112 sequential aliment method (a) V in = β 1 x 1in + β 2 x 2in + + β K x Kin (3.120) V in n i x kin n i k β k k (x kin ) (β k ) (3.120)

Size: px
Start display at page:

Download "112 sequential aliment method (a) V in = β 1 x 1in + β 2 x 2in + + β K x Kin (3.120) V in n i x kin n i k β k k (x kin ) (β k ) (3.120)"

Transcription

1 112 sequential aliment method (a) V in = β 1 x 1in + β 2 x 2in + + β K x Kin (3.120) V in n i x kin n i k β k k (x kin ) (β k ) (3.120)

2 U in = β 1 x 1in + β 2 x 2in + + β K x Kin + ϵ in = V in + ϵ in (3.121) V in ( ) ϵ in ( ) U in (random utility) (2002)[1] ( ) β k n i i U in P n (i) (3.121) P n (i) = P r[u in U jn, for j, j i] (3.122) = P r[v in + ϵ in V jn + ϵ jn, for j, j i] P n (i) 2 (2 ) 2 i,j (3.126)

3 114 P n (i) = P r[u in U jn ] = P r[v in + ϵ in V jn + ϵ jn ] = P r[ϵ jn ϵ in V in V jn ] (3.123) = P r[ϵ n V in V jn ] = F ϵ (V in V jn ) ϵ n ϵ jn ϵ in F ϵ ϵ n (cumulative distribution function) ϵ n (probit model) P n (i) = Φ ϵ (V in V jn) Vin V jn 1 [ = exp 1 2πσ 2 2 = V in V jn σ ( Vin V jn) = Φ σ 1 [ exp 1 2π 2 z2] dz ( ϵ σ ) 2 ] dϵ (3.124) σ ϵ n Φ (logit model) 1 P n (i) = 1 + exp( µ(v in V jn )) exp(µv in ) = exp(µv in ) + exp(µv jn ) (3.125)

4 µ ϵ n ϵ n 2 S (b) (g) (h)?? (b) MNL MNL (multinomial choice model(luce(1959),mcfadden(1973)) (a) 2 3 i i i P n (i) = P r[u in U jn, for j, j i] = P r[u in max j,j i U jn] (3.126) (identically and independently distributed; IID) ( 1 ) F (ϵ) = exp( exp( µ(ϵ η))) (3.127) f(ϵ) = µ exp( µ(ϵ η)) exp( exp( µ(ϵ η))) (3.128) µ ϵ n η ( ) η + γ/µ( γ 0.577) π 2 /6µ 2

5 116 2 (1) ϵ 1 ϵ 2 (η 1, µ),(η 2, µ) ϵ = ϵ 1 ϵ 2 1 F (ϵ) = 1 + exp(µ(η 2 η 1 ϵ)) (3.129) (2) ϵ 1, ϵ 2,..., ϵ i,..., ϵ I (ϵ i, µ) ϵ 1,..., ϵ I max(ϵ 1,..., ϵ I ) ( 1 µ ln I i=1 ) exp (µη i ), µ (3.130) ϵ 1, ϵ 2,..., ϵ I (0,µ) (3.126) max j,j i U jn Un (2) ( 1 µ ln ) exp (µv jn ), µ j i (3.131) U n = V n + ϵ n V n = 1 µ ln j i exp (µv jn) ϵ n (0, µ) (3.126) (1) P n (i) = P r[v in + ϵ in V n + ϵ n ] = P r[ϵ n ϵ in V in V n ] 1 = 1 + exp (µ(vn V i n)) exp (µv in ) = exp (µv in ) + exp (µvn ) (3.132) exp (µv in ) = ( exp (µv in ) + exp ln ) j i exp (µv jn) = exp (µv in) j exp (µv jn)

6 µ 1 IIA (independence from irrelevant alternatives) IIA 2 i, j P in /P jn = exp (V in V jn ) i, j i, j IIA IIA 1/2 IIA 1/3 1/3 1/3 1/2 1/4 1/4 IIA (c) (g) (c) NL IIA (Nested Logit model:nl model(ben-akiva(1973))) ( (c))

7 (NL ) d i 1:(d = i = ) 2:( ) 3:( ) 4:( ) 4 ( ) n U di =V d +V i + V di + ϵ d + ϵ di (3.133) U di di V d, V i d, i V di d, i ϵ d d (max U di µ d ) ϵ di d, i ( µ ) ϵ d di P (d, i) P (i d) P (d) P (d, i) = P (i d)p (d) (3.134)

8 [ P (d) = P r max i [ = P r U di max V d + ϵ d + max i i ] U d i, d d ( ) Vi + V di + ϵ di (3.135) ( ) Vi + V d i + ϵ d i, d d] V d + ϵ d + max i ϵ di max i (V i + V di + ϵ di ) µ V d V d 1 µ ln i exp (µ(v i + V di )) V d (3.135) [ ] P (d) = P r V d + V d + ϵ d + ϵ d V d + V d + ϵ d + ϵ d, d (3.136) d ϵ d ϵ d max i(v i + V di + ϵ di ) V d (3.136) V d + V d ϵ d + ϵ d ϵ d P (d) = exp(µd (V d + V d )) d exp(µ d (V d + V d )) (3.137) P (m d)( d i ) [ ] P (m d) = P r U di U di, i i d (3.138) [ ] = P r V i + V di + ϵ di V i + V di + ϵ di, i i d d V d ϵ d ϵ di IID P (m d) P (i d) = exp(µ(v i + V di )) i exp(µ(v i + V di )) (3.139) (3.134) (3.137) (3.139) P (d, i)

