 000 K = 0 M = 00 4 L : N = 000 K = 0 M = 00 L 5 L Basis Pursuit Basis Pursuit M y x 0 8

7 : L L CS-II: min x x s.t. y = Ax 9 x T 0 = /, 0 A =, y = Ax 0 = CS-I x T = /, 0 x T 0 = 0, A =, y = Ax 0 = x T = /, 0 [, ] [3, 4] A 0 L π α = + te t Qt} 0 ρ e t = ρ t π Qt α = M/N ρ = K/N 6 Qt = t e x π dx MRI [5] 9

8 : L.6 y = Ax + σ 0 w 3 w M σ 0 y = Ax y Ax L x } min y Ax x s.t. x a 4 Tibshirani LASSO Least Absolute Shrinage and Selection Operators [6] a } min x λ y Ax + x λ > 0 λ 0 y Ax y = Ax λ y λ y λ 5 5 LASSO 5 0

9 .7 LASSO y A x x A y P y A, x P A, B = P A BP B = P B AP A 6 P A, B A B P A B B A P B A A B 3 P A, B, C = P A B, CP B, C = P A, B CP C 7 P A B = P B AP A P B P B AP A = = P A, B A P B = A P A, B P B AP A A P B AP A 8 A B y A P A, x, y = P x A, yp AP y = P y A, xp AP x 9 P x A, y = P y A, xp x P y x P y A, x y A, x A x y P x x x P x A, y y A x x x x Maximum A Posteriori 30

10 x MAP = arg max log P x A, y} 3 x P y A, x A x y 3 P n = exp π nt n 3 A x y n 3 n = σ 0 y Ax 33 P y A, x = P n = exp π σ0 y Ax 34 x λ P x = π exp κ x x MAP = arg max x σ0 y Ax κ } x 36 LASSO L L L 35 P x exp κ x 37 x MAP = arg max x } σ0 y Ax κ x 38 λ = κσ0 LASSO 5 3 L LASSO

11 3. 95% 0 7 x 7: 95% 0 B min x λ y Ax + Bx } 39 B z = Bx min y AB z } z λ + z 40 LASSO 3. A MRI MRI M = N M < N NHK ZERO 3

12 [7] [9] LASSO 3.3 L 0 min x fx} 4 fx x[0] x[t + ] = x[t] δ fx 4 δ L CS-III: min x x + } y x λ 43 λ, y 4

13 x > 0 min x>0 x + } y x λ 44 λ x y λ} + y λ x = y λ x > 0 y λ > 0 y λ 0 x x = 0 8 x 0 45 [ ] 8: x > 0 x = S λ y 46 y λ y > λ S λ y = 0 λ y λ y λ y < λ S λ y Soft thresholding function 9 CS-II:L 47 min x x + } λ y x 48 λ, y L L L x = x + x + + x N 49 5

14 9: L x = x + x + + x N 50 x i = S λ y i 5 x = S λ y. 5 Fast Iterative Shrinage Thresholding Algorithm FISTA L Iterative Shrinage Thresholding Algorithm ISTA FISTA [8] Majorizer Minimization L gx q L x, y = gy + gy T x y + L x y 53 gx q L x, y q L x, y gx gx fx L fx fy L x y 54 6

15 gx L gx gy L x y 55 q L x, y q L x, y gy q L x, y = gy L gy + L x y L gy gy gy 0 L L t x[t] 56 x[t + ] = arg min x q L x, x[t] 57 gx[t + ] q L x[t + ], x[t] gx[t] 58 gx q L x, x[t] 0 0: gx 5 gx = y Ax /λ gx = AT y Ax/λ L = A T A /λ 7

