(Exact Solutions and Tachyon Condensation in String Field Theory) 15 (Syoji Zeze)

Size: px
Start display at page:

Download "(Exact Solutions and Tachyon Condensation in String Field Theory) 15 (Syoji Zeze)"

Transcription

1 Exact Solutions and Tachyon Condensation in String Field Theory) 15 Syoji Zeze)

2

3 Abstract In recent years, the physics of unstable D-branes is extensibly investigated as nonperturbative phenomena in string theory. Since string theory SFT) is defined perturbatively, we need an non-perturbative formulation of string theory. String field theory is one of such formulations of string theory. In this thesis, we explore the physics of unstable D-branes using exact solutions in Chern-Simons SFT CSFT), called universal solutions. These solutions well describes the nature of unstable D-branes in a geometrical way. First, we expand CSFT around universal solutions, and gauge fix it using BRST procedure. On the singularity of the moduli space of solutions, we find that physical states have ghost number 0 or 1, therefore they cannot contribute physical scattering amplitudes. This result implies that open strings disappear with unstable D-branes. Next, we derive closed string scattering amplitude emitted from D-branes, using gauge invariant closed string operators in CSFT. We can calculate this amplitude with no approximations, since we find the conformal map from flat open string world sheet ρ plane) to upper half complex plane z plane). These results show that CSFT and universal solutions correctly describe the dynamics of unstable D-branes.

4

5 Chern-Simons CSFT) CSFT CSFT no open string theorem Quadratic differentials Quadratic Differentials QD A 67 A.1 vw) fw)

6 6 A.2 fw) vw) B CFT k 71 B.1 CFT B.2 k B.3 k C 75 C C C C.4 reality

7 7

8

9 9 1 Superstring theory) Theory of Everything, TOE) 4 3 SU3) SU2) U1) D-brane D-brane 1990 D-brane Dpbrane p D-brane

10 10 1 D-brane BPS D-brane BPS D-brane BPS D-brane D-brane Non-BPS D-brane IIA IIB) D- 2p + 1) brane D-2p brane) brane brane D-brane D-brane brane 1998 Ashoke Sen BPS D-brane Sen 1 D-brane 2 D-brane 3 D-brane D-brane D-brane 1.2 D-brane 1 2 D-brane D-brane Sen D-brane Witten Chern-Simons CSFT) *1 [1] 26 Sen Zwiebach CSFT T *1 CSFT Cubic SFT CSFT

11 11 [2] *2 CSFT S CSFT Sen 2 D-25 brane T 25 *3 S CSFT [T ] = T ) T [3] S CFST [T ] n T n ϵn) = T 25 S CFST [T n ] T ) ϵ4) = O10 2 ) T 4 ϵ10) = O10 3 )[4] ϵ18) = O10 4 )[5] Sen 1.3 t = 0 D-brane t = t c 2 T 25 *2 [3] D-brane *3 D-brane

12 12 1 ϵn) CSFT Sen 1 CSFT CSFT CSFT [6] hw) 2 LPP CSFT 3 CSFT 4 Siegel 5 CSFT D-brane 2 6 quadratic differential [7] [8]

13 Chern-Simons CSFT) [9] Witten 3 CSFT) [1] A. Leclair M. Peskin C. R. Preitscheopf LPP [10] CSFT Ψ LPP CFT Ψ = ψ α α 2.1) α ψ r 2 α r c = 26 matter CFT c = 26 ghost CFT α r w) 0 SL2, C) α r = α r 0) 0 2.2) h ϕw) fw) : f[ϕw)] = ) h df ϕfw)) 2.3) dw h holomorphic h-form h- vector 2.3) f[ϕw)]dw) h = ϕz)dz) h 2.4) z = fw) f CSFT CFT g o 2 S[Ψ] = 1 2 I[Ψ] Q Ψ UHP f 1) [Ψ] f 2) [Ψ] f 3) [Ψ] UHP 2.5)

14 14 2 Iw) = 1/w Q BRST g o f r) w) r = 1, 2, 3) U = {w w 1, Iw 0} V r r = 1, 2, 3) f r) : U V r f r) w) = h 1 g r) w) 2.6) hw) = 1 iw 1 + iw 2.7) g r) w) = e 2π1 r)i 3 hw) ) I II III g 1 g 2 g 3 U 2.5) 2.2 CFT gluing theorem [10] 2.2 CSFT CSFT 2.5) Witten [1] LPP N N f r) N w) = h 1 g r) N w) g r) 2π1 r)i N w) = e N hw) 2 N 2.9) f 1) N [Ψ 1] f N) N [Ψ N] UHP 2.10) N Ψ 1,..., Ψ N 1

15 2.2 CSFT h 1 z = i 3 U z = 0, ± g r) 8 w) N f 1) N [Ψ 1] f N) N [Ψ N ] = Ψ 1 Ψ 2 Ψ N 2.11) UHP CSFT 2.5) S[Ψ] = 1 g 2 o 1 2 Ψ QΨ + 1 ) 3 Ψ Ψ Ψ 2.12)

16 16 2 A B C A B B A 2.13) A B C) = A B) C 2.14) QA B) = QA B + 1) A A QB 2.15) Q 2 A = ) A B C = C A B 2.17) QA = ) Q Ψ 2.12) 2.13) 2.17) QΨ + Ψ Ψ = ) 2.12) Q Ψ g = U 1 g QU g + U 1 g Ψ U g 2.20) U g = e g = 1 + g + 1 2! g g ) 2.12) S[Ψ g ] = S[Ψ] + 1 U ) ) ) 1 6go 2 g QU g U 1 g QU g U 1 g QU g 2.21) ) g δψ = Qg + Ψ g g Ψ 2.22) δs = ) 2.19) Ψ 0 S[Ψ + Ψ 0 ] = 1 1 go 2 2 Ψ Q Ψ + 1 ) 3 Ψ Ψ Ψ + S[Ψ 0 ] 2.24) Q Ψ = QΨ + Ψ 0 Ψ 1) Ψ Ψ Ψ ) Q S[Ψ 0 ] Q Q 2.19) Q A B) = Q A B + 1) A A Q B 2.26) Q 2 A = ) Q A = ) Q Q

17 2.3 CSFT 17 CSFT Chern Simons S CS [A] = 4π 1 Tr k 2 A da + 1 ) 3 A A A M 2.29) d Q Tr M 2.3 CSFT CSFT 2.23) Ψ CFT c n b n 1 1 CFT α = r α, r 2.30) r Ψ 1 ψ Ψ = α ψα r α, r N gh ψα) r = 1 r 2.31) r CSFT Ψ 1 CFT Ψ = α ψ 0 α α, ) CSFT g o 2 S cl [Ψ] = 1 2 I[Ψ] Q Ψ f 1) [Ψ] f 2) [Ψ] f 3) [Ψ] 2.33) CSFT b 0 Ψ = 0 Siegel [45] CSFT BRST *1 BV [11] CSFT CSFT *1 bz) cz)

18 Siegel CSFT Ψ Siegel b 0 Ψ = 0 CFT CSFT g o 2 S gf [Ψ] = 1 2 I[Ψ] Q Ψ f 1) [Ψ] f 2) [Ψ] f 3) [Ψ] 2.34) Siegel BRST 2.34) BRST δ B Ψ = ϵ QΨ + Ψ Ψ) 2.35)