9 120 P (d, i) = P (i d)p (d) = exp(µ(v i + V di )) exp(µd (V d + V d )) i exp(µ(v i + V di )) d exp(µd (V d + V d )) (3.140) (3.140) 2 µ d µ µ 1 µ d µ d /µ µ d µ = 1 V ar(ϵ d +ϵ d ) 1 V ar(ϵ di) = V ar(ϵ di ) V ar(ϵ d ) + V ar(ϵ di ) 1 (3.141) ϵ d µ ϵ di (c) ( ) µ d /µ 1 (d) GEV GEV (General Extreme Value model, McFadden(1978)) GEV (b) (g) GEV GEV GEV C = (1,, i,, n) i P (i C) P (i C) = y G(y1,y2,,yn) i y i µg(y 1, y 2,, y n ) y i = exp(v i ), (U i = V i + ϵ i, i = 1, 2,, n) (3.142) n G µ-gev µ-gev 1. G(y) 0 for all y R J + 2. G(y) µ G(λy) = λ µ G(y), λ > 0 3. lim yi G(y 1,, y i,, y n ) = +, for each i = 1,, n

10 G(y) k D κ (y) ( 1) k D κ (y) 0, y R J + (3.143) κ = (i 1,, i k ), D κ (y) = k G y i1 y ik (y) (3.142) F F (ϵ 1,, ϵ j,, ϵ J ) = exp( G(e ϵ 1,, e ϵ j,, e ϵ (3.144) J )) F 3 F lim G = + then lim ϵ j lim G = 0 then lim F = 1 {ϵ j} + {ϵ j} + F = 0 (3.145) ϵ j 0 1 Q k Q 1 = G 1 = G(y 1, y 2,, y n ) y 1 Q k = Q k 1 G k Q k 1 / y k (3.146) Q k Q k 1 G 1 G k 4 Q k 1 G k Q k 1 / y k Q k / y k+1 Q k = Q k 1 G k + Q k 1 y k+1 y k+1 G k y k+1 2 Q k 1 y k y k+1 (3.147) 4 Q k / y k+1 Q k F 1

11 122 F = exp( G(e ϵ 1,, e ϵ J )) ( G(e ϵ 1,, e ϵ J )) ϵ 1 ϵ 1 = F ( G 1 ) ( e ϵ 1 ) (3.148) = e ϵ 1 Q 1 F 0 (k 1) k k 1 F ϵ 1 ϵ k 1 = e ϵ1 e ϵ k 1 Q k 1 F k F = ( ) e ϵ1 e ϵ k 1 Q k 1 F ϵ 1 ϵ k ϵ k ( )( = e ϵ1 e ϵ Qk 1 F ) k 1 F + Q k 1 ϵ k ϵ k = e ϵ1 e ϵ k Q k F 0 (3.149) (3.146) (3.148) F F i j ϵ j = + F = exp( a i exp( ϵ i )) ( a i = G(0,, 0, i = 1, 0,, 0)) µ 1 η 0 F j U j = V j + ϵ j i P (i)

12 P (i) = = = + exp + F (, ϵ V i + V i 1, ϵ, ϵ V i + V i+1, ) dϵ ϵ i e ϵ G i (, e ϵ V i+v i 1, e ϵ, e ϵ V i+v i+1, ) ( ) G(, e ϵ V i+v i 1, e ϵ, e ϵ V i+v i+1, ) dϵ e ϵ G i (, e V i 1, e V i, e V i+1, ) exp ( e ϵ e V i G(, e V i 1, e V i, e V i+1, )dϵ = e Vi G i (, e V i 1, e V i, e V i+1, ) G(, e V i 1, e V i, e V i+1, ) (3.150) G 2 µ = 1, λ = e ϵ e V 1 (3.150) (3.142) (3.142) µ-gev G(y) P (i C) MNL NL (e) CNL MNL : G(y) = NL : G(y) = J y µ i i=1 ( J i D d=1 i=1 ) µ y µ d µ d i IIA (Cross Nested Logit model:cnl model) CNL NL ( 3.55) i m

13 (CNL ) α im 1 µ-gev G(y 1,, y n ) = M ( n m=1 j C jm y j) µm ) µ µm (α 1/µ (3.151) C i P (i C) α im i m M µ m m µ i 0 < µ µ m (µ m = 1 ) P (i C) = M m=1 ( ) µ j C αµm/µ µm jm eµmvj M ) m =1( j C αµ m /µ jn e µ m V j α µ m/µ im eµ mv i (3.152) j C αµ m/µ jm eµ mv j m P m m i P i m

14 P (i C) = P m = P i m = M m=1 P m P i m (3.153) ( ) µ j C αµ m/µ jm eµ µm mv j M ) (3.154) m =1( j C αµ m /µ jn e µ m Vj α µ m/µ im eµ mv i j C αµ m/µ jm eµ mv j (3.155) α im 0 α im 1, M α im = 1, i (3.156) m α im α im V i (f) GNL GNL CNL PCL (Chu, 1989[2]) µ-gev G(y 1, y 2,, y n ) = ( ) µm (α i my i ) 1/µm (3.157) m i N m N m m µ m m 0 < µ m 1 α im i m α im α im 0, m α im = 1 i P i P i = ( m ) µm 1) (α im e V i ) m( 1/µ i N (α m i me V i ) 1/µ m ( ) i (α µm (3.158) Nm i me V i ) 1/µm m

15 126 P i = m P i m P m (3.159) P m = P i m = ( i Nm (α i me V i ) 1/µ m) µm ( ) m i (α µm (3.160) Nm i me V i ) 1/µm (α im e Vi ) 1/µm i N m (α im e Vi ) 1/µm (3.161) Discrete Choice Analysis. Press, Cambridge, MA The MIT ) m P mp i m ((1 P i ) + ( 1 µ m 1)(1 P i m ) βx i (3.162) P i (g) ( m P i + ( 1 network GEV µ m )P m P i m P i m P i ) βx i (3.163) Daly and Bierlaire(2006) network GEV GEV [3] GEV µ-gev network GEV GEV-network GEV-network GEV GEV-network GEV N A G(N, A) G(N, A) (i, j) associated parameter α ij GEV-network