16 [ ] L gx+ x q L x, x[t]+ x x[t + ] = arg min x q L x, x[t] + x } 59 L L x[t + ] = arg min x x[t] + } } x Lλ AT y Ax[t] + x = S λ/l x[t] + Lλ AT y Ax[t] Iterative Shrinage Soft-thresholding Algorithm ISTA t = 0 x[0] x[0] = A T y. gx v[t] = x[t] + Lλ AT y Ax[t] 6 3. x[t + ] = S /L v[t] FISTA Fast Iterative Shrinage Soft-thresholding Algorithm FISTA. t = x[0] β[] = 0 w[] = x[0]. gx v[t] = w[t] + Lλ AT y Aw[t] x[t + ] = S /L v[t] [ ]β[t] β[t] = β[t ] [ ]w[t] w[t + ] = x[t + ] + β[t] x[t + ] x[t] 67 β[t + ] 8

17 FISTA L FISTA FISTA L x x[t] / x[t] gx gx gx[t] + gx T x x[t] 68 Bregman Bregman iterative method LASSO λ LASSO y = Ax y = Ax LASSO BP x = 0 LASSO Bregman Bregman divergence BD fx D p f x, y = fx fy pt x y 69 p fx fx := p fu fx + p T u x u } 70 u u Bregman [ BD ] BD L BD y < 0 BD D 0 x < 0 f x, y = x y + x y = x + x = x x y > 0 Df x x < 0 x, y = x y x y = x x = 0 x 0 7 9

18 : : BD y < 0 y = 0 D p f x, y = x y px y = x px = + px x < 0 px x 0 3 BD y L BD BD y < 0 x = 0 BD 73 min x fx + gx} 74 gx y Ax /λ fx x Bregman 0

19 3: BD y = 0 min x D p[t] f } x, x[t] + gx x[0] = 0 p[0] = 0 LASSO x[t] x[t + ] = argmin x D p[t] f p[t] } x, x[t] + gx p[t] = p[t ] gx[t] fx[t] p p[t] + gx[t] p fx p 0 x = x[t + ] p[t + ] = p[t] gx[t + ] fx[t + ] 78 gx gx[t + ] gx[t + ] + D p[t] f x[t + ], x[t] 79 gx[t] + D p[t] f x[t], x[t] 80 gx[t] 8 BD 3 BD y Ax LASSO p[t + ] = p[t] + λ AT y Ax[t] [, ] 8 y = Ax[t] L [0] 76 LASSO x[t + ] = argmin x D p[t] f x, x[t] + gx[t] T x x[t] + L } x x[t] 83

20 L p[t + ] = p[t] gx[t] Lx x[t] fx[t + ] 84 Bregman [0] Bregman. t = 0 x[0] = 0 p[0] = 0. p[t] } T x[t + ] = argmin x x λ AT y Ax[t] + p[t] x x[t] + L x x[t] v[t] = x[t] + L λ AT y Ax[t] + p[t] x[t + ] = S /L v[t] p[t + ] = p[t] + λ AT y Ax[t] Lx[t + ] x[t] [, ] FISTA LASSO FISTA } T x[t + ] = argmin x x λ AT y Ax[t] x x[t] + L x x[t] FISTA x[t] p[t] T x x[t] x x[t] < ɛ Bregman 89 Lagrangian Augmented Lagrangian method Lagrangian min x fx s.t. c i x = 0 i =,,, m 90 m Lx; λ = fx + h i c i x 9 i=

21 AL-I: min x x + x } s.t. ax + bx c = 0 9 a, b, c x, x Lx, x ; h = x + x + hax + bx c 93 0 x x h Lx, x ; λ x = x + λa = 0 94 Lx, x ; λ x = x + λb = 0 95 h Lx, x ; h = ax + bx c = 0 96 x = ha x = hb h = c/a + b x = ac/a + b x = bc/a + b h c i x = 0 0 ax + bx c = 0 h δ h i [t] = h i [t ] δc i x 99 h[t] = h[t ] δ a + b h t / + δc 00 h[t] = h[t ] = h c h c = c/a +b δa + b / < δ h 3