19 19 3 CSFT CFT CFT CSFT Chern-Simons Chern-Simons CSFT G 0 Ψ 0 = e G Q e G 3.1) 2.19) 3.1) Q 2.15) e G e G = I, 3.2) Ψ I = Ψ for Ψ, 3.3) Q I = 0 3.4) Chern Simons I identity state [14, 15, 16] f I w) = 2w 1 w 2 3.5) surface state identity state [50] ϕ = ϕ0) 0 I I ϕ = f I [ϕ0)] UHP 3.6) 3.3) [17, 15, 16] CSFT I 3.2) 3.4)

20 ) Ψ 0 G [12, 13] ) G = dw Kw) I = K L I 3.7) C L Ψ 0 C L 3.1 Kw) 0 1 CSFT N V N V N K r+1) L ) + K r) R = c, r = 1,..., N) 3.8) *1 c r) r i w i w C L C R i 3.1 C L C R i Ψ 0 = e K LI Q e K LI 3.9) 3.8) N = ) 3.8) 3.9) 3.11) K L + K R ) I = c 3.10) Ψ 0 = e K L Qe K L ) I 3.11) e K L = 1 + K L + 1 2! K2 L ) 3.11) I Virasoro [15] I = exp L 2 1 ) 2 L ) *1 V 1 = I

21 e K L Qe K L = Q [K L, Q] + 1 2! [ K L, [K L, Q] ] ) 3.11) 3.2 [6] hw) 3.9) K L K L = q L h) = dw hw)j gh w) C L 3.15) Ψ 0 = e q Lh)I Q e q Lh)I J gh 3.16) J gh w) =: cw)bw) : 3.17) hw) U = {w w 1} h 1 ) = hw) w 3.18) h±i) = ) 3.16) q L h) q R h) 3.8) 3.8) N 2 J gh ) df f[j gh w)] = J gh fw)) 3 f w) dw 2 f w) N 3.20) w r+1 = 1 w r, for w r C R, w r+1 C L 3.21) 3.18) ) V N q r+1) L h) + q r) R h) = κ 3.22) κ = 3 dw hw) C L w 3.23) N = ) f I w) = 2w/1 w 2 ) I q L h) + q R h)) = I dwhw)j gh w) C = dwhw) = C 3 2 C f Iw)J gh w) 3 2 dwhw) f I f I f I ) f I 3.24)

22 22 3 C = C L + C R 3.24) ) 3.24) C L C R 3 dwhw) f I 2 C f I = 3 dwhw) 2 CL f I f I 3 dwhw) 2 CR f I f I = 3 f I dw hw) w) 2 C L f I w) 1 f I 1 w ) ) w 2 f I 1 w ) = κ I q L h) + q R h)) = κ 3.25) 3.22) 3.25) q L h) q R h) V N q r+1) L h) + q r) R h) ) = κ, r = 1,..., N) 3.26) 3.26) 3.16) 3.11) Ψ 0 = 3.27) I e q Lh) Q e q Lh) ) I 3.27) e q Lh) Q e q Lh) 3.28) Q L f) = C L g) = [6] C L C L dw 2πi fw)j Bw) dw 2πi gw)cw) [q L f), Q L g)] = Q L fg) 2C L f g) 3.29) [q L f), C L g)] = C L fg) 3.30) [Q L f), C L g)] = {Q, C L fg)} 3.31) [Q R f), Q R g)] = 2{Q, C R f g)} 3.32) Ψ 0 = Q L e h 1 ) I C L h) 2 e h) I 3.33) 3.33) F w) = e hw) ) Gw) = h) 2 e hw) 3.35)

23 ) F 1 ) = F w) 3.36) w G 1 ) = w 4 Gw) 3.37) w F ±i) = ) G±i) = ) J B w) cw) 3.22) r = 1,..., N V N L V N Q r+1) C r+1) L F ) + Q r) R F ) ) = ) G) + C r) R G) ) = ) 3.36) 3.41) 3.29) 3.32) 3.33) QΨ 0 = {Q, C L G)}I 3.42) Ψ 0 Ψ 0 = {Q, C L F ) 2 + F G)}I 3.43) 3.34) 3.35) 2 QΨ 0 + Ψ 0 Ψ 0 = ) 3.11) 3.33) hw) exp q L h)) well defined 3.33) 3.33) O I 3.45) I I [16] I 3.33) 3.1 h 1/w) = hw) h±i) = 0 hw) Ψh) = Q L e h 1 ) I C L h) 2 e h) I CSFT

24 CSFT 2.25) BRST Q Ψ = QΨ + Ψ 0 Ψ + Ψ Ψ ) Q C L + C R = C Qf) = dwfw)j B w) 3.47) C Cg) = dwgw)cw) 3.48) C qh) = dwhw)j gh w) 3.49) C 3.40) 3.41) 3.26) r ) V N Q 1) F ) + + Q N) F ) = ) ) V N Q 1) G) + + Q N) G) = ) ) V N q 1) h) + + q N) h) = Nκ 3.52) 3.33) 3.46) BRST Q = Qe h ) C h) 2 e h ) 3.53) e hw) Q n J B w) c n Q Q 3.29) 3.32) [qf), Qg)] = Qfg) 2C f g) 3.54) [qf), Cg)] = Cfg) 3.55) 3.53) Q = e qh) Q e qh) 3.56) e qh) 3.56) S = 1 2 ΨQ Ψ + 1 ) 3 Ψ Ψ Ψ 3.57)

25 ) qh) κ N vertex qh) = qh) κ = dw hw) J ghw) 1 ) w 3.58) 3.52) ) V N q 1) h) + + q N) h) = ) qh) 3.59) V N N r=1 e qr) h) = V N 3.60) N vertex Ψ = exp qh)) Ψ 3.59) 3.57) S = 1 2 Ψ QΨ + 1 ) 3 Ψ Ψ Ψ 3.61) hw) e q Lh)I e qh) well defined hw) ) F w) hw) F w) 3.36) F w) w 1/w F ±i) = 0 F w) = F 1/w) F w) = F n w n + 1) n w n) 3.62) n=0 3.62) F ±i) = 0 F 2m 1) m = 0, F 2m+1 1) m = ) m=0 m=0 m F 2m+1 = 0 F w) = F 2m w 2m + w 2m), F ±i) = ) m=0

26 ) m = 1 F w) a F a w) = a 2 w + 1 w ) ) 3.65) 3.34) e haw) = F a w) ) h a w) [6] 3.5 CSFT 3.16) exp q L h a )I) 3.67) 3.56) exp qh a )) 3.68) normal ordering 3.65) 3.66) h a w) = log 1 + a 2 w + 1 ) ) 2 w 3.69) a 1/2 h a w) h a w) = log1 Za)) 2 Za) = 1 + a 1 + 2a a [6] Za) 2 1) n n Za)n n=1 w 2n + 1 ) w 2n 3.70) 1 x 2 + e haw) = a a) x + 1 = 0 a w 2 + Za))w 2 + Za) 1 ) w )

27 e haw) 3.70) J gh w) = n q n w n ) [q m, q n ] = δ m+n,0 3.73) normal order e qha) = 1 Za) 2) 1 exp q0 log1 Za)) 2) e q ) h a) e q+) h a) 3.74) q +) h a ) q ) h a ) qh a ) 3.74) 1 Za) 2 ) 1 a = 1/2 e qh 1/2) well-defined e q Lh a) a = 1/2 [6] a = 1/2 Ψh a ) = Q L e h a 1 ) I C L ha ) 2 e ha) I 3.75) a 1/2 a = 1/2 3.2 a 1/2 F a w) = e haw) 1 = a 2 w + 1 ) 2 w well-defined a > 1/2 a = 1/2