16 Root Alternatives C 3.56 GEV-network (g) GEV-network C (g) 1 GEV-network v i /C G G i G i (y i ) = α ij G j µ i µ (y) j (3.164) v j S(v i ) G i GEV GEV GEV Daly and Bierlaire(2006)[3] S(v i ) v i GEV (h) MNP (multinomial probit; MNP) [4][5] MNP GEV n i MNP U in = V in + ϵ in, i = 1,..., I (3.165) ϵ n = (ϵ 1n, ϵ 2n,..., ϵ In ) (3.166) 0 Ω i

17 128 P (i) = ϕ(ϵ) = ϵi +V i ϵ 1 ϵ 1= 1 2π I 1 2 σ 1 2 ϵi +V i ϵ J ϕ(ϵ)dϵ J (3.167) ϵ 1 ϵ i= ϵ J = exp( 1 2 ϵσ 1 ϵ ) (3.168) -1 MNP 3 10?? MACML(Maximum Approximate Composite Marginal Likelihood)[6][7] open-form 10 (i) MXL(MMNL) Mixed Logit MNL MNL Mixed Logit Mixed Logit n i U in = V in + η in + ϵ in (3.169)

18 129 V in = β i + X in (3.170) V in β X η Ω ϵ IID Mixed Logit 2 n i P in η in P in (η in ) = exp(v in + η in ) j exp(v jn + η jn ) (3.171) η in Ω f(η in Ω) exp(v in + η in ) P in = j exp(v jn + η jn ) f(η in Ω)dη in (3.172) L MNL N J ln L = δ in P in (3.173) n=1 i=1 δ in n i 1 Mixed Logit ln SL ln SL = 1 R R N J δ in ln P n (i) (3.174) r=1 n=1 i=1 δ in n i 1 0

19 130 [1],,,, :,, [2] Chu, C.:A paired combinational logit model for travel demand analysis, Proceedings of Fifth World Conference on Transportation Research, Vol. 4, pp , [3] Daly, A. and Bierlaire, M.: A general and operational representation of generalised extreme value models, Transportation Research Part B, vol. 40, pp , [4] [5] [6] Bhat, C.R.: The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models, Transportation Research Part B: Methodological, Vol.45, No.7, pp , [7] Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models, Transportation Research Part B: Methodological, Vol.45, No.7, pp , Tobin(1958) Tobit (2012) (Kuhn-Tucker, KT)

20 y1 c y1 (a) Tobit Tobin(1958) Tobit y n > 0 y n y n 0 yn = βx n + ϵ n yn y n = if y n > 0 (3.175) 0 if yn 0 yn n y y n n y x n n y β Tobit 1 Amemiya(1974) Tobit(1958) Heckman(1974,1979) y n1 y n2 y n1 > 0 y i2

21 132 y n1 = β 1 x n1 + ϵ n1 yn2 = β 2 x n2 + ϵ n2 yn2 if yn1 y i2 = > 0 0 if yn1 0 (3.176) Amemiya(1985) Tobit TypeI TypeV Heckman(1979) TypeII TypeII 2 Tobit Tobit TypeIII V Fang(2008) TypeV (Endogenous Switching Regression Model) Maddala(1983) y n1 y n2 = β 1 x n1 + ϵ n1 = β 2 x n2 + ϵ n2 yn3 = β 3 x n3 + ϵ n3 1 if yn1 y n1 = > 0 0 if yn1 0 yn3 if y n1 = 0 y n3 = 0 if y n1 = 1 (3.177)

22 133 Fang(2008) 2 Tobit Orderd Probit BMOPT(Bayesian Multivariate Ordered Probit and Tobit) y n1 y n2 y n3 = β 1 x n1 + ϵ n1 = β 2 x n2 + ϵ n2 = β 3 x n3 + ϵ n3 yn4 = β 4 x n4 + ϵ n4 0 if y nj < α 1 y nj = 1 if α 1 ynj < α 2, for j = 1, 2 2 if ynj > α 2 yn3 if y n1 = 1 or 2 y n3 = 0 if y n1 = 0 yn4 if y n2 = 1 or 2 y n4 = 0 if y n2 = 0 (3.178) α 1 Orderd Probit Cut point Fang(2008) α 1 = Φ 1 (1/3), α 2 = Φ 1 (1/3) Lee(1983), Bhat and Eluru(2009) Lee(1983) Bhat and Eluru(2009) 2 2 (b)

23 134 n I x i n U n U n = f n (z 1n, z 2n,..., z In ) I i=1 p iz in = E n, z in 0 (3.179) p i E n n KT Dubin and McFadden(1984) i Y in = Y in (p i, E n, x in, s n, ϵ in ) (3.180) x in i s n n ϵ in n i P in = P r[y in (p i, E n, x in, s n, ϵ in ) > Y jn (p j, E n, x jn, s n, ϵ jn ), j I, j i] (3.181) ϵ in Y in = Y in (p i, E n, x in, s n ) + ϵ in (3.182) ϵ in i.i.d. P in z i.

