Size: px
Start display at page:

Download ""

Transcription

1 09- B, C

2 B ( ) 3 4 WKB I C ( B ) 7 II 8

3 LS 9 Hartree-Fock 0 Born-Oppenheimer II S Tomonaga-Schwinger 3 4 Bell EPR(Einstein-Podolsky-Rozen) 3

4 E = p c + m c 4 mc + m p + O(mc ( p mc )4 ) () mc p mc p () (3) E pc E mc = m p = E NR (4) Heisenberg x p h t da dt = {A, H} {, } [, ] i h [x, p] = i h i) Parisi-Wu ii) Nelson 4

5 Stefan-Boltzmann U = 8π (E + H ) ν ν + dν : u ν dν U = U = σt 4 0 u ν dν σ = erg/(cm 3 K 4 ) Rayleigh-Jeans ν T u ν dν = 8π c 3 kt ν dν k Boltzmann k = R N (erg K ) Wien Rayleigh-Jeans Wien ν T u ν (ν, T ) = ν 3 f( ν T ) f( ν T ) = 8π c 3 k T ν f( ν T ) = α βν e T c α β. Planck 900 f( ν T ) u ν = 8πhν3 c 3 e hν kt 8πk T ν for c 3 ν 8πh exp ( ) hν c 3 kt for ν T k h T k h α = 8π c h, β = h k h Planck Planck h (erg s) 5

6 ϵ = nhν (n = 0,,, ) Boltzmann Planck ( ) < ϵ > = n=0 nhνe hν kt n n=0 e hν kt n (5) Z (/kt ) = Z hν = e hν kt (6) (7). Einstein 905 Planck Lenard ν ν th ν ϵ = hν E = hν W, W : 3. Bohr 93 pdq = nh 4. de Broglie 94 Bohr E = hν = cp, p = hν c = h λ 6

7 E = hν, p = h λ de Broglie E E = hω ω p p = hk k h = h π k = π λ Young Ψ(x) Ψ a + Ψ b = Ψ a + Ψ b +ReΨ aψ b Ψ a + Ψ b 7

8 Ψ de Broglie p = (E = ) p, E Ψ(r, t) = C exp( ī (p r Et)), h C Schrödinger (i) a, b, c, Ψ abc Ψ a, Ψ b, Ψ c, p a p b a) Ψ abc = Ψ a + Ψ b + Ψ c + Ψ a (r, t) = C a e ī h (pa r Eat) Ψ b (r, t) = C b e ī h (p b r E b t) Ψ a or Ψ b b) Ψ ab (r, t) = C a (t)e ī h (pa r Eat) + C b (t)e ī h (p b r E b t) = B a (t)e ī h p a r + B b (t)e ī h p b r Ψ(r, t) = p B p (t)e ī h p r Ψ(r, t) = (π h) 3 A(p, t)e ī h p r d 3 p A(p, t) = (π h) 3 Ψ(r, t)e ī h p r d 3 r 8

9 Ã(p, E ) = (π h) Ψ(r, t)e ī h (p r E t) d 3 rdt Ψ(r, t) = Ã(p, E )e i h (p r E t) d 3 p de (π h) 4 E p (ii)schrödinger E = m p (π h) 4 (E m p )Ã(p, E ) = 0 (E m p )Ã(p, E )e ī h (p r E t) d 3 p de = 0 E h i t, m p m ( h i ) i h h Ψ(r, t) = t m Ψ(r, t) Schrödinger Ã(p, E ) = π hδ(e m p )a(p ) Ψ(r, t) = (π h) 3 a(p )e ī h (p r m p t) d 3 p i h t Ψ(r, t) = Ĥ0Ψ(r, t) Ĥ 0 = m ˆp, ˆp = i h, 9

10 [x, ˆp x ] = i h(x x x) = i h x [y, ˆp x ] = i h(y y x y) = 0 [, ]/i h H = m p + V (r) Ĥ = m ˆp + V (r) Schrödinger i h Ψ(r, t) = ĤΨ(r, t) t i h h Ψ(r, t) = ( t m + V (r))ψ(r, t) { Schrödinger 3 Born (i) =Schrödinger (ii) (iii) (ii) i h t Ψ = h m Ψ + V (r)ψ () i h t Ψ = h m Ψ + V (r)ψ () () Ψ () Ψ i h t Ψ = h m (Ψ Ψ ( Ψ )Ψ) = h m (Ψ Ψ ( Ψ )Ψ) 0

11 (iii) ρ t + j = 0 ρ = Ψ, j = h im (Ψ Ψ ( Ψ )Ψ) ρ(r, t)d 3 r = v ph = E p = p ρ = Ψ (a) micro macro (b) H. Born ρ = Ψ p m ρ = Ψ(r, t) Parseval Ψ(r, t) d 3 r = A(p, t) d 3 p A(p, t) t r d 3 r = dxdydz Ψ(r, t) d 3 r t p d 3 p = dp x dp y dp z A(p, t) d 3 p

12 Ψ(r, t) d 3 r = A(p, t) d 3 p = Ω P (Ω) P (Ω) = Ψ(r, t) d 3 r Ω n Ω, Ω, Ω n N N Ψ(r, t) N Ω i N i ( n i= N i = N) w i = N i N Ω i Ψ(r, t) d 3 r, N x ni= x i N i < x >= x Ψ(r, t) d 3 r N n p ni= p xi N i (p) < p x >= p x A(p, t) d 3 p N(p) < F >= Ψ (r, t)f (r, i h )Ψ(r, t)d 3 r = A (p, t)f (i h p, p)a(p, t)d 3 p Ψ

13 N. Bohr A. Einstein ρ(r, t) = Ψ(r, t) div j = 0 Schrödinger i h Ψ t = ĤΨ, Ĥ t = 0 Ψ(r, t) = u(r)χ(t) { Ĥu = Eu i h dχ = Eχ χ dt e ī h Et E Ĥ E u E (u, Ĥu) = E(u, u) E = (u, Ĥu) (u, u), E = (u, Ĥu) (u, u) = (Ĥu, u) (u, u) E = (u, Ĥ u) (u, u) Ĥ = Ĥ E = E Ĥu ν = E ν u ν (degenerate) E ν Ψ ν (r, t) = e ī h E νt u ν (r) ρ(r, t) = Ψ ν (r, t) = u ν (r) Schrödinger 3

14 A ν (p, t) = e ī h Eνt a ν (p) a ν (p) = u ν (r)e ī h (p r) d 3 r (π h) 3 ρ ν (r) j ν (r) ρ ν t = 0, j ν = 0 S j ν dσ = 0 u ν (r) u ν (r) δ j u ν (r) : j ν = 0 Ψ(r, t) = ν Ψ(r, t) = c ν u ν (r)e ī h Eνt c ν u ν (r) + ν ν c νc ν u ν(r)u ν (r)e i h (E ν E ν )t t h E t E h 4

15 u p = Ce ik r, k = p h (i) ρ p (r) = C, j p (r) = p m C u p (x + L, y, z) = u p (x, y, z) k x L = πn x p x = π h L n x, n x = 0, ±, ±, p y = π h L n y, n y = 0, ±, ±, p z = π h L n z, n z = 0, ±, ±, L L u p (r) dxdydz = L 3 C = C = L 3 u p = L 3 e ik r, k = π L n, n x, n y, n z = 0, ±, ±, (u p, u p ) = l/ d 3 re i π L 3 L (n n ) r L/ (8) = δ p,p (9) 5

16 (ii)δ () L L u p (r)u p(r)dxdydz (0) L = Cp C p e ī L h (px p x)x dx e ī L h (py p y)y dy e ī h (pz p z)z dz () L L L L C p (π h) 3 δ(p p ) () C p = (π h) 3 (iii) u p (r)u p(r)dxdydz = δ(p p ) N 0 [/sec cm ] = j p = C p m C = ( N 0 v ) d u dx = m (E V (x))u h u(x) u (i)e > V (ii)e < V 6

17 d u ν dx = m h E νu ν, m h E ν κ ν, E ν < 0 u ν Ae κ νx, (x < 0) or Be κ νx, (x > 0) u ν e κ ν x { (i) uν e κν x x (ii) u ν, duν dx Ĥ ˆp node 7

18 Ψ : Ψ p = u p (x) C[e ī h px + Re ī h px ], x CT e ī h px, x + d u p dx + k u p = 0, k = me h Ce ī h p x + CRe ī h p x CT e ī h p x p = m(e V ) p = m(e V ) j (i) = v C = N 0 C = N0 v j (r) = v C R = N 0 R j (t) = v C T = v v N 0 T P (r) = j(r) = R j (i) P (t) = j(t) j (i) = v v T P (r) + P (t) = 8

19 x x H = m p + V (x) V (x) V ( x) V (x) = V ( x) Schrödinger Hu ν (x) = E ν u ν (x) Hu ν ( x) = E ν u ν ( x) u ν ( x) = η p u ν (x), η p : u ν ( ( x)) = η p u ν ( x) = ηpu ν (x) = u ν (x) η p = η p = ± { uν ( x) = u ν (x) u (+) ν (x) + u ν ( x) = u ν (x) u ( ) ν (x) H u (+) ν (x) u (+) ν (x) u ( ) ν (x) u ( ) ν (x) H = { 0 : x < a m p + V (x), V (x) = : x a 9

20 u(x) = A cos kx + B sin kx { u (+) (x) = u (+) (x) u ( ) (x) = u ( ) (x) { u (+) (x) = A cos kx u ( ) (x) = B sin kx { cos k a (+) sin k a = 0 ( ) { u (+) ν { (+) : kν = π (ν + ), a ν = 0,,, ( ) : k ν = π (ν), a ν =,, E ν = h π (ν + ) u (+) ma ν (x) = cos[ π (ν + )x] a a E ν = h π ma (ν), u ( ) ν } { sin, cos} = a = a ν=0 [ u (+) ν ν=0 ν=0 (x)u (+) ν (y) + u ( ) ν u ( ) ν (x) = a sin[ π a (ν)x] (x)u ( ) ν (y) ] (3) [cos π a (ν + )x cos π a (ν + )y + sin π a νx sin π a νy ] (4) [ cos π a (ν + )(x + y) + cos π (ν + )(x y) a (5) cos π a ν(x + y) + cos π ] a ν(x y) (6) = [cos π a ν=0 a ν(x + y) cos π a ν(x + y) + cos π ] a ν(x y) (7) = [ δ( ] a a (x + y)) δ( (x + y)) + δ( a a (x y)) (8) = δ(x y) (9) Heisenberg Schrödinger E 0 = h 8a m x p h x a 0

21 p h a E = m ( p) = h 8a m (V 0 > 0) κ ν = I u ν (x) = Ae κ ν(x+ a ) II u ν (x) = B cos k ν x + B sin k ν x III u ν (x) = De κν(x a ) m Eν m(v0 E ν ) h, k ν = h V ( x) = V (x) (+) u (+) ν ( x) = u (+) (x) x = ± a ν A = D, B = 0 A cos k νa B = 0, κ ν A k ν sin k νa B = 0 κ ν cos kνa k ν sin kνa = 0 k ν sin k νa κ ν cos k νa = 0