28

29 a = 1/2 Ψ 0 [20] b n c n L X n universality)[20] 1 Sen Zweibach [2] a = 1/2 1 Sen 1 Siegel 4.1 Ψa) S[Ψ] = 1 2 Ψ Qa)Ψ + 1 ) 3 Ψ Ψ Ψ + S[Ψa)] 4.1) S[Ψa)] BRST Qa) 3.53) 3.65) e haw) = g a w) ga ) 2 ) Qa) = Q g a ) C 4.2) g a w) = 1 + a 2 g a w + 1 w ) 2 4.3)

30 ) 2.3 Siegel ) La) = {Qa), b 0 } 4.4) La) La) J B z)bw) 3 z w) 3 + J ghw) z w) 2 + T w) z w 4.5) 4.3) La) = dz dwg a z)w J B z)bw) + dz dw g aw)) 2 w cz)bw) g a w) = 1 + a)l 0 + a 2 L 2 + L 2) + 4aZa) 1 + a) 4.6) La) L n = L n + nq n + nδ n,0 4.7) + B L n T w) L n central charge) c = 24 [L n, b 0 ] = 0 b 0 L n Siegel 24 L n 4.2 a 1/2 Siegel Ψ phys Qa) phys = 0 4.8) b 0 phys = 0 4.9) {Qa), b 0 } = La) La) phys = ) La) a > 1/2 BRST Q 4.10) La) L 0

31 ) La) La) = dw w g a w)t w) ) U a) La) U a)la)u a) 1 = NL ) N A U a) z = f a w) U a) ) U a) = exp dw v a w)t w) 4.13) U a) La) f a w) = e vaw) w w 4.14) ) 2 U a)la)u a) 1 dfa = dwwg a w) T f) + γ dw ) dfa = dfwg a w) T f) ) γ dw γ γ w f puncture 4.15) L 0 + const.) wg a w)f aw) = Nf a w) 4.16) 4.16) C w f a w) = C exp N dw 1 w g a w ) w 2 ) N 2 + Za) 1+2a = C Za)w ) 4.17) 4.17) 1 2 C N C a 0 f a lim a 0 Za) = ) N lim f aw) = Cw 1+2a 4.18) a 0 Qa = 0) = Q f 0 w) N = 1 + 2a C = 1 f a w) = w 2 ) Za) Za)w U a)la)u a) 1 = 1 + 2aL 0 + const. 4.19) 4.19) f a 4.15) f a γ f a 0)

32 32 4 z = f a w) 4.1 a > 0, 0 < Za) < 1 z z = ± Za) z = ±1/ Za) w γ 4.1 γ dz z T z) = L γ ) a 4.15) Z gamma -zi zero zi -z z 4.1 z = f aw) 4.19) T w) J B w) T z)j B w) 9cw) z w) cw) z w) 3 + 2J Bw) z w) 2 + J Bw) z w 4.20) J B c n ) 2 J B w) T w) La) Qa) U a)qa)u a) 1 = 1 + 2aQ + n a n c n 4.21) Qa) 2 = 0 Ua) well-defined 4.21) nilpotent 2 ) aQ + a n c n = a a n a n c c) n 4.22) a n = 0 Qa) U a)qa)u a) 1 = 1 + 2a Q 4.23)

33 U a) b ) b 0 U a)la)u a) 1 = 1 + 2a L ) 4.19) 0 *1 U a) well defined U a) U a) nilpotency U a) f a w) v a w) U a) = e n v nl n 4.25) v a w) f a w) A f a w) v a w) 4.24) v a w) { L 0, L ±2} H = L L ± = L 2 ± L ) [H, L ± ] = L ±, [L +, L ] = H 4.27) 4.26) La) 4.27) La) = 21 + a)h + 2aL + + const. 4.28) e λl [cosh λ)h + sinh λ)l + ] e λl = H 4.29) La) 4.29) La) = a [cosh λ a )H + sinh λ a )L + ] + const.) ) a λ a = tanh 1 = log 1 + 2a) 4.30) 1 + a 4.29) U a)la)u a) 1 = 1 + 2a L ) { U a) = exp 1 4 L 2 L 2) log } 1 + 2a) 4.32) 4.24) 4.32) f a w) v a w) = 1 4 log 1 + 2a) w 3 1 ) w 4.33) *1 4.24) [7]

34 U a) normal ordering U a) U a) = expsl 2) exptl 0) expul 2) 4.34) 4.34) s, t, u) [7] L n 4.34) 4.24) f 1 a w) = n 2,s n 0,t n 2,u w) 4.35) n 2,s w) n 0,t w) n 2,u w) expsl 2) exptl 0) expul 2) fa 1 w) f a w) A ) 1 Za) w fa w) = Za)w ) 1 n 2,s w) = 2s + w 2) ) n 0,t w) = e t w 4.38) w 2 ) 1 2 n 2,u w) = 1 2uw ) 2s + 4su e 2t )w n 2,s n 0,t n 2,u w) = 2 2uw ) 4.40) 2s = Za) 2u = Za) 4.41) 4su e 2t = ) s u 1 Za) 2 = e 2t 4.42) a > 1/2 Za) 2 < 1 t a = 1/2 t a = 1/2 U a) a > 1/2 well-defined U a) La) La) L 0, Qa) Q 0 a > 1/2 BRST Q CSFT 4.23) BRST BRST [18]

35 BRST Q open bosonic string theory c = 26 matter c = 26 ghost CFT) BRST Q Ψ = 0 Ψ = P c P c 0 c Q χ 4.43) P P matter CFT 1 vertex operator U a) a > 1/2) Qa) a > 1/2) BRST Qa) Ψ = 0 Ψ = U a) 1 P c P c 0 c 1 0 ) + Qa) χ 4.44) U a) b 0 Siegel phys = U a) 1 c 1 0 P ) 4.45) L n 1 L n 2 L n k 0 P 4.46) 0 = c 1 0 CFT L n 24 P flat background P LC 4.46) L LC n 1 L LC n 2 L LC n k P LC 4.47) 4.46) CFT phys 4.45) *2 U a) 3 e qha) 4.23) 3.56) ) U a)qa)u a) 1 = 1 + 2aQ 4.48) e qha) Qa)e qha) = Q 4.49) *2

36 36 4 Q U a) e qha) 2 L n L n q n exp L + q) exp L) exp q) const. 4.50) B CFT CFT B.26) 0 CFT B.26) k = 0 U f = const. U f exp q log w f ) f 4.51) fw) 4.19) f a w) ) w fa w) log = h a w) + log 1 + 2a 4.52) f a w) 4.51) U a) = const.) Ua)e qha) e + qlog 1+2a) 4.53) 4.53) e qha) U U f e qha) e qha) Siegel b 0 U a) phys = U a) 1 phys 4.54) Siegel CSFT ) ) b0 A = V3 La) R ) phys 4.55) ϕ ) b 0 La) = a U a) 1 b 0 L 0 U a) 4.56)