24 135 z in = Y in(p i, E n, x in, s n, ϵ in )/ p i Y in (p i, E n, x in, s n, ϵ in )/ E n (3.183) Y in Dubin and McFadden(1984) Y in = [αe n + βp i + γx in + θs n ] exp( ρp i ) + ϵ in (3.184) z in = β α + ρ α (αe n + βp i + γx in + θs n ) (3.185) KT KT Wales and Woodland(1983) 1 ( I ) L in = U in (z) λ p i z in E n (3.186) λ KT (Kuhn and Tucker, 1951) i=1 U in (z) λp i 0 z in, p T i z in 1 0 λ i = 1,..., M (3.187) U in (x) λ λ = U 1n (z)/p 1 (3.188)

25 p 1 U in (z) p i U 1n (z) 0 z in, i = 2,..., M, p T i z in = 1 (3.189) z in > 0 p 1 U in (x) p i U 1n (x) = 0 U in (x)/u 1n (x) = p i /p 1 i 1 i U in (z, ϵ in ) = V in (z) + ϵ in, i = 1,..., M, (3.190) U in (z) V in (z) + ϵ in (p 1 ϵ in p i ϵ 1n ) + [p 1 V in (z) p i V 1n (z)] 0 z in, i = 2,..., M, p T i z in = 1 (3.191) ϵ in ϵ in z in ϵ in 0 Σ ϵ in y in = p 1 ϵ in p i ϵ 1n 0 Ω z z 1 n y i ȳ i (ẑ) 0 z in, i = 2,..., M, (3.192) ẑ = (z 2,..., z M ) M

26 137 y i = ȳ i (ẑ), f(ẑ) = ϕ(ŷ, Ω)abs[J(ẑ)], ŷ = (y 2,..., y M ) (3.193) ϕ J y z M 1 z = 0 f(0) = ȳm ȳ2... ϕ(ŷ, Ω)dy 2... dy M (3.194) K f(z 2,..., z K, 0,..., 0) = (3.195) ȳm... ȳk+1 ϕ(y 2,..., y K, y K+1,..., y M, Ω) abs[j K (ˆx)]dy K+1... dy M J K (z K+1,..., z M ) = 0 (y 2,..., y M ) (z 2,..., z M ) (y 2,..., y M ) (z 2,..., z M ) M!/K!(M K)! z 1 > 0 z 1 = Wales and Woodland(1983) 1 2 KT MDCEV Bhat(2005,2008) Wales and Woodland(1983) Kim et al. (2002) Multiple Discrete-Continuous Extreme Value (MDCEV)

27 138 MDCEV Nested logit model mixed logit model MDCEV MDCEV MDCEV U(z) = i γ i α i [exp(βx i + ϵ i )] {( zi γ i + 1 ) αi 1} (3.196) exp(βx i + ϵ i ) 0 1 x i β ϵ i α i γ i γ i I p i z i = E (3.197) i=1 Wales and Woodland(1983) KT L = [ I ] [exp(βx i + ϵ i )](z i + γ i ) α i λ z i E i i=1 KT (3.198) [exp (βx i + ε i )] α i ( z i + γ i ) αi 1 λ = 0 if z i > 0, i = 1,..., I ( ) [exp (βx i + ε i )] α i z αi 1 i + γ i λ < 0 if z i = 0, i = 1,..., I (3.199)

28 V i + ϵ i = V 1 + ϵ 1, if zi > 0, i = 2,..., I, V i + ϵ i < V 1 + ϵ 1, if zi = 0, i = 2,..., I, where V i = βx i + ln α i + (ln α i 1) ln(zi + γ i), i = 1,..., I (3.200) ϵ i standard extreme value distribution z i I M z 2 z M P (z 2, z 3,..., z M, 0, 0,..., 0) ϵ 1 M = g(v 1 V j + ϵ 1 ) J j=2 I s=m+1 G(V 1 V s + (3.201) ϵ 1 ) g standard extreme value density function G standard extreme value distribution J J jh = [V 1 V j+1 + ϵ 1 ], i, h = 1, 2,..., M 1 (3.202) zh P (z 1, z 2, z 3,..., z M, 0, 0,..., 0) = ( ) M 1 αj M ( z ) zj + γ j + γ j j 1 α j j=1 j=1 M j=1 ev j ( I ) M k=1 ev k (M (3.203) 1)! M = MNL Dubin and McFadden(1984) single discrete-continuous model

29 140 i.i.d. MNL Bhat mixed MDCEV(MMDCEV) model (Bhat,2005) MMDCEV ϵ i 3 ζ i i.i.d. 2 η w i w i I η 0 ωi 2 ω η 3 µ x i x i H h i 1 0 µ H σ 2 h σ µ P (z 2, z 3,..., z M, 0, 0,..., 0) = ( ) M 1 αj M ( z ) zj + γ j + γ j j 1 α j η µ j=1 j=1 M j=1 evj+η w j+µ x j ( I k=1 evk+η w k+µ x k ) M (M 1)!dF (µ σ)df (η ω) (3.204) F multiple discrete-continuous nested extreme value (MDCNEV) model (Pinjari and Bhat, 2010) GEV (multiple discrete-continuous generalized extreme value (MDCGEV) model, Pinjari, 2011) Wales and Woodland(1983) KT Tobit KT 1 0

30 141 Tobit 1 (c) FIML: full information maximum-likelihood (FIML ) Heckman(1974), TypeII Tobit 2 FIML ( ) (( ) ( )) a1 µ1 Σ11 Σ 12 N, a 2 µ 2 Σ 21 Σ 22 a 1 a 2 = b N (3.205) ( ) µ 1 + Σ 12 Σ 1 22 (b µ 2), Σ 11 Σ 12 Σ 1 22 Σt 12 (3.206) L

31 142 L= n:y n2 0 = n:y n2 0 = n:y n2 0 P r(y n2 0) P r(y n2 0) n:y n2 >0 n:y n2>0 [P r(y n1 y n2 > 0)P r(y n2 > 0)] [P r(y n2 > 0 y n1 )P r(y n1 )] [1 Φ(β 2 x n2 )] (3.207) n:y n2 >0 [ Φ ( 1 1 ρ 2 1 ( )] yn1 β 1 x n1 ϕ σ 1 σ 1 { β 2 x n2 + ρ } ) (y n1 β 1 x n1 ) σ 1 (3.208) Lee(1983) FIML Heckman(1979) y 2 > 0 ( y 1 ) y 1 E(y n1 y n2 > 0) = E(β 1 x n1 y n2 > 0) + E(ϵ n1 y n2 > 0) = β 1 x n1 + E(ϵ n1 ϵ n2 > β 2 x n2 ) = β 1 x n1 + (ρσ 1 ) ϕ(β 2x n2 ) Φ(β 2 x n2 ) (3.209) 1 y 1n β 2 λ n λ n = ϕ(β 2x n2 ) Φ(β 2 x n2 ) (3.210)