22 ξ = k νa = ma (V 0 E ν ) ma V 0 h, w = h tan ξ = ξ w ξ w < π : π w < π : π w < 3π : 3 u (+) ν (x)u (+) ν (x)dx = B = I u (+) ν II u (+) ν III u (+) ν κν a a κ ν a + (x) = B cos k νa e κν(x+ a ) (x) = B cos k ν x (x) = B cos kνa e κ ν(x a ) ( ) u ( ) ν x = ± a ( x) = u ( ) (x) ν A = D, B = 0 A + sin k νa B = 0, κ ν A k ν cos k νa B = 0

23 + sin k νa k ν cos k νa κ ν = 0 k ν cos k νa + κ ν sin k νa = 0 cot ξ = ξ w ξ I II III w < π : 0 π w < 3π : 3π w < 5π : u ( ) ν (x)u ( ) ν (x)dx = B = u ( ) ν u ( ) ν u ( ) ν κν a a κ ν a + (x) = B sin kνa (x) = B sin k ν x (x) = B sin k νa e κ ν(x+ a ) e κ ν(x a ) (i)e > V 0 (V 0 ) I C(e ikx + Re ikx ) II C(B e ik x + B e ik x ) III CT e ikx 3

24 k = me m(e h, k V0 ) = h x = 0 { + R = B + B ik( R) = ik (B B ) x = a { B e ik a + B e ik a = T e ika ik (B e ik a B e ik a ) = ikt e ika B = k(k + k ) (k + k ) (k k ) e ik a B = k(k k )e ik a (k + k ) (k k ) e ik a R = k {(k k )B + (k + k )B } = (k k )( e ik a ) (k + k ) (k k ) e ik a T = k k + k ei(k k)a B R = = [ 4kk e i(k k)a (k + k ) (k k ) e ik a + 4(kk ) ] (k k ) sin k a T = [ + (k k ) sin k a 4(kk ) R + T = ] k a = nπ (n =,, ) R = 0, T = (i)e < V 0 4

25 k = I C(e ikx + Re ikx ) II C(B e κ x + B e κ x ) III CT e ikx me h, κ m(v0 E) = h [ R 4(kκ ) = + (k + κ ) sinh κ a [ T = + (k + κ ) sinh κ a 4(kκ ) E > V 0 E < V 0 ] ] E = h m k C = 0, CR = finite x < 0 k = iκ, CRe ikx CRe κx κ = m h E > 0 CT e ikx CT e κx C R T R T (iκ + k ) (iκ k ) e ik a iκ + k = ±(iκ k )e ik a { tan k k a = κ cot k a κ k a = ξ, κa = w ξ 5

26 cot ξ = ξ w ξ tan ξ = ξ w ξ Heisenberg S universal length () Schrödinger eq. : H = m p + mω x, h d u ν m dx ξ = ω = k m + mω x u ν = E ν u ν ( ) mω / x h Schrödinger eq. [ d H ν d u ν dξ ξ u ν = ϵ ν u ν, ϵ ν = E ν hω ξ, u ν ξ u ν = 0 = u ν e ξ / u ν (ξ) = CH ν (ξ)e ξ / dξ ξ d dξ + (ϵ ν ) ] H ν = a j ξ j j=0 H ν (ξ) = 0 Schrödinger eq. ξ j (j + )(j + )a j+ (j + ϵ ν )a j = 0 { a0, a, a 4, (+) a, a 3, a 5, ( ) a j+ a j = (j + ϵ ν) (j + )(j + ) j, j 6

27 a n+ a n = ξ N e ξ e ξ = n=0 n! ξn n! (n + )! = n + n = n 0 n + ϵ n = 0 E n = hω (n + ) = hω(n + ), n = 0,,, d H n dξ ξ dh n dξ + nh n = 0 H n (ξ) = ( ) n dn ξ e dξ n e ξ n e t +tz = n=0 t n n! H n(z) H n (z) = dn +tz dt n e t = ( ) n dn z e dz n e z t=0 (0) () d dz H n(z) = nh n () zh n (z) = nh n (z) + H n+(z) (3) n H 0 = (4) H = ξ (5) H = 4ξ (6) H 3 = 8ξ 3 4ξ (7) H 4 = 6ξ 4 48ξ + (8) 7

28 n n H n (ξ)e ξ ( ) n dn ξ e dξ n e ξ dξ = H n (ξ)h n (ξ)e ξ dξ = n n! πδ n n H n (ξ)( ) n dn dξ n e ξ dξ (9) = ( ) n+ H dn n (ξ) e ξdξ dξn (30) (3) = ( ) n+m H (m) n dn m (ξ) e ξ n m dξ dξ (3) m > n 0 m > n 0 n = n m = n H n (n) (ξ) = dn dξ n (ξ)n = (n)!! = δ n n(n)!! π ( ) mω /4 ( ) mω u n (x) = Hn n n! hπ h x e mω h x n = 0 u n (x)u n(x)dx = δ nn E 0 = hω ( ) mω /4 u 0 (x) = e mω h x < x >= 0 (33) hπ ( x) = < (x < x >) >=< x >= h (34) mω a 0 (p) = π h u 0 (x)e ipx h dx (35) ( ) /4 = e p hmω < p >= 0 (36) mω hπ ( p) = < (p < p >) >=< p >= hmω (37) x p = h E = m ( p) + mω ( x) = hω = E 0 8

29 Ψ(r, t) = (π h) 3/ a(p )e ī h (p r E p t) d 3 p a(p ) p E(p ) = E(p) + E (p p) i + E (p p) i (p p) j + p i p i p j Ψ(r, t) e ī h (p r Ept) Φ Φ(R) = (π h) 3/ R = r E p t ( r E ) p t a(p )e ī h (p p) R d 3 p Ψ R = r E t p Φ(R) Riemann-Lebesque R Φ 0 v g = E p = ω k 9

30 R = r v g t [ (p p) ] v g t p 3 p Φ(r, t) p p E p = p m = p m + p m (p p) + m (p p) = p m + v gq + m q, q = (p p) Ψ(x, 0) = (πσ ) a(q) = π h = x e 4σ /4 Ψ(x, 0)e ī h qx dx (πσ ) /4 e σ q h π h Φ(x, t) = = a(q)e ī h [qx (v gq+ m q )t] dq (38) { (π) /4 (σ + i h exp (x v gt) } t)/ 4σ mσ + i h t m (39) Ψ(x, t) = { } (x vgt) i p (π) /4 (σ + i h exp{ t)/ 4σ mσ + i h exp (px t} h m t) m 30

31 Ψ(x, t) = π (σ + h t 4m σ ) / exp < x >= v g t, x = σ + h t < p >= p, p = h (x v gt) (σ + h t 4m σ σ + h t 4m σ ) 4m σ x p = h Ψ(r, t) = A(p, t) = (π h) 3/ (π h) 3/ A(p, t)e ī h p r d 3 p Ψ(r, t)e ī h p r d 3 r Ψ(r, t) A(p, t) r ˆpφ p (r) = p φ p (r), ˆp = i h φ p (r) = (π h) 3/ e ī h p r ˆrχ r (r) = r χ r (r), χ r (r) = δ (3) (r r ) (φ, Ψ) φ (r)ψ(r, t)d 3 r Ψ(r, t) = (χ r, Ψ) Ψ(r, t) = (χ r, Ψ) A(p, t) = (φ p, Ψ) A(p, t) = (φ p, Ψ) Dirac bra ket 3

32 n ( { e i }) (φ, Ψ) < φ, Ψ > n A = A i e i i= A i = ( e i A) n A = e i ( e i A) i= Ψ >= d 3 r r >< r Ψ > d 3 r r >< r = < r r >= δ(r r ) ˆr r > = r r > (40) ˆp p > = p p > (4) d 3 r r >< r ˆr r > = r d 3 r r >< r r > (4) = r r > (43) < r ˆr r > = r δ(r r ) (44) d 3 p p >< p ˆp p > = p d 3 p p >< p p > (45) < p ˆp p > = p δ(p p ) (46) ˆp d 3 r d 3 r r >< r ˆp r >< r p > = p d 3 r >< r p > (47) < r ˆp r > = δ(r r )( i h r ) (48) < r p >= 3/ e ip r π h < p ˆr p >= δ(p p )(i h p ) 3

33 Ψ φ (φ, Ψ) {χ r } {φ p } (χ r, χ r ) = δ(r r ) χ r (r)χ r (r )d 3 r = δ(r r ) (φ p, φ p ) = δ(p p ) φ p (r )φ p (r )d 3 p = δ(r r ) Ψ(r, t) = χ r (r)(χ r, Ψ)d 3 r = φ p (r)(φ p, Ψ)d 3 p F (r, p) p i h ˆF F (r, i h ) < F >= Ψ (r, t)f (r, i h )Ψ(r, t)d 3 r p ˆp φ p (p) = p φp (p) φ p (p) = δ(p p ) Fourie ˆpφ p (r) = p φ p (r) ˆp φ p (p) = p φp (p) φ p (p) = ( ) e ī h p r e ī h p r d 3 r (π h) 3/ = δ(p p ) ˆr χ r (p) = r χ r (p) χ r (p) = (π h) 33 i e h p r 3/

34 Fourie χ r (p) = δ(r r )e ī (π h) 3/ h p r d 3 r Parseval ( ϕ, ψ) = ˆr i h p ϕ (p) ψ(p)d 3 p = (ϕ, ψ) A(p, t) = e ī (π h) 3/ h p r Ψ(r, t)d 3 r { χ r } { φ p } = Ψ(p, t) A(p, t) = ( φ p, A(p, t)) = ( φ p, Ψ) Ψ(r, t) = ( χ r, A(p, t)) = ( χ r, Ψ) ( χ r, χ r ) = δ(r r ) χ r (p) χ r (p )d 3 r = δ(p p ) ( φ p, φ p ) = δ(p p ) φp (p) φ p (p )d 3 p = δ(p p ) F (r, p) p Fourie {F (r, i h )Ψ(r, t)} = (π h) 3/ e ī h p r F (r, i h )Ψ(r, t)d 3 r = e ī (π h) 3 h p r F (r, i h )e ī h p r Ψ(p, t)d 3 p d 3 r = F (r, p )e ī (π h) 3 h (p p ) r Ψ(p, t)d 3 p d 3 r = (π h) 3 F (i h p, p ) Ψ(p, t)e ī h (p p ) r d 3 p d 3 r = F (i h p, p) Ψ(p, t) ˆF = F (i h p, p) 34

35 Ψ(r, t) Ψ(p, t) = A(p, t) r r i h p χ r (r) = δ 3 (r r ) χ r (p) = e ī (π h) 3/ h p r p i h p r φ p (r) = e ī (π h) 3/ h p r φ p = δ 3 (p p ) F (r, p) F (r, i h ) r F (i h, p) p (χ r, Ψ) ( χ r, Ψ) (φ p, Ψ) ( φ p, Ψ) r i h { x x } x x ψ(x, t) = i hψ(x, t) {x y y } x i h ψ(x, t) = 0 ψ xˆp x ˆp x x = i h, xˆp y ˆp y x = 0, p { } i h p x p x ψ(p, t) = i h ψ(p, t) p x p x { } i h p y p y ψ(p, t) = 0 p x p x ψ ˆxp x p xˆx = i h, ˆxp y p y ˆx = 0, ( ) ˆx α ˆp β ˆp β ˆx α = i hδ αβ, (α, β =,, 3) ˆx αˆx β ˆx β ˆx α = 0 ˆp αˆp β ˆp β ˆp α = 0 35