37 ) 4.54) 4.55) A = ) ) V 1 b 3 0 ) R phys 1 + 2a L ) V 3 = V 3 Ua) 1) 1 Ua) 2) 1 Ua) 3) ) R = Ua) 1) Ua) 2) R 4.59) U a) dw v a w)t w) 4.53) N vertex qlog 1 + 2a)) = q 0 log 1 + 2a) 3 2 log 1 + 2a) 4.60) V N N q r) log 1 + 2a)) = r=1 3 3N 2 ) log 1 + 2a) 4.61) q 0 q 1) q N) 0 = ) 3.59) qh a ) dwv a w)t w) L 2 L 2 ) [10, 14] 4.61) V N r Ua) r) e qr) h a) = V N 4.62) 4.61) N = 2, ) V 3 = V a ) ) R = R 4.64) ) ) ) A = 1 + 2a 3 2 b0 ) V 3 R phys L ) phys 1 + 2a ) 1 2 phys

38 a = 1/2) 4.2 U 1/2) L 1/2) L 0 Q 1/2) [19] BRST Q 1 ) = Q 1 4 Q 2 + Q 2 ) + 2c 0 + c 2 + c ) Q n J B w) = n Q n w n ) Q 0 = Q Q 1/2) e qρ) Q 1 ) e qρ) = Q 2 + c 2 = 1 4 Q2) 4.68) ρw) qρ) ρw) = 2 log1 w 2 ) 4.69) 1 qρ) = dw ρw)j gh w) = 2 n q 2n 4.70) qρ) normal ordering e qρ) well defined 4.68) Q 2) BRST Q B 2 n=1 c n c 2) n = c n ) b n b 2) n = b n ) [19] { } c 2) m, b 2) n = δ m+n 4.73) SL2, R) ) = b 3 b ) c 2) n 0 2) = 0 n 2) 4.75) b 2) n 0 2) = 0 n 1) 4.76) Q 2) 4.1

39 4.5 no open string theorem Q 2) BRST Q 2) = 1 4 Q 2 + c 2 Q 2) Ψ = 0 Ψ = P c 2) 1 0 2) + P c 2) 0 c2) 1 0 2) + Q 2) χ = P b P 0 + Q 2) χ 4.77) 4.77) e qρ) Q 1/2)Ψ = 0 Ψ = P e qρ) b P e qρ) 0 + Q 1 ) χ 4.78) no open string theorem a = 1/2 Siegel 0 Q 1/2) BRST Q 2) e qρ) b 0 Siegel U F Q 1 2 )U F 1 1 = 4 Q 2 + c 2 = 1 4 Q2) 4.79) F w) 4.2 F BRST c n gw) = exp h 1 2 w) = 1 4 w 1 w ) ) Q 1/2) = Qg) + pure ghost part) 4.81) U F Qg)U F 1 1 = 4 Q ) F w)

40 ) U F Qg)U F 1 = dw gw)u F J B w)u F 1 = dw gw)u F wj Bw)U F 1 = df gw)wf w)j BF ) + = df gw)wf w)f w) 1 J B F ) ) CFT BRST J Bw) = w 1 J B w) 4.84) T z)j Bw) 2J B w) z w) 2 + J B w) z w) ) Q 2 = dzz 2 J B z) 4.83) 4.82) F w) wgw) F w) F w) = 1 4 F w))2 4.86) F w) F w)) 3 = 1 4wgw) 4.80) ) F w) = w ) F w) A A.26) U F = e 1 2 L ) U F Qg)U F 1 1 = 4 Q 2 + pure ghost) 4.90) U F = exp 1 ) 2 L ) nilpotency Q 1/2) Q 2) 4.79) U F b ) Q 2) Siegel ) 4.4 no open string theorem BRST U F = e 1/2L 2 Q 1/2) a = 1/2 Q 1/2) Ψ = 0 Ψ = U F P b P 0 ) + Q 1/2) χ 4.92)

41 4.5 no open string theorem Siegel phys = U F P b P 0 ) 4.93) CSFT 1 g 3g 3 phys = 1 b 0 /L 0 = 1 phys = 0 1) b 0 /L 1/2) = 1 CSFT ) < 3g ) 3g 3 g CFT 4.94) 0 VSFT Sen

42

43 43 5 Sen D-brane no open string theorem 1 CSFT D-brane CSFT 5.1 no open string theorem CSFT BRST 4.3) a = 1/2 ) g) Q 2 = Q g) C 5.1) g gw) = 1 w 1 ) 2 5.2) 4 w L L = 1 2 L L 2 + L 2) ) L n L n) D-brane BCFT 1 L 0 = 0 dte tl0 5.4)

44 44 5 t A.26) e tl0 fw) = e t w 5.5) ρ = log w t 5.3) L a = 1/2 ) Drukker [22] e tl *1 M M B M M vertex operator V, V 5.1 e tl B CSFT 5.1 1/L Σ Σ b 0 e tl0 Σ 5.6) Σ 5.2 CSFT [23, 24] BRST ) BSFT 2.12) Ω S cl [Ψ] S cl [Ψ] + Ω Ψ 5.7) *1

45 e tl 0 t Ω Ψ Ω 2 real) reality 3 Σ Σ Ψ = i f I [ ci) c i)v c i, i)ψ0) ] = i ci)c i)v c i, i)f I [Ψ0)] 5.8) f I = 2w/1 w 2 ) identity state 5.8) 2 f I ±i) = ±i, f0) = 0 5.9) V c i, i) CFT 1,1) vertex operator 5.8) I Ψ vertex operator V Σ I V 5.10) *2 ρ 5.3 V C D 25brane CSFT Σ Q Λ + Ψ Λ Λ Ψ) = ) CSFT *2

46 46 5 c cv c π 2 ) 5.3 ρ D-p brane D-25 brane vertex operator V = ci)c i)e ip Xi, i) 5.12) p on shell p 2 = 4 α 5.13) X µ z, z) X µ z, z) = X µ z) + X µ z))/2 X µ z)x µ z ) = 2α η µν logz z ) 5.14) 5.8) D-25brane T ; p T ; p Ψ = i ci)c i)e ip Xi, i) f I [Ψ0)] 5.15) 5.15) D-25brane CFT D-p brane X µ z, z) µ = 0,..., p) X i z, z) i = p + 1,..., 25) p µ k i X µ z, z) = Xµ z) + X µ z) 2 X i z, z) = Xi z) X i z) )

47 on-shell p 2 + k 2 = 4 α 5.17) D-p brane T ; p, k Ψ = i ci)c i)e ip Xi, i) e ik Xi, i) f I [Ψ0)] 5.18) T ; p, k tree-level ) T ; p, k CSFT OΨ) = T ; p, k Ψ 5.19) OΨ) Ψ Ψ A = O 1 Ψ)O 2 Ψ) O N Ψ) 5.20) CSFT CSFT 2 D-p brane CSFT Ψ 1 Ψ 2 = b 0 1) L R 1) ) 0 R ) 2 OΨ)O Ψ) = T ; p, k Ψ T ; p, k Ψ = 1 T ; p, k 2 T ; p, k b 0 1) = 0 L 0 1) R 12 1 T ; p, k 2 T ; p, k b 0 1) e tl01) R ) 5.22) 2π) p+1 δ p+1 p + p )A = 0 1 T ; p, k 2 T ; p, k b 0 1) e tl01) R ) 5.23) T ; p, k e tl0 ρ t 5.23) ρ