32 143 2 y 1n β 1 (ρσ 1 ) N n:y n2 >0 ( y n1 β 1 x n1 + (ρσ 1 ) λ n ) 2 (3.211) FIML: full information maximum-likelihood FIML ϵ i (2008) η = 0 P i i η = { ( ) σ 6 π r Pj ln P } j i + ln P j + ν (3.212) 1 P j i j σ η r j η ϵ j ν 1 i η. σ 6r j = π (2008) WESML weighted exogenous sample maximum likelihood

33 144 ln L(θ) N = w(j n ) {ln P (J n x n, θ) + ln f(x Jn x n, θ)} w(j n ) = Q(J n )/H(J (3.213) n ) n=1 N J n n w(j n ) Q(J n ) H(J n ) x n θ xj n P ( ) f( ) WESML θ Σ Λ θ Ω Σ = 1 N Ω 1 ΛΩ 1 (3.214) KT KT (1) z N M K=1 M!/K!(M K)! 1 L(ẑ 1,..., ẑ N ) = N f(ẑ n ) (3.215) n=1 z n z n U(z, ϵ) Σ MDCEV MDCEV mixed

34 145 MMDCEV [ Q ( ) M 1 αj M ( z ) L(β, θ, γ, σ, ω) = q=1 η µ z j=1 j + γ j + γ j j 1 α j=1 j M ] j=1 ev j+η w j +µ x j ( I ) M (M 1)!dF (µ σ)df (η ω) (3.216) k=1 ev k+η w k +µ x k [1] Amemiya, T.: Advanced Econometrics, Harvard University Press, [2] Bhat, C.R.: A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions, Transportation Research Part B: Methodological 39, pp , [3] Bhat, C.R.: The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions, Transportation Research Part B: Methodological 42, pp , [4] Bhat, C.R., Eluru, N.: A copula-based approach to accommodate residential self-selection effects in travel behavior modeling, Transportation Research Part B: Methodological 43, pp , [5] Dubin, J.A., McFadden, D.L.: An econometric analysis of residential electric appliance holdings and consumption. Econometrica 52 (2), pp , [6] Fang, H.A.: A discrete-continuous model of households vehicle choice and usage, with an application to the effects of residential density, Transportation Research Part B: Methodological 42 (1), pp , [7] Heckman, J.: Sample selection bias as a specification error, Econometrica 47, pp , [8] Lee, L.-F.: Generalized econometric models with selectivity, Econometrica 51, pp , [9] Maddala, G. S.: Limited-Dependent and Qualitative Variables in Econometrics, Cambridge University Press, [10] Pinjari, A.R., Bhat, C.: A multiple discrete-continuous nested extreme value (MDCNEV) model: Formulation and application to non-worker activity timeuse and timing behavior on weekdays, Transportation Research Part B: Methodological 44, pp , 2010.

35 146 [11] Tobin, J.: Estimation of relationships for limited dependent variables, Econometrica 26, pp , [12] Wales, T.J., Woodland, A.D.: Estimation of consumer demand systems with binding non-negativity constraints, Journal of Econometrics 21, pp , [13] [14]? 46(CD-ROM), [15] - - Vol.43, pp , (a) 1 n i n n y n d(y n = i n ) (3.217) N d(y n = i n y n = i n 1

36 147 (b) β L (McFadden, 1974[?]) N J L(β) = P n (i β) d in (3.218) n=1 i=1 d in n i N J ln L(β) = d in ln P n (i β) (3.219) n=1 i=1 β (c) 0 L(0)

37 148 µ µ µ ln L(0) ln L( ˆ) β 0 2 ln L(0) ln L( ˆ) β ρ = ln L(0) ln L(β) 0 β ˆβ L( ˆβ) 0 McFadden(1975) McFadden ρ 2 = ln L( ˆβ) ln L(0) ln 1 ln L(0) = ln L(0) ln L( ˆβ) ln L(0) (3.220) McFadden McFadden Ben-Akiva and Swait(1986) K (AIC) ln 2L( ˆβ) + 2K ρ 2 ρ 2 = ln L(0) (ln L( ˆβ) K) ln L(0) (3.221)

38 149 (d) L β L 0 n max L(β) (3.222) β β = (β 1, β 2,..., β n ) (3.223) β ˆβ Newton-Raphson (BFGS ) 2 Berndt-Hall-Hall-Hausman(BHHH) (Berndt et al., 1974[?]) Nelder-Mead (Nelder and Mead, 1965[?]) Newton-Raphson BFGS BHHH Nelder-Mead 1 β 1

39 150 2 k s k s k = L(β k ) (3.224) 3 α k max α L(β k α k s k ) (3.225) 4 β k. β k+1 = β k α k s k ) (3.226) 5 β k k = k + 1 Step2 Newton-Raphson Newton-Raphson 1 2 β 1 β k 2 L(β k ) = A = 2 L β L β 1β n : : : 2 L β 1 β n 2 L β 2 n (3.227)

40 151 3 k s k s k = ( 2 L(β k )) 1 L(β k ) (3.228) 4 α k max α L(β k α k s k ) (3.229) 5 β k. β k+1 = β k α k s k ) (3.230) 6 β k k = k + 1 Step2 BFGS BFGS 1970 Broyden (1970)[?] Fletcher (1970)[?] Goldfarb (1970)[?] Shanno (1970)[?] 4 BFGS Newton-Raphson B 1 2 β 1 H k α k max α L(β k α k H k L(β k )) (3.231)