36 (quantum condition) (commutator): [â, ˆb] = âˆb ˆbâ (commutation relation): Poisson ( ) (quantization) [ˆx α, ˆp β ] = i hδ αβ, [ˆx α, ˆx β ] = 0, [ˆp α, ˆp β ] = 0, (α, β =,, 3) {x α, p β } = δ αβ, (49) {x α, x β } = 0, {p α, p β } = 0, (50) (α, β =,, 3) (5) {a, b} [â, ˆb] i h [â, ˆb] = [ˆb, â] [â, C] = 0, [Câ, ˆb] = C[â, ˆb] (C ) [â + ˆb, ĉ] = [â, ĉ] + [ˆb, ĉ] [âˆb, ĉ] = â[ˆb, ĉ] + [â, ĉ]ˆb [â, [ˆb, ĉ]] + [ˆb, [ĉ, â]] + [ĉ, [â, ˆb]] = 0 (Jacobi ) 36

37 I (Ia) a = (a, a,, a n ) (quantum number) (Ib) R a H a ψ(a) P = (ψ, ψ ) (ψ, ψ ) = ψ(a)ψ (a)ρ(a)da () ( ) (ψ, ψ ) = ( ψ, ψ ) II (IIa) Hermite H: : Ĥ(ψ a + ψ b ) = Ĥψ a + Ĥψ b ˆp: ψ(r, t + δt) = U H (δt)ψ(r, t), U H (δt) = e ihδt/ h (5) = ψ ī h Hψδt + O((δt) ) (53) = ψ + ψ t δt + O((δt) ) (54) ψ t δt = ( ī h Hδt)ψ ˆp(ψ a + ψ b ) = ˆpψ a + ˆpψ b ψ(r + δr, t) = U p (δr)ψ(r, t), U p (δr) = e i δr ˆp h (55) δr ˆp = ψ + i h ψ + O((δr) ) (56) = [ +! (δr r ) +! (δr r ) + ]ψ(r, t) (57) 37

38 ˆr: ψ δr = iδr ψ r ˆp h ˆr(ψ a + ψ b ) = ˆrψ a + ˆrψ b ψ(p + δp, t) = Ûr(δp) = e ī h δp ˆr Ĥ ˆp ˆr ψ δp = iδp ψ p ˆr h F (ˆr, ˆp)(ψ a + ψ b ) = F ψ a + F ψ b Hermite : Hermite : ˆF u ν = λ ν u ν ˆF = ˆF λ ν = λ ν, (u ν, u ν) = 0, (λ ν λ ν) u ν u ν Â = Â, ˆB = ˆB (Â + ˆB) = Â + ˆB Â = Â, ˆB = ˆB (Â ˆB) = ˆBÂ Â ˆB Weyl Fourier F (ξ, η) = (π) 3 F (ˆr, ˆp) = (π) 3 F (r, p)exp[ i(ξ r + η p)]d 3 rd 3 p F (ξ, η)exp[i(ξ ˆr + η ˆp)]d 3 ξd 3 η 38

39 xp F = π δ(ξ)δ(η) (58) ξ η F = dξdηe i(ξˆx+η ˆp) δ(ξ)δ(η) (59) ξ η ( ) = dξdη ξ η ( )(ξˆxηˆp + ηˆpξˆx) δ(ξ)δ(η) (60) = (ˆxˆp + ˆpˆx) (6) : ψ(r) = c ν u ν (r) c ν = (u ν, ψ) (6) ν ψ(r) = (u ν, ψ)u ν (r) (63) ν = u ν (r)u ν (r )ψ(r )d 3 r (64) ν u ν (r)u ν (r ) = δ(r r ) (65) ˆF = F (ˆr, ˆp) linear (66) ˆF = ˆF (67) ˆF u ν > = λ ν u ν >, λ ν = λ ν (68) < u ν u ν > = δ ν,ν, u ν >< u ν = (69) ν Ψ > H, c ν (70) Ψ > = c ν u ν > (7) ν = ν u ν >< u ν Ψ > (7) c ν = (u ν, ψ) (73) w ν = c ν ν c ν ˆF λ ν (74) F = lim λ ν N ν (75) N N ν < ˆF > = ν λ ν c ν λ ν w ν = (expectation value) (76) ν ν c ν = ψ (r, t) ν λ ν u ν (r)u ν(r )ψ(r, t)d 3 rd 3 r ψ (r, t) ν u ν (r)u ν(r )ψ(r, t)d 3 rd 3 r (77) 39

40 = = ψ (r, t) ˆF (r, h i r ){ ν u ν (r)u ν(r )}ψ(r, t)d 3 rd 3 r ψ (r, t)ψ(r, t)d 3 r ψ (r, t) ˆF (r, h )ψ(r, i r t)d3 r ψ (r, t)ψ(r, t)d 3 r (78) (79) = (ψ, ˆF ψ) (ψ, ψ) ν λ ν c ν ν c ν = < ψ uν > λ ν < u ν ψ > < ψ u ν >< u ν ψ > = < ψ ˆF u ν >< u ν ψ > < ψ ψ > = < ψ ˆF ψ > < ψ ψ > (80) (8) (8) (83) ( F ) =< ( ˆF < ˆF >) >=< ˆF > < ˆF > ( F ) = < ( ˆF < ˆF >) > = 0 c ν λ ν c ν c ν λ ν λ ν = 0 ν ν ν (84) c ν ( c ν )λ ν c ν λ ν λ ν = 0 ν ν<ν (85) c ν = c ν (86) ν ν c ν c ν (λ ν λ ν ) = 0 (ν,ν ),ν ν (87) ν ν c ν 0 (88) (89) ˆF = ˆF ψ Ĝ = Ĝ ξ (< i[ ˆF, Ĝ] > ) ψ = [ (ξ( ˆF < ˆF >) + i(ĝ < Ĝ >)] ψ (90) (ψ, ψ ) = ξ ( ˆF ) + ξ < i[ ˆF, Ĝ] > +( Ĝ) (9) { = ( ˆF ) (ξ ξ 0 ) D } 4( ˆF 0 (9) ) ξ 0 = < i[ ˆF, Ĝ] > /( ˆF ) (93) D =< i[ ˆF, Ĝ] > 4( ˆF ) ( Ĝ) 0 40

41 ( ˆF )( Ĝ) < i[ ˆF, Ĝ] > (i)[ ˆF, Ĝ] = 0 ˆF u νρ = λ ν u νρ Ĝu νρ = µ ρ u νρ ( ˆF ) = ( Ĝ) = 0 (ii) ξ = ξ 0 ψ ψ (ξ 0 ( ˆF < ˆF >) + i(ĝ < Ĝ >))ψ 0 = 0 ˆF = ˆx α, Ĝ = ˆp α (i) < i[ ˆF, Ĝ] >= h x α p α h (α =,, 3) (ii) ξ 0 = h ( x α ), x α p α [ ī ] x α h < p α > + ( x α ) (x α < x α >) ψ 0 (r) = 0 ψ 0 (r) = [(π) 3 Π α ( x α ) ] /4 exp [ i h < p > r α (x α < x α >) ] 4( x α ) Schrödinger ψ(x) = + A(k)exp(ikx)dk π A k 0 A(k) 0, for k k 0 k k = k 0 + ξ ψ(x) = exp(ik 0 x)φ(x) 4

42 Φ(x) = π + k k A(k 0 + ξ)exp(iξx)dξ Φ(x) =, for x ( k) Φ(x) = 0, for x ( k) (94) (95) x k = x p = h t ω = t E = h t E (IIb) F, G ˆF, Ĝ {F, G} i h [ ˆF, Ĝ] III Schrödinger Heisenberg Schrödinger Scrödinger i h ψ S(t) t = Ĥψ S(t) < ˆF > (t) = (ψ S(t), ˆF S ψ S (t)) (ψ S (t), ψ S (t)) Heisenberg t = 0 Schrödinger ψ 0 = ψ S (t = 0) ψ H 4

43 t Schrödinger ψ S (t) = Û(t)ψ 0 Û i h Û t = ĤÛ, Û(0) = Û(t) = exp( ī hĥt) Schrödinger < ˆF > (t) = (ψ H, Û ˆFS (t)ûψ H) (ψ H, ψ H ) = (ψ H, ˆF H (t)ψ H ) (ψ H, ψ H ) (96) (97) ˆFH (t) = Û (t) ˆF S Û(t) (98) Heisenberg d ˆF H (t) dt = i h [ ˆF H (t), Ĥ] Heisenberg ˆx H (t) = Û (t)ˆx S Û(t) ˆp H (t) = Û (t)ˆp S Û(t) U H H H = Û HÛ = H (99) H H (ˆr H (t), ˆp H (t)) = H(r, p) (00) [ˆx Hα (t), ˆp Hβ (t)] = i hδ αβ (0) [ˆx Hα (t), ˆx Hβ (t)] = 0 (0) [ˆp Hα (t), ˆp Hβ (t)] = 0 (03) Heisenberg Ĥ(ˆr, ˆp) = m ˆp + V (ˆr) 43

44 Heisenberg dtˆr(t) d [ˆr(t), Ĥ(ˆr(t), ˆp(t))] i h (04) d dt ˆp(t) = [ˆp(t), Ĥ(ˆr(t), ˆp(t))] i h (05) [ ] ˆx α (t), i h m ˆp = = ˆp α m[ ] V (r) i h [ˆp α, V (ˆr)] = x α i hm {ˆp β[ˆx α, ˆp β ] + [ˆx α, ˆp β ]ˆp β } (06) r=ˆr(t) (07) (08) dtˆr(t) d = ˆp(t) (09) m[ ] d V (r) dt ˆp(t) = (0) r r=ˆr(t) Ehrenfest d dt < ˆr > = < ˆp > () m [ ] d V (r) dt < ˆp > = () r r=ˆr dtˆr(t) d = ˆp(t) m (3) d ˆp(t) dt = 0 (4) ˆx(0) = ˆx 0, < ˆx 0 > = 0, x = σ (5) ˆp(0) = ˆp 0, < ˆp 0 > = p, p = h (6) σ < ˆx 0ˆp 0 + ˆp 0ˆx 0 > = 0 (7) ˆp(t) = ˆp 0, ˆx(t) = m ˆp 0t + ˆx 0 44