22 Penalty method L pen. x = fx + µ[t] m c i x 0 µ[t] 0 i= L pen. x, x ; µ[t] x = x + µ[t]aax + bx c = 0 0 L pen. x, x ; µ[t] x = x + µ[t]bax + bx c = x = x = µ[t]ac + µ[t]a + b µ[t]bc + µ[t]a + b µ[t] µ[t] L aug. x; h = fx + m i= h i [t]c i x + µ[t] m c i x 06 i= h i [t + ] = h i [t] + µc i x 07 0 L aug. x, x ; h[t], µ[t] x = x + h[t]a + µ[t]aax + bx c = 0 08 L aug. x, x ; h[t], µ[t] x = x + h[t]b + µ[t]bax + bx c = x = x = µ[t]ac h[t]a + µ[t]a + b µ[t]bc h[t]b + µ[t]a + b 0 4

23 h[t + ] = µ[t]c + h[t] + µ[t]a + b µ[t] h[t] fx = x cx = y Ax L arg. x; h[t], µ[t] = x + h[t] T y Ax + µ[t] y Ax 3 h[t + ] = h[t] + µ[t]y Ax 4 M h[t] = h [t], h [t],, h M [t] A T A T h[t] = p[t] p[t + ] = p[t] + µ[t]a T y Ax 5 µ[t] = /λ gx = A T y Ax/λ Bregman 8 Bregman Alternating Direction Method of MultipliersADMM ADMM [] min x fx + gx} 6 LASSO min x,z fz + gx} s.t. x z = 0 7 L aug. x, z; h[t], µ[t] = fz + gx + h[t] T x z + µ[t] x z 8 ADMM z x x[t + ] = argmin x L aug. x, z[t]; h[t], µ 9 z[t + ] = argmin z L aug. x[t], z; h[t], µ 0 5

24 h[t + ] = h[t] + µx z ADMM LASSO fx = x gx = y Ax /λ x[t + ] = argmin x λ y Ax + h[t]t x z[t] + µ } x z[t] z[t + ] = argmin z z + h[t] T x[t + ] z + µ } x[t + ] z 3 x 0 z L L LASSO ADMM for LASSO. t = 0 x[0] = A T x z[0] = x[0] h[0] = 0. x[t] x[t + ] = µ + λ AT A A T y + µz[t] h[t] 4 3. z[t] z[t + ] = S /µ x[t + ] h[t] µ 5 4. h[t] h[t + ] = h[t] + µx[t] z[t] µ LASSO ON 3 ADMM ADMM ADMM LASSO FISTA L Bx ADMM LASSO min x,z z + λ y Ax } s.t. z Bx = 0 7 L aug. x, z; h, µ[t] = z + λ y Ax + h[t]t z Bx + µ[t] z Bx 8 6

25 x[t + ] = argmin x λ y Ax + h[t]t Bx z[t] + µ[t] z[t + ] = argmin z z + h[t] T Bx[t] z + µ[t] Bx[t] z Bx z[t] } } 9 30 L B FISTA Total Variation L Fast Gradient Projection FGP [] L FISTA Fast Composit Splitting Algorithm FCSA [3] ADMM ADMM-II: ADMM min x x x + } λ y ax bx 3 x x ADMM min x,z z + } λ y ax bx s.t. z x x = 0 3 L aug. x, z; h, µ[t] = z + λ y ax bx + h[t] z x x } + µ[t] z x x } 33 x x z [ ] x [t + ] = x [t + ] = µ[t] + a ay λ λ µ[t] + b ay λ λ z[t + ] = S /µ[t] z[t] + h[t] µ[t] + h[t] + µ[t]z + µ[t] ab λ + h[t] µ[t]z + µ[t] ab λ x } x } L 7

26 4. Ex = J x i x j 37 N x i x i = ± J J > 0 P x = Ex Z exp 38 T Z Z = exp J x i x j 39 NT x N x i x j = N x i N N N i<j i= i<j i= i<j N x i + O N N x i i= 40 Z = NJ exp T x N N i= x i 4 N i= x i/n m = N N x i 4 m x m Z = dmδ m NJ x i exp N T m 43 x = dmδ m x i N i= i= i= 44 m x NKm / m T em = J T m 45 sm = N log δ m x i 46 N x 8 i=