41 152 3 β k. β k+1 = β k α k H k L(β k ) (3.232) 4 5 s k = βk + 1 βk y k = L(β k+1 ) L(β k ) H H k+1 = [ I s ky T k s T k y k ] H k [ I y ks T k s T k y k ] + s ks T k s T k y k (3.233) β k k = k + 1 Step2 Mixed Logit β f(β θ) n i J j=1 P n (i) = exp(v jn + η jn ) f(β θ)dβ (3.234) exp(v in + η in ) SP n (i) R (Train, 2003[?]) SP n (i) = 1 R P n (i, β r ) (3.235) R r=1 β r f(β θ) r β

42 153 (a) µ (b) µ 3.58 Bhat (2001) (Bhat, 2001[?]) (0,1) 3 (0,1) 3 1/3 2/3 (0,1/3) (1/3,2/3) (2/3,1) 3 3 1/3 2/3 1/9 4/9 7/9 2/9 5/9 8/9 (0,1) EM (Train, 2008[?]) (Harding and Hausman, 2007[?]) (Cherchi, E. and Guevara, 2011[?]) (e)

43 154 Mixed Logit, 2012 day-to-day Parry and Martin, 2013, 2010 OD, 2010; Li, 2009; Hazelton, 2001; Maher, 1983, 2010;, 2009b, 2009a Park et al., 2010, , 2009, 2009;, 2009, 2008 θ n

44 155 y n P n (y n θ) N L(Y θ) = P n (y n θ) (3.236) n=1 Y = {y 1, y 2,..., y n } θ π(θ) Y θ π(θ x) π(θ Y )L(Y ) = L(Y θ)π(θ) (3.237) L(Y ) Y L(Y ) = L(Y θ)π(θ)dθ (3.238) bayes1, 2010 L(Y θ)π(θ) π(θ Y ) = (3.239) L(Y ) L(Y ) θ L(Y θ) L(Y ) π(θ y t ) L(y t θ)π(θ) (3.240) π(θ y t ) t θ t + 1 π(θ y t ) θ, 2010

45 µ µ σ 2 π(θ y t, y t+1 ) L(y t+1 θ)π(θ y t ) (3.241) t y t 3.3 µ 0 Sigma 0 µ 1 Sigma 1 ˆµ ˆΣ ˆµ = ˆΣ(Σ 1 0 µ 0 + Σ 1 1 µ 1) (3.242) ˆΣ = (Σ Σ 1 1 ) 1 (3.243) (1987) (1993) (MCMC )

46 157 θ = {θ 1, θ 2,..., θ k } i θ (i) = {θ (i),..., θ(i) } 1 2 1, θ(i) 2 k θ (0) i = 1 i θ (i) j θ (i) k f(θ k θ (i),..., θ(i) 1 j 1, θ(i 1) j+1,..., θ(i 1) k ) (3.244) 3 i = i (MH) MCMC Metropolis- Hastings, MH) MH 1 θ (0) i = 1 2 i θ new(i) f(θ new(i) θ (i) ) θ new(i) f(θ new(i) θ (i) ) (3.245)

47 θ new(i) α(θ (i 1), θ new(i) ) α(θ (i 1), θ new(i) ) = min(1, π(θnew(i) )f(θ (i 1) θ new(i) ) π(θ (i 1) )f(θ new(i) θ (i 1) ) ) θ (i) (3.246) θ (i) = { θ new(i) α θ (i 1) 1 α (3.247) (a) 2 Bellman i

48 159 V (s i,t ) = max{u i (a, s i,t ) + β V (s i,t+1 )df (s i,t+1 a, s i,t )} (3.248) β j U i (a, s i,t+j ) dynamic j programming(dp) Bellman (Bellman,1957) ,U i (a, s i,t ) a s i,t t,df (s i,d+1 α, s i,d )} β. s i,t x i,t, ε i,t, i.i.d extreme value,. v(a, x i,t )=u (a, x i,t )+ε i,d (a)+β V (x i,t+1 )df(x i,t+1 a, x i,t+1 ) x i,t+1 (3.249) v(α, x i,d ) u (a, x i,d ) V df t + 1

49 160 P (a x i,d, θ) = exp(v(a, x i,d)) J exp(v(j, x i,d )) j=1 (3.250) V Bellman i U i = α i + β i X i + j i γ j y j + ε i (3.251) α X i ε i y j i j j V j 3.60 i j j i

50 U i = α i + β i X i + γ i j y j N + ε i (3.252) N 3.61 N 3.61 (b)

51 162 NFXP 2 NPL 3 2 i {A, B} m 2 U im U im = αx m + β i z im λy im + ε im (3.253) x m m z im y im NFXP NFXP (Nested Fixed Point Method,Rust,1987) NFXP 3.62 NFXP 4 0: θ (0) = {α (0) m β(0) im γ(0) } i {A, B} m p im p (0) im 1: θ (n) p (k) im p(k+1) im p (k+1) im = Φ(α(n) m x m + β (n) im z im + γ (n) p (k) im ) (3.254) Φ

52 163 0: 1: No 2: 1 Yes 3: No 4: : 1 Yes NFXP p (k) im p(k+1) im ε p (k+1) im p(k) im < ε p (3.255) STEP1 p im = Φ(α(n) m x m + β (n) im z im + γ (n) p im ) (3.256) 3: 2 p im y im

53 164 CCP ln L = m i {A,B} {y im ln(p im ) + (1 y im) ln(1 p im )} (3.257) θ (n+1) = {α (n+1) m β (n+1) im γ(n+1) } 4: 2 θ (n) θ (n+1) θ (n+1) θ (n) < εθ (3.258) CCP (Conditional Choice Probabilities Method, Hotz, V. J., and R. A. Miller, 1993) : 2: 3.63 CCP 2 1: p (1) im x m z im 2