45 < ˆx(t) >= pt, < ˆp(t) >= p m ( x) = < ˆx (t) > < ˆx(t) > (8) = m {< ˆp 0 > < ˆp 0 > }t + < ˆx 0 > (9) = h 4m σ t + σ (0) ˆp p = h/(σ) x p = h + h t 4m σ 4. Heisenberg V (r) = mgz dtˆr(t) d = ˆp(t) m () d ˆp(t) dt = mgk () ˆr(0) = ˆr 0, < ˆr 0 > = 0, x = y = z = σ (3) ˆp(0) = ˆp 0, < ˆp 0 > = p, p x = p y = p z = h (4) σ < ˆx i0ˆp i0 + ˆp i0ˆx i0 > = 0 (5) ˆp(t) = mgtk + ˆp 0 (6) ˆr(t) = gt k + m tˆp 0 + ˆr 0 (7) < ˆp(t) > = mgtk+ < ˆp 0 >= mgtk + p (8) < ˆr(t) > = gt k + m t < ˆp 0 >= gt k + tp (9) m ˆx i (t) = 4 g t 4 δ i,z + m tˆp i0 + ˆx i0 gt3 m ˆp i0δ i,z + m t(ˆp i0ˆx i0 + ˆx i0ˆp i0 ) gt ˆx i0 δ i,z (30) < ˆx i (t) > = 4 g t 4 δ i,z + m t < ˆp i0 > + < ˆx i0 > gt3 m p iδ i,z (3) 45

46 ( x) = ( y) = ( z) = h t 4m σ + σ (3) ( ) h ( p x ) = ( p y ) = ( p z ) = (33) σ x i p i = h + h 4m σ 4 t (34) H = m ˆp (t) + mωˆq (t) Heisenberg dˆq(t) dt dˆp(t) dt = ˆp(t) [ˆq(t), Ĥ] = i h m, (35) = i h [ˆp(t), Ĥ] = mωˆq(t) (36) ( ) d ˆq = dt ˆp ( ) ( ) 0 m ˆq mω 0 ˆp A A = A = ( ) 0 m mω A = 0 ( ) mω i m hω mω i ( ) h mω imω imω ( ) iω 0 0 iω (37) (38) (39) ( ) â(t) â = A (t) ( ) ˆq(t) = ˆp(t) ( ) mωˆq + iˆp m hω mωˆq iˆp ( ) ( ) ( ) d â(t) iω 0 â(t) dt â = (t) 0 iω â (t) â(t) = âe iωt, â(t) = â e iωt 46

47 ( ) ( ) ( h ˆq(t) â(t) = A mω ˆp(t) â = [âe iωt + â e iωt ) ] (t) i m hω [âe iωt â e iωt ] ˆq(0) = ˆq, ˆp(0) = ˆp h ˆq = mω [â + â ], m hω ˆp = i [â â ] ˆq(t) = ˆq cos ωt + ˆp sin ωt (40) mω ˆp(t) = ˆp cos ωt mωˆq sin ωt (4) [ˆq(t), ˆp(t)] = i h, [ˆq(t), ˆq(t)] = [ˆp(t), ˆp(t)] = 0 [â(t), â (t)] = [â(t), â(t)] = [â (t), â (t)] = 0 Schrödinger Ĥ = hω[â â + ] : ˆN = â â [ ˆN, â] = [â â, â] = [â, â]â = â (4) [ ˆN, â ] = [â â, â ] = â [â, â ] = â (43) ˆN ˆN n >= λ n λ n > â â : ˆNâ λ n >= â( ˆN ) λ n >= (λ n )â λ n > : ˆNâ λ n >= â ( ˆN + ) λ n >= (λ n + )â λ n > 47

48 â λ n > λ n > (44) â λ n > λ n + > (45) λ n λ n =< λ n ˆN λn >= dq < q â λ n > 0 λ n minλ n = λ 0, ˆN λ 0 >= λ 0 λ 0 > â λ 0 > â λ 0 >= 0 λ 0 =< λ 0 ˆN λ0 >=< λ 0 â â λ 0 >= 0 λ 0 = 0, λ 0 > 0 > ˆNâ 0 > = â 0 > (46) (47) ˆN(â ) n 0 > = n (â ) n 0 > (48) λ n = n, n = 0,,, (49) n > (â) n 0 > (50) < n n >= â n > = c n+ n + > (5) â n > = d n n > (5) c n+ = < n ââ n > (53) = < n (â â + ) n > (54) = n + (55) c n+ = n +, d n = n â n >= n + n + >, â n >= n n > 48

49 n > = n! (â ) n 0 > (56) ˆN n > = n n > (57) < n m >= δ n,m (58) [ ] Ĥ n > = hω ˆN + n > (59) ( = hω n + ) n > (60) ( E n = hω n + ) (6) : < q 0 >= φ 0 (q) â 0 >= { } dqdq q >< q (iˆp + mωˆq) q >< q 0 >= 0 m hω q < q (iˆp + mωˆq) q >= [ h ddq ] + mωq δ(q q ) h â 0 >= dq q > mω φ 0 = N 0 exp [ d dq + mωq ] φ 0 = 0 h ( mωq h ) [ d dq + mωq ] φ 0 = 0 h, N 0 = ( ) mω /4 hπ : < q n >= φ n (q) φ n (q) = ( ) ( h n d ) n n! m hω dq + mωq φ 0 (q) 49

50 f = e ξ ξ = βq, β = mω h [ φ n (q) = N n ξ d ] n β exp( ξ /), N n = dξ π / n! n [ [ [ ] ( ξ d e ξ ξ f(ξ) = e d f (6) dξ dξ (63) ξ d ] n e ξ f(ξ) = ( ) n e ξ d n dξ dξ f (64) n ξ d dξ Hermite ] n exp( ξ /) = ( ) n e ξ ) d n dξ n e ξ (65) = e ξ Hn (ξ) (66) φ n (q) = N n H n (ξ) exp( ξ /) (67) H n (ξ) = ( ) n dn ξ e dξ n e ξ (68) h [ < m ˆq(t) n >= < m â n > e iωt + < m â n > e iωt] mω < m â n >= n + δ m,n+, < m â n >= nδ m,n < m ˆN n >= nδm,n h [ < m ˆq(t) n >= nδm,n e iωt + n + δ m,n+ e iωt] mω m hω [ < m ˆp(t) n >= i nδm,n e iωt n + δ m,n+ e iωt] 50

51 < 0 ˆq(t) 0 > = 0 (69) < 0 ˆp(t) 0 > = 0 (70) < 0 ˆq (t) 0 > = < 0 ˆq(t) >< ˆq(t) 0 >= h mω (7) < 0 ˆp (t) 0 > = < 0 ˆp(t) >< ˆp(t) 0 >= m hω (7) q(t) p(t) = h N ψ(r, r,, r N, t) t r d 3 r r d 3 r N r N d 3 r N ψ(r, r,, r N, t) d 3 r d 3 r d 3 r N ψ(r, r,, r N, t) d 3 r d 3 r d 3 r N = Fourier A(p, p,, p N, t) = ) N ( (π h) 3 ψ(r, r,, r N, t) (73) [ exp ī h ] N p i r i d 3 r d 3 r d 3 r N (74) i= A(p, p,, p N, t) d 3 p d 3 p d 3 p N H(r, r,, r N, p, p,, p N, ) Schrödinger i h ψ ( t = H r, r,, r N, i h, i h,, i h ) ψ r r r N 5

52 ψ(r, r, t) ν ν C(ν, ν, t) = u ν (r)u ν (r )ψ(r, r, t)d 3 rd 3 r {u νi } ψ(r, r, t) = ν,ν C(ν, ν, t)u ν (r)u ν (r ) ν ν C(ν, ν, t) ϵ = C(ν, ν, t) = ϵc(ν, ν, t) (75) = ϵ C(ν, ν, t) (76) ϵ = ± (77) C(ν, ν, t) = ±C(ν, ν, t) (78) ψ(r, r, t) = ±ψ(r, r, t) (79) ˆP : ± ˆP ψ(r, r, t) = ψ(r, r, t) (80) ˆP =, = ±ψ(r, r, t) (8) ˆP = ˆP Schrödinger ˆP Ĥψ = ( ˆP Ĥ ˆP ) ˆP ψ (8) = Ĥ ˆP ψ (83) 5

53 ˆP Ĥ ˆP = Ĥ ˆP Ĥ = Ĥ ˆP (84) [ ˆP, Ĥ] = 0 (85) ψ(t) = exp( iĥt/ h)ψ 0 ˆP ψ(t) = exp( iĥt/ h) ˆP ψ 0 ν = a, ν = b C(a, a), C(b, b), C(a, b), C(b, a) (i) C(a, a), C(b, b), C(a, b) = C(b, a) (ii) C(a, a) = C(b, b) = 0, C(a, b) = C(b, a) (i) Bose-Einstein Bose boson ψ(, r i,, r j, ) = ψ(, r j,, r i, ) (ii) Fermi-Dirac Fermi fermion ψ(, r i,, r j, ) = ψ(, r j,, r i, ) W. Pauli (S = 0,,, ) Bose Einstein (86) (S = /, 3/, ) Fermi Dirac (87) 53

54 < ˆp > p = O( h) h ψ = A exp( ī h W ), A W Schrödinger A t + ( x W t + m W A m x ( W x ) = 0 (88) ) + V + h m A A x = 0 (89) Schrödinger ρ = A, j x = ( ) W A m x W t + m ( W x ) + V + O( h ) = 0 p = W x W t + m p + V = 0 W t + H(x, p) = 0 W (x, t) = S(x) + F (t) ( ) df dt = m p + V = const. = E F = Et + const. p = ds dx S = pdx 54

55 W = pdx Et + constant Schrödinger ( ī ) ψ = A exp h ( pdx Et) ˆpψ = i h ψ x = ( p i h A ˆp = p + O( h) V Q = h m ) A ψ = (p + O( h))ψ x A A x lim h 0 i h [ ˆF, Ĝ] = {F, G} Weyl : F (x, p) = G(x, p) = F (ξ, η) exp[i(ξx + ηp)]dξdη (90) G(ξ, η ) exp[i(ξ x + η p)]dξ dη (9) : ˆF (ˆx, ˆp) = Ĝ(ˆx, ˆp) = F (ξ, η) exp[i(ξˆx + ηˆp)]dξdη (9) G(ξ, η ) exp[i(ξ ˆx + η ˆp)]dξ dη (93) Poisson Fourier : { F G {F, G} = x p G } F (94) x p = F (ξ, η) G(ξ, η )(ηξ ξη ) (95) exp[i(ξx + ηp)] exp[i(ξ x + η p)]dξdηdξ dη (96) i h [ ˆF, Ĝ]ψ = F (ξ, η) G(ξ, η) (97) i h [exp(i(ξˆx + ηˆp)), exp(i(ξ ˆx + η ˆp))]ψdξdηdξ dη (98) 55

56 x exp(i(ξx + ηˆp)) x exp( i(ξx + ηˆp)) = x + hη exp(i(ξx + ηˆp)) ˆp exp( i(ξx + ηˆp)) = ˆp hξ exp(i(ξx + ηˆp)) exp( i(ξ x + η ˆp)) exp( i(ξx + ηˆp)) = exp( i(ξ (x + hη) + η (ˆp hξ))) exp(i(ξx + ηˆp)) = exp( i(ξ (x + hη) + η (ˆp hξ))) exp(i(ξx + ηˆp)) exp(i(ξ x + η ˆp)) { exp(i(ξ x + η ˆp)) exp( i(ξ (x + hη) + η (ˆp hξ)))} exp(i(ξx + ηˆp)) exp(i(ξ x + η ˆp)) = { exp( i h(ηξ ξη ))} exp(i(ξx + ηˆp)) exp(i(ξ x + η ˆp)) h 0 { exp( i h(ηξ ξη ))} = i h(ηξ ξη ) + O( h ) ˆp p i h [ ˆF, Ĝ]ψ {{F, G} + O( h)}ψ Max Born Bell Born G. Wentzel, A. Krammers and L. Brillouin A ψ(x, t) = A(x)e ī h W (x,t), W = S(x) Et S (A x ( S x ) m(e V ) h A x ) = 0 (99) A x = 0 (00) 56