48 48 5 CFT A = 0 dt bρ)cm)c M)ct + M)ct M) ρ C ρ e ip XM, M) e ip Xt+M,t M) ρ e ik XM, M) e ik Xt+M,t M) ρ 5.24) M = iπ/2 ρ t τ = 0 t 5.4) 5.4 ρ τ = 0, t V D-p brane D-p brane 5.24) CFT z 5.24) 5.4 zρ) z zρ) z

49 surface state 5.24) T ; p, k vertex operator f I w) = 2w/1 w 2 ) surface state identity state z z 5.6 z = 2w 1 w 2 1 z z = ±i 6 quadratic differential ρ ρ w = e ρ z = 2w/1 w 2 ) ) 2 dρ 1 = dz z 2 z 2 + 1) 5.25) 5.25) 5.6 z z = 0 2 puncture z = ±i 1 2 A z 5.7 xt) yt) ρ t 5.7 quadratic differential ) 2 dρ Nt) = dz z 2 + xt))z 2 + yt)) 5.26) A z ρ 90 u = iρ 5.8) τ it = πτ/2

50 z 5.8 u u z z = i ϑ 1u τ) 5.27) ϑ 4 u τ) ϑ i u τ) i = 1, 2, 3, 4) [25] zu) π πτ/ ) u ϑ i 0 τ) = ϑ i zu) quadratic differential ) 2 du 1 = dz ϑ z2 ϑ 2 3 )ϑ2 3 + z2 ϑ 2 2 ) 5.28) [25] z 5.28) 1

51 z = ±iϑ 2 /ϑ 3 z = ±iϑ 3 /ϑ 2 x = ϑ 2 ϑ ) z = ±ix z = ±ix z x t 5.29) t = 0 x = 1, t = + x = ) x 0 x t = 0) x = + ) x z A = 1 0 dx ) 1 dx dt C z C z 5.9 dz dz bz)cix)c ix)cix 2πi du) 1 )c ix 1 ) z e ip Xix, ix) e ip Xix 1, ix 1 ) z e ik Xix, ix) e ik Xix 1, ix 1 ) 5.31) z 5.31) CFT X M z)x N z ) = 2α η MN logz z ) 5.32) bz)cz ) = 1 z z 5.33)

52 52 5 N M µ, i bz)cix)c ix)cix 1 )c ix 1 ) 41 x 4 ) 2 = x 4 z 2 + x 2 )z 2 + x 2 ) 5.34) ) e ip Xix, ix) e ip Xix 1, ix 1 ) = 2 α s x 2 α s 1 x ) e ik Xix, ix) e ik Xix 1, ix 1 ) = 2 4 α s 1 x x 2 ) α s+t/2) ) s = p 2 = p 2 t = k + k ) 2 p µ + p µ = ) bz) 5.34) bz)cix)c ix)cix 1 )c ix 1 ) 41 x 4 ) 2 = x 4 z 2 + x 2 )z 2 + x 2 ) = 4ϑ 4 1 x 4 ) 2 ) 2 dz 3 x ) du ) 5.31) z C z dz 2πi ) dz bz)cix)c ix)cix 1 )c ix 1 ) = du = C z C u dz 2πi ) dz 4ϑ 4 1 x 4 ) 2 3 du x 2 du 1 x 4 ) 2 2π 4ϑ4 3 x 2 ) 2 dz du = 4ϑ 4 1 x 4 ) 2 3 x ) t [25] x = izπ/2) ϑ i u τ) τ dx dτ = π 4 = iπ 4 2 ϑ i u τ) u ) d 2 z du ) u=π/2 QD 5.28) u = π/2 dx dt = ϑ4 3 2 x1 x4 ) 5.41) A x 5.35) 5.36) 5.38) 5.41) 5.31) x A = 1 0 dx 1 x4 2x 3 { 4x x 2 ) 2 } α s 1 x x 2 ) α t/ )

53 ) SL2, C) 5.42) z z = x2 1 z + i/x x ) + 1 z i/x z = i/x ) 1 x 2 2 y = 1 + x ) y A = 1 0 dy y α t/4 2 1 y) α s 2 = B α t/4 1, α s 1) 5.45) [27, 26, 28] QD 5.28) CSFT QD ) CFT T ; p, k = 0 c 1 c 0 expe gh ) p expe N ) k expe D ) 5.46) E gh = 1) n c n b n 5.47) n=1 E N = 1) n 1 ) 2α 2n α n α n n p α 2n 5.48) n=1 E D = 1) n 1 2n α n α n i 2 ) 2α 2n 1 k α 2n ) n=1 α n µ, i) A = T ; p.k b 0 L 0 T ; p, k 5.50) T ; p, k T ; p, k R 12 q = e t 1 L 0 = 0 e tl0 = q L0 5.51)

54 54 5 e tl0 α n q n α n c n q n c n 5.52) b n q n b n A = 0 dt T ; p, k : q T ; p, k 5.53) T ; p, k : q T ; p, k 5.52) T ; p, k ) A gh = A N = A D = A = 0 dt4 2α s 2 q α s 1 A gh A N A D 5.54) 1 q 2n ) 5.55) n=1 [ ] 4α 1 q 2n ) p+1)/2 1 q 4n s 1 q 4n ) n=1 n=1 n=1 [ 1 q 2n ) 25 p)/2 1 + q 2n 1 q 2n n=1 ] 4α s 16 [ n=1 5.54) A = 0 1 { } 1 q dt 1 q 2n ) 12 2n 16 16q 1 + q 2n n=1 n=1 [ { 1 q 4n )1 + q 2n )1 q 2n 1 } 4 ] α s ) 16q 1 q 4n 2 )1 q 2n )1 + q 2n 1 ) n=1 [ 1 q 2n q 2n 1 n=1 ] 4α 1 + q 2n 1 s+t/2)+16 1 q 2n ) ] 2α t ) q CFT [25] [ 1 x 2 ] x 2 = 1 q 2n q 2n ) n=1 dx 1 x 4 dt 2x 3 = 1 16q 4x x 2 ) 2 = 16q { } 1 q 1 q 2n ) 12 2n q 2n 5.60) n=1 n=1 { 1 q 4n )1 + q 2n )1 q 2n 1 } 4 ) 1 q 4n 2 )1 q 2n )1 + q 2n ) ) 5.59) 5.60) 5.61) 5.42) 5.58) CFT

55 55 6 Quadratic differentials 4 f a w) 5 zu) quadratic differentials QD) [29] 2 QD 1 1 [30, 24] QD QD 6.1 Quadratic Differentials [29] QD QD CFT T zz z) 6.1 R U ν, h ν ) R quadratic differential ϕ z ν = h ν P ) P R) ϕ ν ϕ ν z ν )dz 2 ν = ϕ µ z µ )dz 2 µ, dz ν = dz ν dz µ dz µ 6.1) 6.2 R L ϕz)dz 2 < 0, ϕz)dz 2 > 0) 6.2)

56 56 6 Quadratic differentials 6.1 D = {ρ ρ C, 0 Iρ 2π} ϕρ) = 1 D QD dρ 2 6.3) ρ = x + iy x, y R) dρ = ±idy 6.1) 6.1 ϕρ) = R U, z) QD ϕz)dz 2 dρ 2 = ϕz)dz 2 6.4) U, ρ) 6.4) ρ z 6.4) dρ = ± ϕz)dz 6.5) ϕz) U z ρ = dz ϕz) t 6.6) t ρ z Φz) dz ϕz) 6.7) 6.6) z z = Φ 1 ρ + t) 6.8)