54 165 2: 1 p (1) im p (2) im = α mx m + β im z im + γ im p (1) im (3.259) ln L = m i {A,B} {y im ln(p (2) im ) + (1 y im) ln(1 p (2) im )} (3.260) NPL NPL (Nested Pseudo-Likelihood Algorithm,Aguirregabiria and Mira,2002) ( ) NPL 3.64 NPL 4 0: i {A, B} m p im p (0) im 1: p (n) im i p im Φ p im = Φ(α m x m + β im z im + γp (n) im ) (3.261)

55 166 0: 1: 2: 3: No 4: 3.64 Yes NPL ( ) ln L = m {y im ln(p im ) + (1 y im ) ln(1 p im )} i {A,B} (3.262) 2: 1 α (n) m β(n) im γ(n) 3: 2 p (n) im p (n+1) im p (n+1) im = Φ(α (n) m x m + β (n) im z im + γ (n) p (n) im ) (3.263) 4:

56 167 p (n) im p(n+1) im p (n+1) im p(n) im < ε (3.264) ε p (n+1) im 1 4 [1],, :, Vol.43, pp.14-21, [2] Rust, J., Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher, Econometrica, Vol.55,pp , [3] Hotz, V. J., and R. A. Miller, Conditional Choice Probabilities and the Estimation of Dynamic Models, Review of Economic Studies, Vol.60, pp , 1993 [4] V,Aguirregabiria., P,Mira., Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models (a).. TDM ITS.

わが国企業による資金調達方法の選択問題

わが国企業による資金調達方法の選択問題 * takeshi.shimatani@boj.or.jp ** kawai@ml.me.titech.ac.jp *** naohiko.baba@boj.or.jp No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * E-mailtakeshi.shimatani@boj.or.jp ** E-mailkawai@ml.me.titech.ac.jp

More information

168. W rdrop. W rdrop ( ).. (b) ( ) OD W rdrrop r s x t f c q δ, 3.4 ( ) OD OD OD { δ, = 1 if OD 0

168. W rdrop. W rdrop ( ).. (b) ( ) OD W rdrrop r s x t f c q δ, 3.4 ( ) OD OD OD { δ, = 1 if OD 0 167 p (n) im p(n+1) im p (n+1) im p(n) im < ε (3.264) ε p (n+1) im 1 4 [1],, :, Vol.43, pp.14-21, 2001. [2] Rust, J., Optiml Replcement of GMC Bus Engines: An Empiricl Model of Hrold Zurcher, Econometric,

More information

第3章.DOC

第3章.DOC 000 Ben-Akiva and Lerman, 1985 1996 1996 4 1997 Banister, 1978; Verplanken et al., 1998 1 5 1996 3 () (I n ) 1 18 I n n P n (1) P n ( 1) = exp exp ( Vn 1 ) I n 1 ( V ) + exp µ ln exp ( V ) n1 + i= ni (3.1)

More information

集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed mu

集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed mu 集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models, Transportation Research Part

More information

Hi-Stat Discussion Paper Series No.248 東京圏における 1990 年代以降の住み替え行動 住宅需要実態調査 を用いた Mixed Logit 分析 小林庸平行武憲史 March 2008 Hitotsubashi University Research Unit

Hi-Stat Discussion Paper Series No.248 東京圏における 1990 年代以降の住み替え行動 住宅需要実態調査 を用いた Mixed Logit 分析 小林庸平行武憲史 March 2008 Hitotsubashi University Research Unit Hi-Stat Discussion Paper Series No.248 東京圏における 1990 年代以降の住み替え行動 住宅需要実態調査 を用いた Logit 分析 小林庸平行武憲史 March 2008 Hitotsubashi University Research Unit for Statistical Analysis in Social Sciences A 21st-Century

More information

2 Tobin (1958) 2 limited dependent variables: LDV 2 corner solution 2 truncated censored x top coding censor from above censor from below 2 Heck

2 Tobin (1958) 2 limited dependent variables: LDV 2 corner solution 2 truncated censored x top coding censor from above censor from below 2 Heck 10 2 1 2007 4 6 25-44 57% 2017 71% 2 Heckit 6 1 2 Tobin (1958) 2 limited dependent variables: LDV 2 corner solution 2 truncated 50 50 censored x top coding censor from above censor from below 2 Heckit

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Microsoft Word - 論説(山本).doc

Microsoft Word - 論説(山本).doc 離散選択モデルの発展と今後の課題 Development of Discrete Choice Models and Future Tasks 山本俊行 * 1. はじめに大学の授業などで, 多項ロジット (MNL) モデルで重要な IIA 特性, すなわち,2 つの選択肢の選択確率の比は, その選択肢の確定効用にのみ影響を受け, 選択肢集合に含まれる他の選択肢の影響を受けない, という 無関係な選択肢からの選択確率の独立性

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0 20 5 8..................................................2.....................................3 L.....................................4................................. 2 2. 3 2. (N ).........................................

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I (missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

untitled

untitled * 2009 6 15 2006 10 24 MNP MNP MNP MNP MNP 18% 2.6% Keywords: Mobile Number Portability (MNP), Switching Cost, Nested Logit Model, Choice-based Sampling JEL Classification: D12, L96 1. 2006 10 24 (Mobile

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate School of Economics and Institute of Economic Research

More information

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ 212 Vol. 44 No. 2 I はじめに 2008 1 2 Autumn 08 213 II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 17 18 1 分析に用いるデータ 1 2005 10 12 200 2 2006 9 12 1 1 2 129 35 113 3 1 2 6 1 2 3 4 4 1

More information

Evaluation of a SATOYAMA Forest Using a Voluntary Labor Supply Curve Version: c 2003 Taku Terawaki, Akio Muranaka URL: http

Evaluation of a SATOYAMA Forest Using a Voluntary Labor Supply Curve Version: c 2003 Taku Terawaki, Akio Muranaka URL: http 14 9 27 2003 Evaluation of a SATOYAMA Forest Using a Voluntary Labor Supply Curve 1 1 2 Version: 15 10 1 c 2003 Taku Terawaki, Akio Muranaka URL: http://www.taku-t.com/ 1 [14] 3 [10] 3 2 Andreoni[1] Duncan[7]

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

BB 報告書完成版_修正版)040415.doc

BB 報告書完成版_修正版)040415.doc 3 4 5 8 KW Q = AK α W β q = a + α k + βw q = log Q, k = log K, w = logw i P ij v ij P ij = exp( vij ), J exp( v ) k= 1 ik v i j = X β αp + γnu j j j j X j j p j j NU j j NU j (

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

1 n 1 1 2 2 3 3 3.1............................ 3 3.2............................. 6 3.2.1.............. 6 3.2.2................. 7 3.2.3........................... 10 4 11 4.1..........................