57 A = A 0 (S ) / (S ) = m(e V ) + h [ 3 4 (S S ) S ] S S h S 0 S 0 = O( h) S = S 0 + h S + (S 0) = m(e V ) S 0S = 3 4 ( S 0 S 0 ) (a) E V (x) > 0 S 0 S 0 k(x) = h m(e V (x)) (0) ( x ) S 0 = ± h k(x )dx + φ (0) x ψ(x, t) = exp ( ī ) h Et u 0 (x) (03) [ A x ] 0 u 0 (x) = k(x) cos k(x )dx + φ (04) x A 0 A h 0 (f) E V (x) < 0 κ(x) = h m(v E) u 0 = [ x x ] A 0 exp( κ(x )dx ) + B 0 exp( κ(x )dx ) κ(x) x x h S < h S 0 h S < (5) 57

58 S 0 = ± hk(x) (for E V > 0) S = ± 4 h = 4 h [ 3 [ k ] k k 3 k ( k k ) + k k( k ) ] (05) (06) hs = 4 [ k k + ] k( k x k ) dx k k < E V < 0 k κ x m h V < (6) [m E V (x) ] 3/ (turning point) k(x) = 0 (6) Schrödinger V (x) E h m c (x x ) x x (07) h ( ) dv m c = (08) dx x=x (a) : allowed (f) : forbidden Schrödinger (a) (f) k (x) = m h (E V (x)) = c (x x ) x > x (09) κ (x) = m h (E V (x)) = c (x x ) x < x (0) d u dx + c (x x )u = 0 x > x d u dx c (x x )u = 0 x < x 58

59 u ± a = A ± y /3 J ±/3 (y) x > x u ± f = B ±z /3 I ±/3 (z) x < x y = z = x x k(x )dx = 3 c(x x ) 3/ x > x () x x κ(x )dx = 3 c(x x) 3/ = 3 c x x 3/ x < x () (y/) ±/3 ( ) π ( J ±/3 (y) y 0 Γ( ± ), y y cos y π 6 π ) 4 3 (3) (z/) ±/3 I ±/3 (z) z 0 Γ( ± ), z (πz) ( e z + e z e ( ± )πi) 3 (4) 3 (i) x x u + /3 (c/3) /3 a A + (x x ) (5) Γ(4/3) u a A /3 Γ(/3) u + f B + /3 (c/3) /3 Γ(4/3) u f B /3 Γ(/3) (6) x x (7) (8) u + a u + f = A + = B + (9) u a u f = A = B (0) A + = B + = A, A = B = A u + a x x A ( ) / ( cos y 5π ) πk(x) E V > 0 () u + f x x A(πκ(x)) / [e z + e z e iπ5/6 ] E V < 0 () ( ) / ( u a x x A cos y π ) E V > 0 (3) πk(x) u f x x A (πκ(x)) / [e z + e z e iπ/6 ] E V < 0 (4) 59

60 Airy function Φ(z) = 3 z π (I 3 3 πz(j 3 ( z 3 ) I ( z 3 )) z > 0 ( z 3 )) 3 z < 0 ( 3 z 3 ) + J 3 z > 0 A = A 3 (u + f + u f ) x x 3 A(πκ) (e i π 6 e i 5π 6 )e z ( ) / [ ( A cos y 5π ) + cos(y π ] 3 πk(x) ) (5) = A πκ e z (6) = A ( ) / ( cos y π ) πk(x) 4 e z ( cos y π ) κ k 4 u(x) a = k(x) cos(y + φ ) u + a u a (u + a + u a ) ( (cos y 5π ) 3 3 ( u + a u a cos y 5π ) cos ( + cos )) ( = cos y π ( y π ) ( = sin y π ) 4 y π 4 ( cos y π ) ( cos φ sin y π ) sin φ = cos (y π ) φ φ = φ π 4 ) (7) (8) ( cos φ(u + a + u a ) sin φ(u + a u a ) y A 3 πk cos y π ) 4 + φ (u + f + u f ) x x A e z 3 πκ (u + f u f ) x x A πκ [ e z i e z ] 60

61 cos φ(u + f + u f ) sin 3 φ(u+ f u f ) z A πκ [sin φe z + e z iφ ] φ 0 φ = 0 cos (y π ) k 4 + φ sin φ e z (9) κ ( cos y π ) k 4 e z (30) κ y z (7) x = x u 0 = u 0 = [ A κ(x) exp x ] κ(x )dx x [ A x k(x) cos k(x )dx π ] x 4 x < x (3) x < x < x (3) x = x u 0 = u 0 = [ B x ] κ(x) exp κ(x )dx x > x (33) x [ B k(x) cos x k(x )dx π ] x < x < x (34) x 4 [ B k(x) cos x k(x )dx π x 4 + x ] k(x )dx x (35) = [ B k(x) cos x k(x )dx + π x 4 x ] k(x )dx x (36) = [ B x k(x) cos k(x )dx π x 4 ( x k(x )dx π ] x ) (37) 6

62 x x k(x )dx π = nπ, B = ( )n A k(x) = h m(e V ) = π h p x ( pdx = n + ) h x x x pdx = ( n + ) h h Bohr-Sommerfeld Schrödinger - k(x) cos( x x kdx π) 4 ψ I = = [ k(x) exp x i( k(x )dx π ] x 4 ) + R k(x) [ ( exp x i k(x )dx π )] x 4 ) k(x) [ ( + R) cos ( x x k(x )dx π 4 ( x i( R) sin k(x )dx π x 4 (38) )] (39) sin φ = π/ II ψ II = [ ( x ) ( x )] κ(x) ( + R) exp κ(x )dx + i( R) exp κ(x )dx x x III k(x) exp [ i( x x kdx π 4 )] ψ III = [ ( x T k(x) exp i k(x )dx π )] x 4 = [ ( x T cos k(x )dx π ) ( x + i sin k(x )dx π )] k(x) x 4 x 4 (40) (4) 6

63 II sin φ = π/ [ ( ψ II = T κ(x) exp x ) ( κ(x )dx x )] i exp κ(x )dx x x [ S ( x ) = T κ(x) exp κ(x )dx i ( x )] x S exp κ(x )dx x ( x ) S = exp κ(x )dx x (4) (43) (44) ( + R) = i T, (45) S i( R) = S T (46) T = is + is, (47) S 4 R = 4 S S + S 4 (48) P transmission = S (49) [ exp h x ] m(v (x) E)dx (50) x 63

64 I H = m p + m p + V (r r ) R = m r + m r m + m, r = r r H = M P + µ p + V (r) M = m + m, µ = m m m + m [R i, P j ] = i hδ ij, [x i, p j ] = i hδ ij Schrödinger Ψ(R, r, t) i h t = ] [ h M R h µ r + V (r) Ψ(R, r, t) [ Ψ(R, r, t) = exp i h ( )] P R P M t ψ(r, t) (5) ] ψ(r, t) i h = [ h t µ r + V (r) ψ(r, t) (5) r L x = (yp z zp y ) = y p z + z p y yp z zp y zp y yp z (53) = y p z + z p y yzp z p y zyp y p z + i h(yp y + zp z ) (54) L = r p r(r p) p + i h(r p) p i h 64

65 r p i hr r L = h r + h r ( r r [r, L] = 0 r ) ( r + h r ) r [ ] h = h r + r r ( = h r ) r r r Schrödinger ( ψ(r, t) i h = [ h r ) ] + L t µ r r r µr + V (r) ψ(r, t) + L r (55) + L r (56) x = r sin θ cos ϕ y = r sin θ sin ϕ z = r cos θ r = x + y + z cos θ = z x + y + z cos ϕ = x x + y r x θ x ϕ x ( r y θ y ϕ y r z θ z ϕ z ) = L x = i h y z z y ( { r = i h y z r + θ z θ + ϕ } z z ϕ [ = i h sin ϕ ] cot θ cos ϕ θ ϕ sin θ cos ϕ sin θ sin ϕ cos θ cos θ cos ϕ cos θ sin ϕ sin θ r r r sin ϕ cos ϕ 0 r sin θ r sin θ { r y r + θ y θ + ϕ }) y ϕ (57) (58) (59) L y = i h [ L z = i h ϕ cos ϕ θ ] cot θ sin ϕ ϕ (60) (6) L = h [ sin θ θ (sin θ θ ) + sin θ ] ϕ 65

66 ds = h dx + h dx + h 3dx 3 = h h h 3 [ h ( + h x ( ) h h 3 x x ) h 3 h x + h 3 x 3 ( )] h h x 3 (6) (63) ds = dr + r dθ + r sin θdϕ h =, h = r, h 3 = r sin θ = ( r ) + ( sin θ ) + r r r r sin θ θ θ = ( r ) r r r r sin θ ϕ (64) L h r (65) ψ(r, t) = exp[ ī Et]ψ(r) h ( [ h r ) ] + L µ r r r µr + V (r) ψ(r) = Eψ(r) ( h d µ r dr r dr dr ψ(r) = R(r)Y (θ, ϕ) R(r) = u(r)/r L Y (θ, ϕ) = h λy (θ, ϕ) (66) ) ( h ) λ + µr + V (r) R(r) = ER(r) (67) h d ( u h ) µ dr + λ µr + V (r) u(r) = Eu(r) 66

67 [ sin θ ( sin θ ) + θ θ sin θ Y (θ, ϕ) = Θ(θ)Φ(ϕ) d Φ Φ dϕ = sin θ Θ sin θ [ sin θ ( d sin θ dθ dθ dθ ] Y (θ, ϕ) = λy (θ, ϕ) ϕ ( d sin θ dθ ) ] + λθ = m ( ) dθ dθ d Φ dϕ + m Φ = 0 (68) ) + m sin Θ = λθ (69) θ Φ(ϕ) = exp[imϕ] Φ(ϕ + π) = Φ(ϕ) m = 0, ±, ±, z = cos θ [ d ( ) ] z d dz dz + λ m Θ = 0 z Legendre P m l (z) = ( )l l l! λ = l(l + ) l = 0,,, ( z ) m d l+ m dz l+ m (z ) l, m = l, l +,, l, l L L z h l(l + ) hm Yl m (θ, ϕ) = ( ) m+ m l + (l m )! 4π (l + m )! eimϕ Pl m (cos θ) L Y m l (θ, ϕ) = l(l + ) h Y m l (θ, ϕ) (70) L z Y m l (θ, ϕ) = m hy m l (θ, ϕ) (7) Y m l (θ, ϕ)y m l (θ, ϕ)d(cos θ)dϕ = δ ll δ mm ] [ h d d µ r r dr dr + h l(l + ) + V (r) R µr l (r) = ER l (r) (7) [ h d ] µ dr + h l(l + ) + V (r) u µr l (r) = Eu l (r) (73) 67