27 Z = dm exp N em } + sm T 47 N m } Z = exp N em + sm T m = arg max em } + sm m T m N f = T log Z = max em + T sm} 50 N m δ m N } N x i = d m exp N m m x i N i= sm = N log d m exp Nm m x i= N i= i= x i exp mx i } 5 5 N N fx i = fx i 53 x i x i sm = } N log d m exp Nm m + N log cosh m i= N m 54 sm = m m + log cosh m 55 m = arg max m m m + log cosh m } 56 m m f = min Jm + T m m + T log cosh m } 57 m, m m = tanh m m J m = tanh T m 58 J m[t + ] = tanh T m[t] [ :K = J/T K ] 59 9

28 4. LASSO λ 0 P x A, x 0 δ y Ax 0 exp κ x 60 β β x A,y = dx P β x A, y 6 MSE = β N x x 0 x A,y 6 β = β β A 0 /N x 0 ρ = K/N P 0 x = ρδx i + ρ exp π x i 63 y = Ax 0 ZA, x 0 = lim λ dx exp λ y Ax β x δy Ax = lim exp λ +0 λ y Ax A x 0 N A x 0 f = [ ] N log ZA, x 0 66 A,x 0 A x 0 30

29 [log ZA, x 0 ] A,x0 = lim n 0 [Z n A, x 0 ] A,x0 n 67 n n [ [Z n A, x 0 ] A,x0 = lim dx a exp n n y Ax a λ +0 λ β x a 68 ]A,x0 n A A t a = Ax 0 Ax a M A t a A 0 t T a t b = x T N 0 x 0 x T 0 x a x T 0 x b + x T a x b a= a= 69 q ab = N xt a x b 70 m = N i= x i/n = dq ab δ q ab N xta x b a,b 7 x a x 0 sq ab } = N log [ZA, y] A,n,x0 = lim λ +0 n a=0 dq dx a exp dm dq [ β exp n a= x a a,b λ δ q ab N xta x b x 0 7 ] n t a exp Nsq ab } 73 t a t a P t a detq Q = π N exp t t aq ab t b 74 Q Q a b = q ab eq ab } = N log [exp 3 λ a= a,b ] n t a 75 t a a=

30 [ZA, y] A,n,x0 = lim λ +0 dq ab exp Neq ab } + Nsq ab } 76 dt a detq π N exp a,b t T a λ δ ab + Q ab t b 77 N a dx π exp a b x + bx = exp a N deta dx exp π xt Ax + b T x = exp bt A b Dx = dx π 80 t a eq ab } = α log det I + λ Q 8 α = M/N t a M log deta = Tr log Λ Λ A Q 0 a q 0a = m a > 0 8 q aa = Q a > 0 83 q ab = q a b 84 q 0 0 = ρ ρ m + Q ρ m + q ρ m + q ρ m + q ρ m + Q ρ m + q Q =..... ρ m + q ρ m + q ρ m + Q = Q qi n + ρ m + q n 85 3

31 I n n n n n n I + Q/λ + Q q/λ + nρ m + q/λ n + Q q/λ [ : ] eρ, Q, m, q = n α ρ m + q λ + Q q n log + λ Q q 86 3 δ Q N Q xta x a = d Q } exp NQ x T a x a 87 δ q N xta x b = d q exp q } Nq x T a x b 88 δ m N xt0 x a = d m exp m Nm x T } 0 x a 89 δ q ab N xta x b = exp N n QQ nn N qq Nn mm a,b n exp Qx T a x a + mx T 0 x a exp qxt a x b a b a= n exp qxt a x b = exp q n x a x T a x a 9 a b a= a= 90 n n Dz exp qz T x a q xt a x a a= a= 9 Dz exp az T x a = exp xt x 93 x δ q ab N xta x b = exp N n QQ nn N qq Nn mm a,b n Dz exp T Q + q x T a x a + qz + mx0 xa β x a a= 94 33