More information

CVaR

CVaR CVaR 20 4 24 3 24 1 31 ,.,.,. Markowitz,., (Value-at-Risk, VaR) (Conditional Value-at-Risk, CVaR). VaR, CVaR VaR. CVaR, CVaR. CVaR,,.,.,,,.,,. 1 5 2 VaR CVaR 6 2.1................................................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

.. F x) = x ft)dt ), fx) : PDF : probbility density function) F x) : CDF : cumultive distribution function F x) x.2 ) T = µ p), T : ) p : x p p = F x

.. F x) = x ft)dt ), fx) : PDF : probbility density function) F x) : CDF : cumultive distribution function F x) x.2 ) T = µ p), T : ) p : x p p = F x 203 7......................................2................................................3.....................................4 L.................................... 2.5.................................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

KATO, Hironori ONODA, Keiichi KIMATA, Masaki Becker DeSerpa 7 8 value of saving time Value of Travel Time Saving VTTS 002 Vol.

KATO, Hironori ONODA, Keiichi KIMATA, Masaki Becker DeSerpa 7 8 value of saving time Value of Travel Time Saving VTTS 002 Vol. KATO, Hironori ONODA, Keiichi KIMATA, Masaki 1 2 3 4 5 6 2 2.1 Becker 1 26 DeSerpa 78 value of saving time Value of Travel Time Saving VTTS 2 Vol.9 No.2 26 Summer 2.2 9111 X T xt Pt i i c i i I T ˆt i

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

第3章 非線形計画法の基礎

第3章 非線形計画法の基礎 3 February 25, 2009 1 Armijo Wolfe Newton 2 Newton Lagrange Newton 2 SQP 2 1 2.1 ( ) S R n (n N) f (x) : R n x f R x S f (x ) = min x S R n f (x) (nonlinear programming) x 0 S k = 0, 1, 2, h k R n ɛ k

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 87 6.1 AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 2, V(y t y t 1, y t 2, ) = σ 2 3. Thus, y t y t 1,

More information

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2 Takio Kurita Neurosceince Research Institute, National Institute of Advanced Indastrial Science and Technology takio-kurita@aistgojp (Support Vector Machine, SVM) 1 (Support Vector Machine, SVM) ( ) 2

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G ( 7 2 2008 7 10 1 2 2 1.1 2............................................. 2 1.2 2.......................................... 2 1.3 2........................................ 3 1.4................................................

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1 2016 1 12 4 1 2016 1 12, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, 1980 1990.,, 225 1986 4 1990 6, TOPIX,1986 5 1990 2, explosive. 2,.,,,.,, 1986 Q2 1990 Q2,,. :, explosive, recursiveadf,

More information

JMP V4 による生存時間分析

JMP V4 による生存時間分析 V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

わが国企業による株主還元策の決定要因:配当・自社株消却のインセンティブを巡る実証分析

わが国企業による株主還元策の決定要因:配当・自社株消却のインセンティブを巡る実証分析 * youichi.ueno@boj.or.jp ** naohiko.baba@boj.or.jp No.05-J-6 2005 4 103-8660 30 No.05-J-6 2005 4 * ** 1990 1 2 1990 * E-mailyouichi.ueno@boj.or.jp ** E-mailnaohiko.baba@boj.or.jp 1 1990 1 1990 1 [2004]

More information

金融不安・低金利と通貨需要 「家計の金融資産に関する世論調査」を用いた分析

金融不安・低金利と通貨需要  「家計の金融資産に関する世論調査」を用いた分析 IMES DISCUSSION PAPER SERIES 金融不安 低金利と通貨需要 家計の金融資産に関する世論調査 を用いた分析 しおじえつろう ふじきひろし 塩路悦朗 * 藤木 裕 ** Discussion Paper No. 2005-J-11 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 日本銀行金融研究所 103-8660

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

フィナンシャルレビュー 第80号

フィナンシャルレビュー 第80号 March Eichner et al. Tobit Tobit Buntin and Zaslavsk Duan et al.hay and Olsen Mullahy Tobit ARMA Feenberg and Skinner French and Jones Eichner et al. Eichner et al i t m i,t Em i,t Prm i,t!prm i,t Em i,t

More information

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H 1 1 1.1 *1 1. 1.3.1 n x 11,, x 1n Nµ 1, σ x 1,, x n Nµ, σ H 0 µ 1 = µ = µ H 1 µ 1 µ H 0, H 1 * σ σ 0, σ 1 *1 * H 0 H 0, H 1 H 1 1 H 0 µ, σ 0 H 1 µ 1, µ, σ 1 L 0 µ, σ x L 1 µ 1, µ, σ x x H 0 L 0 µ, σ 0

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

1 はじめに 85

1 はじめに 85 1 はじめに 85 2 ジョイント スペースによるブランド選択の分析 2.1 ジョイント スペース マップ 86 2.2 ジョイント スペースとマーケティング変数を組み込んだブランド選択モデル hjt exp hjt exp hit h jt hjt hjt hjt hjt hk hjkt hjt k k hk h k hj hmt jm. m m hmt h m t jm m j hjt jm hmt.

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information