68 m a V (r) = { V0 (V 0 > 0) r < a 0 r a R l (r) [ h d R l m dr + r ] dr l ( h ) l(l + ) + + V (r) R dr mr l = E R l α = m h (V 0 E ), ρ = αr (i) r < a [ d dρ + ( d ρ dρ + R l (ρ) = f l (ρ)/ ρ )] l(l + ) R ρ l = 0 [ d dρ + ( d ρ dρ + (l + )] ) ) f ρ l = 0 (l + ) Bessel J l+ (ρ) Neumann N l+ (ρ) R l (ρ) Bessel j l (ρ) Neumann n l (ρ) j l (ρ) = n l (ρ) = π ρ J l+ (ρ) (74) π ρ N l+ (ρ) (75) n l (ρ) = ( ) l+ j l (ρ) (76) ( ) l ( ) j l (ρ) = ( ρ) l d sin ρ (77) ρ dρ ρ ( ) l ( ) n l (ρ) = ( ρ) l d cos ρ ρ dρ ρ (78) Schrödinger ρ l j l (ρ) ρ 0 (l + )!! (79) n l (ρ) ρ 0 (l )!!ρ l (80) 68

69 R l (0) = finite R l (ρ) = Aj l (ρ) (ii)r a [ d dr + r ( d l(l + ) dr + m )] r h E R l = 0 β = [ d dρ + ( d ρ dρ + m E h, ρ = iβr )] l(l + ) R ρ l (ρ) = 0 Bessel Neumann Hankel h () l = j l (ρ) + in l (ρ) (8) h () l = j l (ρ) in l (ρ) (8) ( [ h () l ρ ρ exp i ρ h () l ρ ρ exp ( i [ ρ ]) (l + )π (l + )π ]) (83) (84) R l (r) = Bh () l (iβr) [ ] djl (αr) /j l (αr) = dh() l (iβr) /h () l (iβr) dr dr r=a r=a α β ξ = αa, η = βa ξ + η = mv 0a β( α) E = h m β l h (a)l = 0 ξ cot ξ = η 69

70 (b)l = cot ξ ξ ξ = η + η ( ) u 0 (r) Schrödinger [ h d ] µ dr + V (r) u 0 (r) = Eu 0 (r) (85) u 0 (0) = 0 (86) Schrödinger 70

71 I Schrödinger eq. Schrödinger eq. i) ii) H 0 H = H 0 + λh λ : real (E < 0) λh kk E k i) ii) i) { H0 u k = E k u k (u k, u j ) = δ kj Hψ = Eψ { ψ = ψ0 + λψ + λ ψ + E = E (0) + λe () + λ E () + λ λ 0 : H 0 ψ 0 = E (0) ψ 0 ψ 0 u k, E (0) = E k (87) λ : H 0 ψ + H ψ 0 = E () ψ 0 + E (0) ψ (88) λ : H 0 ψ + H ψ = E () ψ 0 + E () ψ + E (0) ψ (89) ψ {u n } ψ = c () n u n 7 (90)

72 () u j H u k + c () n E n u n = E () u k + E k c () n (u j, H u k ) + c () n E n (u j, u n ) = E () (u j, u k ) + E k c () n (u j, u n ) (u i, u j ) = δ ij (H ) jk + c () j E j = E () δ jk + E k c () j u n j = k E () = (H ) kk j k E k E j j k c () j = (H ) jk E k E j c () k = (ψ, ψ) (9) = + λ[(ψ, ψ 0 ) + (ψ 0, ψ )] + λ [(ψ, ψ 0 ) + (ψ, ψ ) + (ψ 0, ψ )] + (9) λ (ψ, ψ 0 ) + (ψ 0, ψ ) = 0 (93) ( c () n u n, u k ) + (u k, c () n u n ) = 0 (94) c () k + c () k = 0 (95) c () k = iα α = real (96) ψ = ψ 0 + λψ (97) = ( + iαλ)u k + λ (H ) nk u n (98) n k E k E n ( + iαλ) e iαλ c () k = 0 u k 0 (ψ 0, ψ) = 7

73 E () ψ {u n } ψ = m c () m u m () u k c () k E k + (H ) km c () m = E () + E () c () k + E k c () k E () = m k (H ) km (H ) mk E k E m ψ = u k + λ (H ) nk u n (99) n k E k E n +λ { (H ) nm (H ) mk n m (E k E n )(E k E m ) (H ) nk (H } ) kk u (E k E n ) n (300) E = E k + λ(h ) kk + λ (H ) nk (30) n k E k E n anharmonic oscillator H = H 0 + λx 4 (30) H 0 = m p + kx (303) E 0 = hω, ω = k m (304) ψ 0 = ( ) k 4 e kx hω (305) π hω E () = (ψ 0, H ψ 0 ) (306) = ( ) k λ x 4 e kx hω dx π hω (307) = 3λ 4 ( hω k ) (308) E = hω [ + 3λ ( hω )] (309) k ii) Rayleigh-Schrödinger λ (H ) lk < E (0) l E (0) k, l k 73

74 E () k = l k (H ) lk E (0) k E (0) l E (0) l = E (0) k (H ) lk = 0 H = H 0 + λh H 0 E (0) k g k H 0 k, m > (0) = E (0) k k, m > (0) (30) k, > (0), k, > (0),, k, g k > (0) (3) H ψ kn > = m a k nm k, m > (0) (3) (0) < k, j H ψ kn > = E kn ψ kn > (33) a k nmh k, m > (0) = E kn a k nm k, m > (0) (34) m (0) < k, j H k, m > (0) H k jm m (H jm k E knδ jm )a k nm = 0 m det(h k jm E knδ jm ) = 0 a k nm H E = E0 k + E kn ψ kn >, n =,,, g k advanced cource k l g l k, m > () = () a km,n a km,ln g k n g l a km,n ψ kn > + a km,ln ψ ln > n l k, m > () = g k E () g l km = g l p m n= l k (E (0) g l n= l k + ψ kp >< ψ kp H ψ ln >< ψ ln H ψ km > k E (0) l )[< ψ km H ψ km > < ψ kp H ψ kp >] ψ ln >< ψ ln H ψ km > n= l k < ψ km H ψ ln > E (0) k E (0) l E (0) k E (0) l (35) (36) (37) 74

75 s-p state (Stark) p, s g = 4 H n = l = 0 m = 0, > (0) = u 00 l = m = 0, > (0) = u 0 m =, 3 > (0) = u m =, 4 > (0) = u >= c, > (0) +c, > (0) +c 3, 3 > (0) +c 4, 4 > (0) H E () H H 3 H 4 H H E () H 3 H 4 H 3 H 3 H 33 E () H 34 H 4 H 4 H 43 H 44 E () = 0 z H = eez = eer cos θ (38), > = 4 3 π a 0 ( r ) e r a 0 (39) a0, > = 4 3 r π a 0 e r a 0 cos θ a 0 (30), 3 > = 4 3 r π a 0 e r a 0 sin θe iφ a 0 (3), 4 > = 4 3 r π a 0 e r a 0 sin θe iφ a 0 (3) H ij = ee r dr sin θdθdφ < i r cos θ j > (33) φ θ δ mm, H ii = 0 E () H 0 0 H E () E () E () = 0 H = H = ee 3πa 3 0 ( r a0 ) r a0 e r a 0 r 3 cos θ sin θdrdθdφ 75

76 θ φ r a 0 = ξ H = eea ( ξ)ξ 4 e ξ dξ = 3eEa 0 ξ n e ξ dξ = Γ(n + ) = n! H, + >= E () = 3eEa (u 00 + u 0 ) 0, >= (u 00 u 0 ) E = E n= 3eEa 0, + > E n= + 3eEa 0, > E n= u E n= u 76

77 II Schrödinger equation V (r) = Ze r [ d d r dr r dr + µ ] l(l + ) (E V (r)) R h r l (r) = 0 β = 8µE h (E < 0) (34) λ = Zµe h (35) β ρ βr (36) [ d d ρ dρ ρ dρ + λ l(l + ) ] R ρ ρ l (ρ) = 0 4 [ d ρ 0 d ] dρ ρ l(l + ) R l (ρ) 0 (37) dρ ρ R l ρ l, ρ (l+) (38) [ d d ] dρ ρ dρ ρ R l (ρ) 0 (39) 4 R l ρ l e ρ Fl F l [ ρ d dρ + (l + ρ) d ] (l + λ) F l (ρ) = 0 dρ 77 R l e ± ρ (330)

78 F l = a ν ρ ν ν=0 a ν+ = n ν λ (l + ν + ) (ν + )(l + ) + ν(ν + ) aν λ = l + ν + = n n total quantum number ν radial quantum number = n β = µze h λ = µze n h E = β h 8µ E n = µz e 4 h n l = 0,, n = 0,, n = n + l + n l m n l m E n l = 0,,,, (n ) (33) m = l, (l ),, l = (l + ) (33) n l=0 (l + ) = n n l F nl (ρ) Laguerre L l+ n+l L l+ n+l (ρ) = [(n + )!] F (l + n, l + ; ρ) (l + )!(n l )! F Kummer F (α, γ; z) = n=0 α(α + ) (α + n ) z n γ(γ + ) (γ + n ) n! 78

79 u nlm (r) = = [ 3 (n l )! β n[(n + )!] 3 ] Y m ( ) µze 3 (n l )! n h n[(n + )!] 3 l (θ, φ)e ρ ρ l L l+ n+l Y m (ρ) (333) l (θ, φ)e ρ ρ l L l+ (ρ) (334) n+l u n l m u nlmr drd(cos θ)dφ = δ nn δ ll δ mm n a B = h µe = cm R 0 (r) = R 0 (r) = R (r) = ( Z ab ( Z ) 3 e Zr a B (335) a B ( ) Z 3 ab ) 3 ( Zr a B 3 ( Zr a B ) e Zr a B (336) ) e Zr a B (337) 79

80 G ϵ W G δw = ϵ{g, W } δw = iϵ h [G, W ] G : z ϵ x x = x cos ϵ + y sin ϵ x + ϵy y y = y cos ϵ x sin ϵ y ϵx z z = z iϵ h [L z, x] = iϵ h [xp y yp x, x] = iϵ h y[p x, x] (338) = ϵy = δx (339) iϵ h [L z, y] = iϵ h [xp y, y] (340) = ϵx = δy (34) iϵ h [L z, z] = 0 = δz (34) L z z L x L y [L x, L y ] = i hl z [L y, L z ] = i hl x [L z, L x ] = i hl y [L, L] = 0 L z L L Y m l (θ, φ) = l(l + ) h Y m l (θ, φ) (343) L z Y m l (θ, φ) = m hy m l (θ, φ) (344) Y m l m (θ, φ)yl (θ, φ)d(cos θ)dφ = δ ll δ mm 80