32 x a n n x a N N n a= dx a a,b δ q ab N xta x b = exp N n QQ N nn qq Nn mm } exp Nn log φx 0, z; Q}, Q} 95 φx 0, z; Q, q, m = dx exp Q + q x + qz + mx0 x β x 96 N Q, q, m Q, q, m sρ, Q, m, q = max Q n QQ [ nn qq n mm + n ] } Dz log φx 0, z; Q, q, m x 0 97 n n φx 0, z; Q, q, m L β β β β Q q O/β Q q Q + q Oβ m Oβ q Oβ βq q χ Q + q β Q q β χ m β m λ +0 sρ, Q, m, q = nβ max Q eρ, Q, m, q = n αβ QQ χχ mm ρ m + Q χ [ Dz min x + O 98 }] Q x χz + mx0 + x x 0 χz + mx 0 = χ + mt sρ, Q, m, q = nβ max Q QQ } χχ mm ρ DzΦz; Q, q, 0 ρ DtΦt; Q, q, m x 0 } 99 Φz; Q, q, m = min x Q x χ } + m zx + x 00 Φz; Q, q, m = χ + Q m z Θ χ + m z 0 34

33 Θx = x > 0 0 x 0 0 [ : ] Φz; Q, q, m z βf = N [log Z] A,x 0 α f = max Q, Q χ ρ m + Q + Q Q χ χ m m + ρ Q G χ + m + ρ QG χ } 03 Ha = Dz 04 Ga = a a a + H a π exp a 05 Q Q Q = α χ 06 χ = α ρ m + Q 07 χ m = α χ 08 ρ Q = G χ + m Q + ρ G χ 09 Q ρ χ = Q H + χ ρ Q H 0 + m χ m = ρ mh χ + m α ρ MSE [ ] β MSE = N x x 0 = ρ m + Q x A,x 0 A,x 0 4 LASSO

34 : MSE 0.00 MSE MSE 6 ISTA µ µ µ µ µ P x = N = f x µ f µ x µ 3 P x = f x µ P µ x µ = f a x µ µ M µ x 4 M µ x 5 M µ M µ M [t] µ x M [t] µ x f x dx / f µ x µ ν µ l µ M [t] l µ x l 6 M [t ] ν x 7 36

35 A y N M P β x A, y exp β x δ y µ a T µ x 8 = µ= µ a µ β L N M P β x A, y exp β x f a T µ x y µ = µ= 9 N Approximate Message Passing:AMP N 6 = d uµ δ u µ a T µ x 0 6 M [t] µ x du µ dx / fu µ y µ δ u µ a T µ x l µ M [t] l µ x l M [t] µ x du µ dũ µ dx / fu µ y µ exp iũ µ uµ a T µ x } M [t] l µ x l l µ x l M [t] µ x du µ dũ µ fu µ y µ exp iũ µ u µ a µ x } l µ dx l exp iũ µ a µl x l M [t] l µ x l 3 0 /M a µl /M x l m [t] µ V [t] µ dx x M [t] µ x 4 dx x M [t] µ x m µ [t] 5 x l a µ M [t] µ x du µ dũ µ fu µ y µ exp iũ µ u µ a µ x } l µ exp iũ µ a µl m [t] l µ ũ µ a µlv [t] l µ 6 37

36 ũ µ M [t] µ x du µ fu µ y µ exp } u µ m [t] µ + a µ x m [t] µ V µ m [t] µ V [t] µ a µ m [t] µ 7 a µv [t] µ 8 l m l µ = m [t] µ m [t] µ l V l µ = V [t] µ V [t] µ a µ M [t] µ x } du µ fu µ y µ exp u V µ [t] µ m [t] µ + a µx m [t] µ u µ m [t] µ V [t] µ a µ x m [t] µ u µ c µ = du µ fu µ y µ exp V [t] µ u µ m [t] µ V [t] µ µ u µ m [t] V [t] µ 9 } u µ m [t] µ 30 M [t] µ x c 0 µ exp m [t] µ x } V [t] µ x x g r m µ V µ m [t] µ = a µ g 0 m [t] µ V [t] µ a µg m [t] µ V [t] µ m [t] µ 3 V [t] µ = a µg m [t] µ V [t] µ 3 g r m µ V µ = r m r µ V [t] µ log c 0 µ 33 fu µ y µ 30 6 m µ V µ 7 d r µ = dx x r M [t ] µ x 34 r = m [t ] [t ] µ r = V µ 7 d r µ = dx x r exp β x + ν µ m [t ] ν x V [t ] ν x 35 38