57 6.1 Quadratic Differentials 57 fz) QD ϕz) ϕ QD 1/n 6.2 QD S = C { } U, z) V, z ) z = 1/z S QD U V ϕ = 1 z 2 dz2 6.9) ϕ = 1 z 2 dz ) ϕ z = 0, 2 ϕ U z = re iθ 6.9) ϕ = 1 r 2 dr 2 dθ 2 + 2idr dθ ) < ) dz = ±dθ QD 6.6) 6.9) Φz) = log z 6.12) z zρ) = e ρ ρ puncture z 6.2) 6.2 ρ z CSFT D = {g g C, g 1} D QD ϕ = 9g g 3 1) 2 dg2 6.13)

58 58 6 Quadratic differentials QD g = 0 1 g = 1, ω, ω 2 2 ρ gρ) ) 2 dg = g3 1) 2 dρ 9g 6.14) 3 { 1 ) 2 ) 2 ) 2 } + ie ρ ie ρ ie gρ) =, ω, ω 2 ρ 3 1 ie ρ 1 ie ρ 1 ie ρ 6.15) w = e ρ 2 2.8) 3 g 1) w) g 2) w) g 3) w) D g = 1 + iz)/1 iz) 6.13) QD dρ 2 = 9z2 + 1) z 2 z 2 3) 2 dz2 6.16) z = 0, ± 3 2 z = ±i 1 ρ zρ) 2 f 1) w) f 2) w) f 3) w) QD zρ) QD 6.2 QD CSFT L 0 QD w vw) L v = dw vw)t w) 6.17) 1 L v = 0 dt e tlv 6.18)

59 6.2 QD 59 A t ) h dzt w) e tlv ϕw)e tlv = ϕz t w)) 6.19) dw z t w) = e tvw) w w 6.20) z t w) t QD A A.14) z t w) ρ ρ = vw) w z t w) = vz t w)) 6.21) dw 2 vw) 2 = dz 2 t vz t ) ) w dw 1 vw = Φw), ) ) 6.22) dρ 2 = 1 vz t ) 2 dz2 6.24) z t v z t 6.24) t z t η) t t 6.24) 1 dρ dz = ± 1 vz) 6.25) ± η + ρ = Φz) t 6.26) t z zρ) = Φ 1 ρ + t) 6.27) ρ 6.27) w zw) = Φ 1 Φw) + t) 6.28) A.18) g Φ QD

60 60 6 Quadratic differentials 6.4 QD QD vw) 1 vz) 2 dz2 QD 6.4 L 0 vw) = w 6.23) η = Φw) = log w 6.29) QD dη 2 = 1 z 2 dz2 6.30) η 6.2 ρ 6.27) z t η) = e η+t = e t e η 6.31) w = e η ) vz) = 1 + a)z + a 2 z3 + 1 z ) = a 2 z 2 + Za))z 2 + Za) 1 ) z η QD 6.32) dη 2 = 4 a 2 z 2 z 2 + Za)) 2 z 2 + Za) 1 ) 2 dz2 6.33) 1/2 < a < 0 Za) < 0 Y a) = Za) 6.33) ± Y a), ± Y a) puncture 6.33) z = 0 2 z = 0 QD dη 2 4 a 2 z2 dz ) z ± η 6.4 z 6.5 a = 0.2 z trajectry a = 1/2 QD z 2 dη 2 = 16 z 2 1) 4 dz2 6.35) z = ± z = 1 QD dη 2 = 1 z 1) 4 dz2 6.36)

61 6.2 QD a = 0.2 z a = 1/ : 2 2

62 62 6 Quadratic differentials QD QD

63 63 7 CSFT) exphw)) 4 CSFT Sen 5 D-p brane CSFT 2 ρ z [6, 19, 33, 7] D-brane [33] - CSFT S a [Ψ] Ψ min 6 S a [Ψ] min a a = 1/2 S a [Ψ] min D-brane 7.1 S 1/2 [Ψ] Ψ max 6 D-brane 120% [34] 7.2 [33] D-brane D-brane

64 level 6,18) level 6,12) f a Φ 0 ) a 7.1 V L 7.2 Ψ 0 S[Ψ 0 ] I C L G)QC L G) I 7.1) 5 I 0 L = vz)t z) e ϵl 7.3 ϵ 0 L L ϵ 0 5 CSFT ρ

65 65 L 5.3) L n CFT gluing theorem [10] B 0 [21, 22, 23] CFT CFT 6 QD D-brane Chern-Simons 7.3 D-brane

66

67 67 A CFT [10] fw) h ϕw) ) h dfw) f[ϕ] = ϕfw)) A.1) dw f[ϕ]dw) h = df) h ϕf) A.2) f[ϕ] w f CFT L n vw) vw) = v n w n+1 A.3) n dw vw)t w) = n v n L n A.4) fw) = e vw) w w A.5) U f = exp ) dwvw)t w) A.6) f[ϕ] = U f ϕw) U f 1 A.7) A.7) [46] A.1 vw) fw) fw) vw) fw) = e vw) w A.8)

68 68 A vw) fw) t f t w) = e tvw) w A.9) f t w) = w + tvw) + t2 2! vw) wvw) +... A.10) t = 1 fw) CSFT fw) fw) e v Φw) e v e v = 1 e v we v = e v w A.11) A.12) Φw) e v Φw) = Φe v w) = Φfw)) A.9) t A.13) df dt = ev vw) w = vfw)) A.14) A.14) 2 A.13) A.14) df t vf t w)) = dt gw) = w dw 1 vw ) A.15) A.16) A.15) gf t w)) = t + Cw) A.17) Cw) t t 0 f 0 w) = w Cw) = gw) A.17) f t w) = g 1 t + gw)) A.18) t = 1 fw) = g gw)) A.19) gw) vw) A.19) vw) fw)

69 A.2 fw) vw) 69 A.19) fw) A.16) vw) = βw m+1 m 0) A.20) gw) = 1 A.21) β1 n)wm g 1 w) = βmw) 1 n A.19) A.21) A.22) A.22) fw) = n m,β w) = βm + w m) 1 m m 0) A.23) m = 0 n 0,β w) = e β w A.24) A.1 vw) = βw m+1 vw) = βw m+1 n m,β w) n m,β w) = { βm + w m ) 1 m m 0) βw m+1 m = 0) A.25) A.26) A.2 fw) vw) fw) vw) vw) = n v nw n+1 A.5) fw) vw) vw) fw) A.5) v vw) w fw) = vw) w e v w w = e v w vw) w w = e v w vw) A.27) A.13) vw) w fw) = vfw)) A.28) vw) A.28) fw) A.26) fw) = n α,n n β,m... w) A.29)

70 70 A U f = e αln e βlm... A.30) U f U f = e n v nln A.31) vw) = n v nw n+1

71 71 B CFT k CFT CFT B.1 CFT T w) T w) = T w) J gh w) B.1) T z) 0 J gh B.1) 2T w) T w) T z)t w) + z w) 2 z w) B.2) 3 T z)j gh w) z w) 3 + J ghw) z w) 2 + J ghw) z w) B.3) 6 J gh z) J gh w) z w) 4 B.4) T z)t w) 12 z w) 4 + 2T w) z w) 2 + T w) z w) B.5) T w) 24 T z)cw) cw) z w) B.6) T z)bw) bw) z w) 2 + bw) z w)... B.7) CFT cw) bw) 0 1 bw) = n b nw n 2 bw) 1