81 D h = D x (ϵ) = iϵj x D y (ϵ) = iϵj y D z (ϵ) = iϵj z D J x, J y, J z n θ D n (ϵ) = iϵn J N θ N D n (θ) = n = [ ( D n ( θ N )] N (345) i θ N n J ) N (346) N e iθn J (347) D n (θ) = e iθn J e iηj y e iϵj x e iηj y e iϵj x = e iϵηj z x y x y ϵ η ϵ η z ϵη 0 ϵη 8

82 J x J y J y J x = i hj z J y J z J z J y = i hj x (348) J z J x J x J z = i hj y (349) 3 [J i, J j ] = i h ϵ ijk J k 3 ( ) O(3) SU() k= J [J, J] = 0 k m { J a (m) = ka (m) J z a (m) = ma (m) J ± J x ± ij y [J z, J ± ] = ±J ± b J a (m) J z b = J z J a (m) = J (J z )a (m) (350) = (m )J a (m) = (m )b (35) b = ca (m ) a (m) a (m) = (m ) a (m ) = c J a (m) = c c (J a (m) ) (J a (m) ) (35) = c a(m) (J + J )a (m) (353) = (k m + m) c a (m) a (m) (354) 8

83 c = k m(m ) J ± J = J x + J y ± i[j y, J x ] = J J z ± J z k m a ( j) J + J a ( j) = 0 J + J a ( j) = 0 k j(j + ) = 0 k = j(j + ) m j J + a (j ) = 0 k = j (j + ) j = j j m m = j, (j ),, j, j = j ( j) + = j + = j k c = (j + m)(j m + ) j, m > j j, m > = (j + m)(j m + ) j, m > (355) j + j, m > = (j m)(j + m + ) j, m + > (356) () j = 0 () j = (3) 3 j = () m =, a (/) = ( 0 ), a ( /) = 83 ( 0 )

84 J ( ) ( ) ( ) 0 J =, J + = ( ) ( ) ( ) 0 0 J = 0, J + = 0 ( ) ( ) ( ) ( ) 0 0 J z =, J z = 0 0 J = ( J z = ), J + = ( 0 0 ) ( σ z ) J x J y J x = (J + + J ) = ( 0 0 ) σ x J y = i (J + J ) = ( 0 i i 0 ) σ y σ x = ( 0 0 ), σ y = ( 0 i i 0 ), σ z = ( 0 0 ) σ i = J i [σ i, σ j ] = iϵ ijk σ k [σ i, σ j ] + = δ ij σ i σ j = δ ij + iϵ ijk σ k ( A σ)( B σ) = A B + iϵ ijk A i B j σ k (357) = A B + i( A B) σ (358) e i θ n σ = cos θ + i sin θ n σ (359) 84

85 J J [J, J ] = 0 J, J z : j (j + ), m = j,, j, = (j + ) (360) : j, m > (36) J, J z : j (j + ), m = j,, j, = (j + ) (36) : j, m > (363) J = J + J j, j ; m, m > j, m > j, m > = (j + )(j + ) [J x, J y ] = ij z, [J y, J z ] = ij x, [J z, J x ] = ij y [J, J z ] = [J, J z ] = 0 (364) [J, J ] = [J, J ] = 0 (365) [J iz, J ] = [J iz, J J ] 0 (366) J, J, J, J z J j, j ; j, m > = j(j + ) j, j ; j, m > (367) J z j, j ; j, m > = m j, j ; j, m > (368) : J ± J x ± ij y = J ± + J ± (369) J i± J ix ± ij iy (370) [J z, J ± ] = ±J ± J ± j, j ; j, m >= (j m)(j ± m + ) j, j ; j, m ± > j, m >, j, m > j j m = j m = j j, j ; m, m >< j, j ; m, m = j, j ; j, m > = = j j m = j m = j j, j ; m, m >< j, j ; m, m j, j ; j, m > (37) j j m = j m = j C(j m j m j j jm) j, j ; m, m > (37) 85

86 C(j m j m j j jm) < j, j ; m, m j, j ; j, m > Clebsch-Gordan j, j j, m >= m m, m m m, m >< m, m j, m > J z j, m > = (J z + J z ) m, m >< m, m j, m > m m (373) m j, m > = (m + m ) m, m >< m, m j, m > m m (374) m m (m + m m) m, m >< m, m j, m >= 0 < m, m C-G < m, m j, m > 0 m +m = m m + m = m j jmax = (j z )max = (m + m )max = j + j j min j > j m m m j j j j j + j j j + j j + j j j j + j + j + j (j j ) + j j + j j + j j + j j + j j + (j + j ) + j j j j j j j + j j (j + j ) + j, m > j +j i=j j (i + ) = j +j i= (i + ) j j i= (i + ) (375) = (j + j )(j + j + ) + (j + j ) (j j )(j j ) (j j (376) ) = (j + )(j + ) (377) j j = j + j, j + j,, j j 86

87 m j, m > j +j j= j j j, m >< j, m = m, m > = j j, m >< j, m m, m > (378) = j +j j= j j C (j m, j m ; j j jm) jm > (379) j = j = j m m+ 0 m m m+ m =, > = α > α > j =, m = 0, 0 > = { α > β > + β > α >} m =, >= β > β > 3 j = 0, m = 0 0, 0 >= { α > β > β > α >} j = l, j = l j = l ± l 0 j m l + l l+m+ l+ l m+ l+ l m+ l+ l+m+ l+ l +, m l, m = = l + m + l + l m + l + Y m l m + l α + Y m l α + l + Y m+ l β (380) l + m + l + Y m+ l β (38) 87

88 ( + ) J = S + S, S = 3 4 S J = S + S + S S = S S + = S + S + S S + + S z S z + (38) (383) (384) S j(j + ) = { S χ t = χ t { j = j = 0 S S χ s = χ s P P Ψ(r, S ; r, S ) = ηψ(r, S ; r, S ) P P =, η = η = ± { φ(r, r ) χ(s, S ) P Ψ = Ψ } Ψ = φχ Ψ = : { φs χ A, χ A = 0, 0 > φ A χ S, χ S =, m > φ S (r, r ) = (u a (r )u b (r ) + u b (r )u a (r )) (385) φ A (r, r ) = (u a (r )u b (r ) u b (r )u a (r )) (386) 88

89 Slator determinant φ A ({r i }) = N! u a (r ), u b (r ),, u c (r ) u a (r ), u b (r ),, u c (r ),,, u a (r N ), u b (r N ),, u c (r N ) doublet E n (n, l, m) l, m s (l = 0) : (singlet) p, d, (l =,, ) : (doublet) 95 Uhlenbeck, Goudsmit j = l + s l 0 : j = l ± = (387) l = 0 : j = = (388) LS (spin-orbit interaction term) i) B = v c E 89

90 loop current: d µ = ids/c i = ev (e > 0) πr µ = ev πrc πr = epr m e c µ = e m e c L, L = r p L int = H int = e c A v = e (B r) v (389) c = e (r p) B = µ B (390) m e c H int = µ B S µ = g( e m e c S) g g- gyromagnetic ratio e H int = g m e c B S? e h m e c Zeeman g µ = e m e c S ii)thomas factor H int H int 90

91 ee = V (r) (39) = dv dr r (39) r H int = ( µ B) = µ ( v E) (393) c e = S (E p) (394) m ec H int = m ec r V = Ze r H = m e p + V (r) + H int dv dr L S m ec r dv dr L S L S = (J L S ) (395) = { j(j + ) l(l + ) 3 } h (396) 4 (n, l, j) n, l j E nlj = h 4m ec j = l ± { dv j(j + ) l(l + ) 3 } h r dr 4 nl E doublet = Ze h 4m ec (l + ) r 3 nl α e hc = (6) A = B r 9

92 896 Zeeman, H = m e ( p ( e) c A ) + V (r) (397) = p m e + V (r) + e m e (p A + A p) + e m e c A (398) p Aψ = (p A)ψ + A (pψ) = A (pψ) (399) A p = (B r) p = (r p) B = B L (400) H = p m e + V (r) + e m e c A p (40) = p + V (r) + e m e m e c B L (40) B = (0, 0, B) ψ nlm E nlm = e hb m e c m H = p + V (r) + e m e m e c B L + dv m ec r dr L S + e m e c B S (403) = H 0 + e B (L + S) (404) m e c = H 0 + e B (J + S) (405) m e c H 0 = p m e + V (r) + m ec r dv dr L S 9

93 B = (0, 0, B) H = H 0 + ω(j z + S z ) ω = e m e c B E = ω < J z + S z >= m hω + ω < S z > < S z >= h { m j = l + l + m j = l E ljm = m hω j + l + m = j, j,, j j = l + j + m ; j, m > = l + Y m j m l α + l + Y m+ l β (406) j = l j + m ; j, m > = l + Y m j + + m l α + l + Y m+ l β (407) < S z >= l + ( ) j+m j m = m ( j+ m j++m j = l + ) l+ = m j = l l+ 93

94 n, l, m, S z n, l, m, S z n,, 3, 4, 5, 6, 7 K L M N O P Q l : 0,,, 3, 4, 5, 6, 7,, n : s p d f g h i k m = l, l,, l = (l + ) S z =, = s : () = p : ( + ) = 6 (IA, IIA,, VIIIA) d : ( + ) = 0 (IB, IIB,, XB) f : ( 3 + ) = 4 La, Ac 94

95 n l s s p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s H IA He VIIIA 3 Li IA 4 Be IIA 5 B IIIA 6 C IVA 7 O 3 VA 8 N 4 VIA 9 F 5 VIIA 0 Ne 6 VIIIA Na 6 IA Mg 6 IIA 3 Al 6 IIIA 4 Si 6 IVA 5 P 6 3 VA 6 S 6 4 VIA 7 Cl 6 5 VIIA 8 A 6 6 VIIIA 9 K 6 6 IA 0 Ca 6 6 IIA Sc 6 6 IIIB Ti 6 6 IVB 3 V VB 4 Cr VIB 5 Mn VIIB 6 Fe VIIIB 7 Co VIIIB 8 Ni VIIIB 9 Cu IB 30 Zn IIB 3 Ga IIIA 3 Ge IVA 33 As VA 34 Se VIA 35 Br VIIA 36 Kr VIIIA 95

96 n l s s p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s 37 Rb IA 38 Sr IIA 39 Y IIIB 40 Zr IVB 4 Nb VB 4 Mo VIB 43 Tc VIIB 44 Ru VIIIB 45 Rh VIIIB 46 Pd VIIIB 47 Ag IB 48 Cd IIB 49 In IIIA 50 Sn IVA 5 Sb VA 5 Te VIA 53 I VIIA 54 Xe VIIIA 55 Cs IA 56 Ba IIA 57 La IIIB 58 Ce IIIB 59 Pr IIIB 60 Nd IIIB 6 Pm IIIB 6 Sm IIIB 63 Eu IIIB 64 Gd IIIB 65 Tb IIIB 66 Dy IIIB 67 Ho IIIB 68 Er IIIB 69 Tm IIIB 70 Yb IIIB 7 Lu IIIB 7 Hf IVB 73 Ta VB 74 W VIB 75 Re VIIB 76 Os VIIIB 77 Ir VIIIB 78 Pt VIIIB 79 Au IB 80 Hg IIB 8 Tl IIIA 8 Pb IVA 83 Bi VA 84 Po VIA 85 At VIIA 86 Rn VIIIA