37 β m [t ] ν βm[t ] [t ] [t ] ν V ν βv ν m [t ] = µ V [t ] = µ m [t ] µ 36 V [t ] µ 37 Ia b = log dx exp β x + βax } βbx d r µ = / βar Ia b m [t] µ = S /V [t ] βv [t] µ = V [t ] V [t ] µ V [t ] µ β b a Θ a 38 m [t ] V [t ] m [t ] µ V [t ] µ Θ m [t ] m [t ] µ S /V [t ] V [t ] m [t ] m[t ] µ V [t ] V [t ] Θ m [t ] Θ m [t ] fu µ y µ m [t] = M a µ g 0 m µ [t] V µ [t] M a β β µg m [t] µ V µ [t] m [t ] S [t ] /V µ= µ= V [t ] 4 V [t] = M a β µg m [t] µ V µ [t] 4 m [t] µ = βv [t] µ = µ= a µ S /V [t ] a µ V [t ] LASSO m [t ] V [t ] Θ m [t ] fu µ y µ fu µ y µ = exp βλ } y µ u µ V [t] µ g 0 m [t ] µ V [t ] µ LASSO c 0 µ g 0 m µ V µ = β y µ mµ λ + βv µ 46 g m µ V µ = β λ + βv µ 47 39

38 βv µ V µ m [t] = V [t] = M µ= M µ= m [t] µ = V [t] µ = a µ λ + V [t] µ a µ λ + V [t] µ a µ S /V [t ] a µ V [t ] y µ m µ [t] + V [t] m [t ] V [t ] Θ m [t ] S /V [t ] m [t ] V [t ] V [t] µ g 0 m [t ] µ V [t ] µ 50 5 relaxed Belief Propagation µ a µ = a [t] µ = /M V µ = V [t] V [t] = W [t] M m [t] a µ = λ + V y [t] µ m µ [t] + W [t] m [t ] S /W [t ] 5 W [t ] µ= W [t] = 53 λ + V [t] m [t] µ = m [t ] V [t] a µ S /W [t ] W [t ] λ + V y [t ] µ m [t ] µ 54 V [t] = M N = W Θ m [t ] [t ] 55 x [t] = S Λ [t] m [t] W [t] M x [t] = S Λ[t] x [t ] + a µ z µ [t] z µ [t] = y µ a T µ x[t] M Λ[t] = λ + Λ[t ] M = µ= N = Θ x [t ] Λ [t ] z µ [t ] 58 N Θ x [t ] Λ [t ] 59 W [t] = /Λ[t] AMP 3 59 N K K < M Λ[t ] Λ[t] K > M z µ [t] y µ a T µ x[t] ISTA AMP λ 0 LASSO ISTA 40

39 ISTA AMP ISTA 5 5. N x d d =,,, D P x u = exp Ex u}. 60 Zu Zu u Ex u N N N Ex u = J ij x i x j + h i x i 6 i= j i x i = ± u = J, h j i J ij 0 i j N i= Ex u = xt Jx + h T x 6 x i u = J, h P D x = D D δx x d 63 d=?? u 4

40 5: 5. KL P x D KL P Q = dxp x log Qx KL u 64 Qx P x u P x P D x KL D KL P D P u = PD x dxp D x log P x u u 65 u = arg max Lu. 66 u Lu Lu = D D log P x = x d u. 67 d= Lu = D D Ex = x d u log Zu. 68 d= u[t + ] = u[t] + η Lu u 69 η u 4

41 Lu u = D D d= Ex = x d u u Ex u u u u = x P x u u[0] 6 6: Ex u = x i x j u 7 J ij Ex u h i u u = x i u 7 Mean Field Approximation P x u N P i x i u 73 i= KL P i x i u N N } Pi MF i= x i u = arg min dx P i x i u log P ix i u P i x i u P x u i= 74 43