72 72 B CFT k dwbw)w n = b n 1 B.8) c w) = w 1 cw) = n c n w n B.9) b w) = w bw) = n b n w n 1 B.10) c z)b w) cz)bw) 1 B.11) z w) c w) b w) c = 24 CFT c n = dw c w) w n 2 b n = dw b w) w n B.12) fw) U f = exp ) dw vw) T w) B.13) vw) A.5) fw) B.7) c w) b w) f U f c w)u f 1 = c f) B.14) U f b w)u f 1 = f ) 1 b f) B.15) B.15) U f b w)dwu f 1 = b f)df B.16) w = 0, f = f0) f ) B.10) U f b 0 U f 1 = b0 B.17) b 0 B.17) L n [L n, b 0 ] = 0 B.18)

73 B.2 k 73 B.2 k k B.19) c k) n b k) n c k) n = c n+k b k) n = b n k B.19) { } c k) m, b k) n = δ n+m,0 B.20) O c n c k) n b n b k) n O k) [ O k), P k)} = [O, P} B.19) B.21) c k) w) = n c n w n+1+k b k) w) = n b n w n 2 k B.22) k c k) w) b k) w) f U k) f = exp ) dw vw) T k) w) B.23) U k) f U k) f c k) w)u k) 1 f = f ) 1 c k) f) b k) w)u k) 1 f = f ) 2 b k) f) B.24) B.25) B.3 k CFT U f CFT U k) f U k) f = const. U f exp q log f k+1 ) w k+1 f B.26) U k) f U f B.26) c k) w) b k) w) B.26) U k) f U k) f c k) w)u k) 1 f = U e qg) f c k) w)e qg) U f 1 b k) w)u k) 1 f = U e qg) f b k) w)e qg) U f 1 B.27) B.28)

74 74 B CFT k gw) = log f k+1 /w k+1 f ) B.29) B.27) B.22) [ ] qg), c k) w) = [ qg), w k w) ] = w k gw)cw) = gw)c k) w) B.30) e qg) c k) w)e qg) = e gw) c k) w) B.31) c k) w) c w) B.9) B.22) c k) w) = w k+1 c w) B.32) c k) w) U f U f c k) w)u f 1 = w k+1 U f c w)u f 1 = w k+1 c f) = wk+1 f k+1 ck) f) B.33) B.33) B.31) B.27) U f e qg) c k) w)e qg) U f 1 = e gw) wk+1 f k+1 ck) f) = f) 1 c k) f) B.34) B.34) 2 B.29) B.34) k B.24) U k) f c k) w)u k) 1 f = f) 1 c k) f) B.35) B.34) B.27) bw) B.28) B.26)

75 75 C 5 5.8) Σ C.1 Σ QΛ + Ψ Λ Λ Ψ) = 0 C.1) Ψ 1 Λ 0 Q ) Λ 1 C.1) Σ Q = 0 C.2) vertex operator V = ici)c i)v c i, i) C.2) Σ Q = Vf I [Q] = VQ = [V, Q] = 0 C.3) C.3) 2 Q 3 V 0,0) Q C.2 C.1) Λ 1 Σ Ψ Λ Λ Ψ) = 0 C.4) 3 surface stateσ V C.1 ρ V w w = ±i 0

76 76 C BPZ C.1 2 BPZ Ψ Λ 1 0 P V L L V P C.1 Σ Ψ Λ Λ Ψ) ρ Σ C.3 Q CSFT Ψ 0 BRST Q Ψ = QΨ + Ψ 0 Ψ + Ψ Ψ 0 BRST Σ Q Λ = Σ QΛ + Ψ 0 Λ Λ Ψ 0 ) C.5) C.6) Ψ 0 BRST Q Q 0 Σ Ψ CSFT C.4 reality reality CFT reality reality Σ Ψ = Σ Ψ C.7) Ψ reality Ψ ) = Ψ = I[Ψ0)] C.8) α n ) = α n b n ) = b n c n ) = c n C.9)

77 C.4 reality 77 *1 AB) = B A C.10) C.9) ci)c i)) = c i)ci) C.11) Ψ V c Σ Ψ = i2) hψ I[Ψ0)]I[V c ]c i)ci) = i2) hψ Ψ0)V c ci)c i) = Σ Ψ C.12) C.12) 2 BPZ *2 *1 *2 vertex operator i

78

79 79 [1] E. Witten, Non-Commutative Geometry and String Field Theory, Nucl. Phys. B ) 253. [2] A. Sen and B. Zwiebach, Tachyon Condensation in String Field Theory, J. High Energy Phys ) 002 [hep-th/ ]. [3] V. A. Kostelecky and S. Samuel, On a Nonperturbative Vacuum for the Open Bosonic String, Nucl. Phys. B ) 236. [4] N. Moeller and W. Taylor, Level Truncation and the Tachyon in Open Bosonic String Field Theory, Nucl. Phys. B ) 105 [hep-th/ ]. [5] D. Gaiotto and L. Rastelli, Experimental String Field Theory, hep-th/ [6] T. Takahashi and S. Tanimoto, Marginal and Scalar Solutions in Open Cubic String Field Theory, J. High Energy Phys ) 033 [hep-th/020133]. [7] T. Takahashi and S. Zeze, Gauge Fixing and Scattering Amplitudes in String Field Theory Expanded around Universal Solutions, Prog. Theor. Phys ) 159 [hep-th/ ]. [8] T. Takahashi and S. Zeze, Closed String Amplitudes in Open String Field Theory, J. High Energy Phys ) 020 [hep-th/ ] [9] M. Kaku and K. Kikkawa, Field Theory of Relativistic Strings. I., Phys. Rev. D ) 1110, M. Kaku and K. Kikkawa, Field Theory of Relativistic Strings. II., Phys. Rev. D ) 1823, E. Cremmer and J. L. Gervais, Infinite Component Field Theory of Interacting Relativistic Strings and Dual Theory, Nucl. Phys. B ) 410, H. Hata, K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, Covariant String Field Theory, Phys. Rev. D ) 2360, H. Hata, K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, Covariant String Field Theory. II, Phys. Rev. D ) 1318, E. Witten, Interacting Field Theory of Open Superstrings, Nucl. Phys. B ) 291, C. R. Preitschopf, C. B. Thorn and S. A. Yost, Superstring Field Theory, Nucl. Phys. B ) 363, T. Kugo and T. Takahashi, Unoriented Open Closed String Field Theory, Prog. Theor. Phys ) 649 [hepth/ ], B. Zwiebach, Oriented Open-Closed String Theory Revisited, Ann. Phys ) 193, S. Naito, Quantum Superstring Field Theory in the B 0 Gauge and the Physical Scattering Amplitudes, J. Math. Phys ) 4713, N. Berkovits, Super-Poincaré Invariant Superstring Field The-