42 dx i P i x i u = N N } Pi MF i= x i u = arg min dx P i x i u log P ix i u N + λ i P i x i u P i x i u P x u N i= dx i P i x i u log P i x i u + i= i= i= 75 N N dx P i x i ue i x i x /i, u + log Zu + λ i P i x i u 76 E i x i x /i, u /i i Ex u = i= N E i x i x /i, u 77 i= E i x i x /i, u = j i J ij x i x j + h i x i 78 P i x i u 0 = log P i x i u + + E i x i m /i, u + λ i 79 m i = dx i x i P i x i u P i x i u P i x i u = Z MF i u exp E i x i m /i, u 80 Zi MF u P i x i u exp j i J ijx i m j + h i x i P i x i u = 8 cosh j i J ijm j + h i m i m i = tanh J ij m j + h i 8 j i h j x i u = x i x j u x i u x j u 83 [4] : tanh tanh m j = J j m + h j 84 j 44

43 h j = tanh m j j J j m 85 dm i dhj δ ij = = dh j dm i m j J ij 86 J ji = J ij x i u x i x j u [6, 7] P i x i u, x /i Belief Propagation Pseudo Lielihood Estimation D [8] Ex u = N i= E ix i x /i, u Zu N } exp E i x i x /i = x d /i, u. 87 i= Zu N x i N i= cosh j i J ij x d j + h i. 88 x i u tanh x i x j u x d i j i J ij x d j tanh j i J ij x d j + h i 89 + h i + x d tanh j i j J ji x d i + h i 90 J ij = J ji m i x d i MCMC [9] P [t+] y = x W u y xp [t] x 9 W u y x x y P [t] x 45

44 P ss x W u y xp ss x u = P ss y u 9 x W u y x W u x y = P ssy u P ss x u 93 [0,, ] i x i x i x W u x x = min, P ss x u P ss x u = min, exp J ij x i x j h i x i 94 j i P ss x W u x x = P ss x u + P ss x u = tanh J ij x i x j + h i x i j i [ ] 95. x[0]. i 3. Ex[s] u Ex[s] u = J ij x i [s]x j [s] h i x i [s] 96 j i 46

45 4. r r exp Ex[s] u T 97 t w fx u T T +t w s=t w + fx[s] 98 t w T Contrastive divergence CD CD [3]. s = 0 x[0] = x d. i 3. Ex[s] u Ex[s] u = J ij x i [s]x j [s] h i x i [s] 99 j i 4. r r exp Ex[s] u T 300 u[t] x d [] D fx u D D fx d [] 30 Lu u D d= D Ex = x d [] d= u Ex = } xd [0] u 30 47

46 Minimum Probability Flow Minimum Probability Flow MPF [4] dp t y dt = x CD P 0 x = D W u y xp t x. 303 D δx x d 304 d= u KL W u x x = exp } E x u E jx u. 305 x x KL D KL P 0 P t D KL P 0 x P 0 x + dt d dt D KLP 0 x P t x t= [ : ] D KL P 0 x P t x dt D D exp d= y x d Ey u Ex u } d. 307 y x d x d CD 307 L MPF u D D exp d= y x d u L MPF u u = D D d= y x d Ey u u Ey u Ex u } d. 308 Exd u exp Ey u Ex u } d 309 u 48

47 CD P x u Ky, x = log. 30 P y u CD Ky, x u CD = D D d= x[t]} fx[], x[0] W u x[t + ] x[t]δ x[0] x d 3 Ky, x u MPF = D d= y,x t=0 D fy, xw u y xδ x x d 3 Ky, x u MCMC = D D fy, xp y uδ x x d 33 d= y,x i y i = x d i Ey u Ex d u = x d i h i + J ij x d 34 j i j i L MPF u = D N exp D h i + J ij x d j x d i. 35 j i d= i= L MPF u J ij = D L MPF u h i = D D d= D d= x d i x d i exp h i + J ij x d j x d i j i exp h i + J ij x d j x d i j i x d j J ij L [5] 49