80 80 ory, Nucl. Phys. B ) 439, [hep-th/ ]. [10] A. Leclair, M. Peskin and C. R. Preitscheopf, String Field Theory on the Conformal Plane I), Nucl. Phys. B ) 411, A. Leclair, M. Peskin and C. R. Preitscheopf, String Field Theory on the Conformal Plane II), Nucl. Phys. B ) 464. [11] By I.A. Batalin, G.A. Vilkovisky, Quantization of Gauge Theories with Linearly Dependent Generators, Phys. Rev. D ) 2567, Phys. Rev. D ) 508. [12] G. T. Horowitz, J. Lykken, R. Rohm, A. Strominger, A Purely Cubic Action for String Field Theory, Phys. Rev. Lett ) 283. [13] J. Kluson, Exact Solutions of Open Bosonic String Field Theory, J. High Energy Phys ) 043,[hep-th/ ]. [14] D. Gross and A. Javichi, Operator Formalism of Interacting String Field Theory I), Nucl. Phys. B ) 1, D. Gross and A. Javichi, Operator Formalism of Interacting String Field Theory II), Nucl. Phys. B ) 225. [15] L. Rastelli and B. Zwiebach, Tachyon Potentials, Star Products and Universality, J. High Energy Phys ) 038 [hep-th/ ]. [16] I. Kishimoto, K. Ohmori, Cft Description of Identity String Field: toward Derivation of the VSFT Action, J. High Energy Phys ) 036,[hepth/ ]. [17] G. T. Horowitz, A. Strominger, Translations as Inner Derivations and Associativity Anomalies in Open String Field Theory, Phys. Lett. B ) 45. [18] M. Kato, K. Ogawa, Covariant Quantization of String based on BRS Invariance, Nucl. Phys. B ) 443. [19] I. Kishimoto and T. Takahashi, Open String Field Theory around Universal Solutions, Prog. Theor. Phys ) 591 [hep-th/ ]. [20] A. Sen, Universality of the Tachyon Potential, J. High Energy Phys ) 027 [hep-th/ ]. [21] N. Drukker, Closed String Amplitudes from Gauge Fixed String Field Theory, Phys. Rev. D ) [hep-th/ ]. [22] N. Drukker, On Different for the Vacuum of Bosonic String Field Theory, hep-th/ [23] D. Gaiotto, L. Rastelli, A. Sen and B. Zwiebach, Ghost Structure and Closed Strings in Vacuum String Field Theory, hep-th/ [24] B. Zwiebach, Interpolating String Field Theories, Mod. Phys. Lett. A7 1992) 1079 [hep-th/ ]. [25] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis Cambridge Univ. Press, London, 1927), Chapter XXI. [26] M. B. Green and J. H. Schwarz, Infinity Cancellations in SO32) Superstring Theory, Phys. Lett. B ) 21

81 81 [27] H. Itoyama, P. Moxhay, Multiparticle Superstring Tree Amplitudes, Nucl. Phys. B ) 685 [28] M. Alishahiha and M. R. Garousi, Gauge Invariant Operators and Closed String Scattering in Open String Field Theory, Phys. Lett. B ) 129 [hepth/ ]. [29] K. Strebel, Quadratic Differentials, Springer-Verlag 1984). [30] S. B. Giddings and E. Martinec, Conformal Geometry and String Field Theory, Nucl. Phys. B ) 91. [31] S. Giddings, E. Martinec and E. Witten, Modular Invariance in String Field Theory, Phys. Lett. 176B 1986) 362. [32] B. Zwiebach, Closed string field theory: Quantum action and the B V master equation, Nucl. Phys. B ) 33 [hep-th/ ] [33] T. Takahashi, Tachyon Condensation and Universal Solutions in String Field Theory, hep-th/ [34] T. Takahashi, S. Zeze, unpublished. [35] A. Sen, Descent Relations Among Bosonic D-branes, Int. J. Mod. Phys. A ) 4061 [hep-th/ ]. [36] A. Sen, Non-BPS States and Branes in String Theory, hep-th/ [37] D. Z. Freedman, S. B. Giddings, J. A. Shapiro and C. B.Thorn, The Nonplanar One-Loop Amplitude in Witten s String Field Theory, Nucl. Phys. B ) 253. [38] D. Gaiotto, N. Itzhaki and L. Rastelli, Closed Strings as Imaginary D-branes, hep-th/ [39] I. Ellwood, J. Shelton and W. Taylor, Tadpoles and Closed String Backgrounds in Open String Field Theory, hep-th/ [40] A. Hashimoto and N. Itzhaki, Observables of String Field Theory, J. High Energy Phys ) 028 [hep-th/ ]. [41] T. Takahashi and S. Zeze, in preparation. [42] J. Polchinski, String Theory I,II, Cambridge University Press 1998). [43] A. M. Polyakov Quantum Geometry of Bosonic Strings, Phys. Lett. B ) 207, Quantum Geometry of Fermionic Strings, Phys. Lett. B ) 211. [44] D. Friedan, E. J. Martinec, S. H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B ) 93. [45] W. Siegel, Covariantly Second Quantized String. 2, Phys. Lett. B ) 157, Phys. Lett. B ) 391 [46] M. Schnabl, Wedge States in String Field Theory, J. High Energy Phys ) 004. [47] A. Kostelecky and R. Potting, Analytical Construction of a Nonperturbative Vacuum for the Open Bosonic String, Phys. Rev. D ) [hepth/ ]. [48] T. Banks and L. Susskind, Brane Anti-Brane Forces, [hep-th/ ].

82 82 [49] G. Lifschytz, Comparing D-branes to Black-branes, Phys. Lett. B ) 720, [hep-th/ ]. [50] L. Rastelli, A. Sen and B. Zwiebach, Boundary CFT Construction of D-branes in Vacuum String Field Theory, J. High Energy Phys ) 045, [hepth/ ].

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

Introduction 2 / 43

Introduction 2 / 43 Batalin-Vilkoviski ( ) 2016 2 22 at SFT16 based on arxiv:1511.04187 BV Analysis of Tachyon Fluctuation around Multi-brane Solutions in Cubic String Field Theory 1 / 43 Introduction 2 / 43 in Cubic open

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

橡超弦理論はブラックホールの謎を解けるか?

橡超弦理論はブラックホールの謎を解けるか? 1999 3 (Can String Theory Solve the Puzzles of Black Holes?) 305-0801 1-1 makoto.natsuume@kek.jp D-brane 1 Schwarzschild 60 80 2 [1] 1 1 1 2 2 [2] 25 2.2 2 2.1 [7,8] Schwarzschild 2GM/c 2 Schwarzschild

More information

YITP50.dvi

YITP50.dvi 1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

Vacuum charge Q N

Vacuum charge Q N Vacuum charge Q N introduction 2 2 free bosonic string 4 2...................................... 4 2.2..................................... 9 2.3 old-covariant approach............................ 9 2.4

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

2 2 Belavin Polyakov Zamolodchikov (BPZ) 1984 [13] 2 BPZ BPZ Virasoro [16][18] [20], [30], [47] [1][6] [8][10], [11], [12] Affine [6],GKO [2] W

2 2 Belavin Polyakov Zamolodchikov (BPZ) 1984 [13] 2 BPZ BPZ Virasoro [16][18] [20], [30], [47] [1][6] [8][10], [11], [12] Affine [6],GKO [2] W SGC -83 2 2 Belavin Polyakov Zamolodchikov (BPZ) 1984 [13] 2 BPZ BPZ 1 3 4 Virasoro [16][18] [20], [30], [47] [1][6] [8][10], [11], [12] Affine [6],GKO [2] W [14] c = 1 CFT [8] Rational CFT [15], [56]

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information