48 L min u Lu + λ J ij i<j 38 J ij = J ji min u L MPFu + λ J ij i<j 39 λ > 0 λ L gu = Lu gu = L MPF u fu = u u[t + ] = arg min u fu + gu T u u[t] + L } u u[t] 30 LASSO gu q L u, u[t ]. L[0] α >. L[t] u[t] u[t] = arg min u fu + q L u, u[t ]} 3 3. gu[t] gu[t] q L u[t], u[t ] 3 i L[t] = α i L[t ] LASSO FISTA N = 5 NN / = J ij 0 h i 5000 L 7 50

49 : L L [] D. L. Donoho: Discrete & Comput. Geom., 35, [] D. L. Donoho and J. Tanner: Proc. Nat. Acad. Sci., 0, [3] Y. Kabashima, T. Wadayama and T. Tanaa: J. Stat. Mech.: Theory Exp., 006 L [4] D. L. Donoho, A. Malei and A. Montanari: Proc. Nat. Acad. Sci., 06, [5] M. Lustig, D. L. Donoho and J. M. Pauly: Magn. Reson. Med., 58, [6] R. Tibshirani: J. R. Statist. Soc. B, 58, [7] M. Honma, K. Aiyama, M. Uemura and S. Ieda: Publ. Astron. Soc. Jpn. 66, [8] A. Bec and M. Teboulle: SIAM J. Imaging Sci., [9] M. F. Duarte, M. A. Davenport, D. Tahar, J. N. Lasa, T. Sun, K. F. Kelly and R. G. Baraniu: IEEE Signal Process. Mag. 5, [0] W. Yin, S. Osher, D. Goldfarb and J. Darbon: SIAM J. Imag. Science, [] S. Boyd, N. Parih, E. Chu, B. Peleato and J. Ecstein: Foundations and Trends in Machine Learning, [] A. Bec and M. Teboulle: IEEE Trans. Image Processing 8, [3] J. Huang, S. Zhang, abd D. Metaxas: Lecture Note in Computer Science [4] H. J. Kappen and F. B. Rodrguez: J. Neural Comp [5] J. S. Yedidia, W. T. Freeman and Y. Weiss: Mitsubishi Electric Research Laboratories, Tech. Rep. TR00-35, 00. [6] Mu. Yasuda and K. Tanaa: Phys. Rev. E, 87, [7] J. Raymond and F. Ricci-Tersenghi: Phys. Rev. E, 87, [8] J. Besag: Journal of the Royal Statistical Society. Series D The Statistician,

50 [9] N.Metropolis, A.W.Rosenbluth, M.N.Rosenbluth, A.H.Teller and E. Teller: J.Chem. Phys., [0] H. Suwa and S. Todo: Phys. Rev. Lett. 05, [] K. S. Turitsyn, M. Chertov, and M. Vucelja: Phys. D Amsterdam, Neth. 40, [] A. Ichii and M. Ohzei: Phys. Rev. E 88, [3] M. Welling, and G. Hinton: Artificial Neural Networs, 44, [4] J. Sohl-Dicstein, and P. B. Battaglino and M. R. DeWeese: Phys. Rev. Lett., 07, [5] M. Ohzei: J. Phys. Soc. Jpn

M = N M N M < N. N x 0 0 K M K M < N M > K N x M y M N A y = Ax 3) M < N x K M > K K N K y = Ax N K N K K y = Ax.3 L L0 x 0 x L 0 x min x x 0 s.t. y =

M = N M N M < N. N x 0 0 K M K M < N M > K N x M y M N A y = Ax 3) M < N x K M > K K N K y = Ax N K N K K y = Ax.3 L L0 x 0 x L 0 x min x x 0 s.t. y = :06.07.. x + x = ) x = x + x x x, x ) N x y = Ax ) M y A M N x E-mail: mohzeki@i.kyoto-u.ac.jp 3 M = N M N M < N. N x 0 0 K M K M < N M > K N x M y M N A y = Ax 3) M < N x K M > K K N K y = Ax N K N K

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t January 16, 2017 1 1. Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) (simple) (general) (stable) f((1 t)x + ty) (1 t)f(x)

More information