97 n l s s p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s 87 Fr Ra Ac Th Pa U Np Pu Am Cm La- (5 ) La(57),Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu(7) Ac- (5 ) Ac(89), Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr(03) 97

98 n Ψ(r S, r S,, r n S n ) Ψ(r S,, r i S i,, r j S j,, r n S n ) (408) { +Ψ(r S,, r j S j,, r i S i,, r n S n ) = (409) Ψ(r S,, r j S j,, r i S i,, r n S n ). He Ψ(r S, r S ) = 0, for r = r, S = S L S, S S H = H 0 + e (40) r H 0 = p + p e e (4) m e m e r r H 0 (n i, l i, m li ) i =, ( E n,n = m e c α + n n ), α e hc u ni l i m li (r i ) i =, { χms :triplet χ Sms = :singlet χ 00 98

99 H, P, L = L + L, S = S + S H, P, L, S, L z, S z E, A, l(l + ), S, m l, m s n = n e r Ψ nlsml m s = { [u00 ()u nlml () + u 00 ()u nlml ()]χ 00 [u 00 ()u nlml () u 00 ()u nlml ()]χ ms nlsm l m s e nlsm l m s r = A ± B { singlet triplet A B ( ) u 00 ()u nlml (), e u 00 ()u nlml () (4) r ( ) u 00 ()u nlml (), e u 00 ()u nlml () > 0 (43) r B E(singlet) > E(triplet) r r r r He (n = n ) 99

100 i)n = 3 S u 00 ()u 00 () u 00 ()u 00 () = 0 ii)e(s) > E(t) iii)n = S iv)n ++ A,B:,: H = m e p + m e p ( e ) + e + e + e r A r A r B r B + e r AB + e r u A (r ): u B (r ): A B dr u A(r )u A (r ) = dr u B(r )u B (r ) = Ψ(r S ; r S ) = [u A (r )u B (r ) ± u A (r )u B (r )] χ s,t S A A E c E c E e E e dr u A(r )u B (r ) overlap integral (44) [ dr u A(r ) ] e u A (r ) (45) m e r A [ dr u A(r ) ] e u B (r ) (46) m e r A e dr u A (r ) r B (47) e dr dr u A (r ) u B (r ) r (48) e dr u r A(r )u B (r ) A (49) e dr dr u r A(r )u B(r )u A (r )u B (r ) (40) 00

101 exchange integral singlet E = < H > (4) = A + A S (E c + E e S) (E c + E e) + e (4) + S + S r AB r AB 3 / F sc = [f(θ) ± f(π θ)] χ s,t dσ dω = (S + )(S + ) = final spin F sc (43) { f(θ) + f(π θ) + 3 } f(θ) f(π θ) (44) 0

102 = { f(θ) Ref (θ)f(π θ) + f(π θ) } (45) θ π θ θ = π/ 0 F sc = [f(θ) + f(π θ)] (46) dσ dω = { f(θ) + Ref (θ)f(π θ) + f(π θ) } (47) θ π θ θ = π/ 0

103 II Et i ψ(r, t) e h { e ik r + f eikr r + } H = p m + V (r) Hψ(r) = Eψ(r), E > 0 (E ) k = me h, U(r) = m h V (r) ( + k )ψ(r) = U(r)ψ(r) : r U(r) 0, r Coulomb ru(r) const., r ψ(r) = e ik r + ψ scatt (r) j = i h m (ψ ( ψ) ( ψ )ψ) 03

104 j inc = hk m = v R ds dω ds = R dω j scatt ˆrds = i h ( ψ ψ scatt sactt m r ) ψ sactt ψ scatt R r r=r dω R indep. ψ sact ψ scatt r const r=r R, R lim ψ scatt(r) = f(k, k ) eikr R R f(k, k ) = f(k, θ) ψ(r) = e ik r + f(k, θ) eikr r ds j scatt ˆrds dσ = lim = f(k, θ) dω R j inc dσ dω = f(k, θ) 04

105 Green ( + k )ψ(r) = U(r)ψ(r) Green ( + k )G(r, r ) = δ(r r ) Fourier G(r r ) = δ(r r ) = (k q ) G(q) = e iq (r r ) G(q)d 3 q (48) (π) 3/ e iq (r r ) d 3 q (49) (π) 3/ (430) (π) 3/ c G(q) = [ ] P (π) 3/ q k + cδ(q k ) x iϵ = x x + ϵ ± i ϵ x + ϵ P ± iπδ(x), ϵ 0 x c = ±iπ G(q) = (π) 3/ q k iϵ G ± (r r ) = lim ϵ 0 (π) 3 d 3 q = q dqd(cos θ)dφ (43) e iq (r r ) q (k ± iϵ) d3 q (43) φ G ± (r r ) = lim ϵ 0 (π) 0 i = lim ϵ 0 (π) r r i = lim ϵ 0 4π r r q dq 0 e iq r r cos θ d(cos θ) q (k ± iϵ) (433) qdq q (k ± iϵ) (eiq r r e iq r r ) (434) e iq r r qdq (435) q (k ± iϵ) 05

106 G + (r r ) = e ik r r 4π r r G (r r ) = e ik r r 4π r r (436) (437) Schrödinger ψ (±) (r) = ψ (0) (r) + G ± (r r )U(r )ψ (±) (r )d 3 r ( + k )ψ (0) = 0 ψ (0) = e ik r ψ (+) (r) = e ik r m e ik r r h 4π r r V (r )ψ (+) (r )d 3 r Born m h V L < ψ (+) (r) = ψ (0) (r) + d 3 r G + (r r )U(r )ψ (0) (r ) (438) + d 3 r d 3 r G + (r r )U(r )G + (r r )U(r )ψ (0) (r ) + (439) ψ (0) = e ik r ((first) Born approximation) ψ (+) (r) = e ik r m e ik r r h 4π r r V (r )e ik r d 3 r r r r = ( r + r rr cos α ) ( / = r ) / r r cos α + r (440) r r r cos α, r (44) r r = r ( ) r l P l (cos α) r r + r r cos α l=0 06

107 e ik r r r r r exp(ik(r r cos α)) ψ (+) (r) e ik r m e ikr π h r V (r )e i(k r kr cos α) d 3 r (44) = e ik r + eikr f(k, θ) (443) r f(k, θ) = m π h kr cos α = k r V (r )e i(k k ) r d 3 r V (r ) q k k q = k + k kk cos θ, k = k = k ( cos θ) = 4k sin θ f(k, θ) = m h k sin θ V (r ) sin(kr sin θ )r dr (444) = m h V (r ) sin(qr )r dr (445) q (screened Coulomb) V (r) = V 0 e µr r f(k, θ) = mv 0 e µr +iq r π h r dr d(cos θ)dφ (446) r = mv 0 iq h = mv 0 iq h 0 [ dr e µr [e iqr e iqr ] (447) µ iq µ + iq ] = mv 0 h q + µ (448) = mv 0 h 4k sin θ + µ (449) 07

108 ( ) dσ dω = mv0 h (4k sin θ + µ ) µ = 0 Z e Z e V 0 = Z Z e, E = h k dσ dω = Z Ze 4 6E sin 4 θ (Rutherford) m e ikr h V (r )e ik r d 3 r e ik r 4π r r=0 = m V : a : i)pa/ h e ik r m h V a ii)pa/ h V (r ) V cos θ m h V a h pa m h V a pa h sin pr h pr h < h pr (eikonal) ka, V E ( + k )ψ k (r) = m h V (r)ψ k(r) 08

109 φ k (r) ψ k (r) = e ik r φ k (r) [ik + ]φ k (r) = m h V φ k(r) k = (0, 0, k) φ k z = i hv V φ k φ k, z [ φ k (x, y, z) = exp i z hv [ ψ k (x, y, z) = exp ikz i hv V (x, y, z )dz ] z V (x, y, z )dz ] (450) (45) f(k, θ) = m π h e ik r V (r)ψ k (x, y, z)d 3 r (45) = m [ π h e i(k k ) r V (r)exp i z ] V (x, y, z )dz d 3 r (453) hv d 3 r = d () bdz (454) (k k ) r = (k k ) b + [(k k ) ê z ]z θ γ π hv V 0 d = min(a, hv V 0 ) [(k k ) ê z ]z kdθ θ kd 09

110 r = b + ê z z f(k, θ) = m π h d () b e i(k k ) b V (b + ê z z) (455) [ exp i z ] V (b + ê z z )dz dz (456) hv = m ( hv ) [ π h d () be i(k k ) b exp i z V (b + ê z z )dz ] (457) i hv [ ] f(k, θ) = k d () be i(k k ) b [e iχ(b) ] (458) πi χ(b) = V (b + ê z z )dz (459) hv V z γ = π (b, φ) (k k ) b = b sin γ cos φ b cos φ (460) π 0 k k = k sin θ (46) χ(b) = V (b, z )dz (46) hv e ib cos φ dφ = πj 0 (b ) (463) f(k, θ) = k i 0 J 0 (b )[e iχ(b) ]bdb (partial wave expansion) L = bp, b ˆL, ˆL l(l + ) l i) ii) i) L z = i h φ [ L = h sin θ θ sin θ θ + ] sin θ φ (464) (465) 0

111 { Lz Yl m (θ, φ) = hmyl m (θ, φ) L Yl m (θ, φ) = h l(l + )Yl m (θ, φ) Y m l (θ, φ) = [ (l + )(l m )! 4π(l+ m )! d(cos θ) π 0 ] P m l (cos θ)e imφ (466) dφy m l (θ, φ)y m l (θ, φ) = δ ll δ mm (467) e ikr cos θ = a lm = l l=0 m= l d(cos θ) a lm (r)y m l (θ, φ) (468) π 0 dφe ikr cos θ Y m l (θ, φ) (469) π 0 dφe imφ = πδ m0 Yl 0 = l+ P 4π l(cos θ) a lm (r) = δ m0 π(l + ) d(cos θ)e ikr cos θ P l (cos θ) (470) = δ m0 π(l + )i l j l (kr) (47) e ikr cos θ = (l + )i l j l (kr)p l (cos θ) l=0 j l (kr) ( kr sin kr lπ ), r (47) [ = e i(kr l π) e i(kr l π)] (473) ikr e ikr cos θ ikr (l + )i l [e i(kr l π) e i(kr l π) ]P l (cos θ) l=0 ii) Schrödinger ( + k )ψ (+) (r) = U(r)ψ (+) (r)

112 ψ (+) (r) = b lm = l l=0 m= l d(cos θ) b lm (r)y m l (θ, φ) (474) π 0 dφψ (+) (r)y m l (θ, φ) (475) U(r) = U(r) k z dφ δ m0 b lm = δ m0 π(l + ) d(cos θ)ψ (+) (r)p l (cos θ) ( ) i l c l χ l (kr) χ l d(cos θ)ψ (+) (r)p l (cos θ) ψ (+) (r) = (l + )i l c l χ l (kr)p l (cos θ) l=0 Schrödinger P l (cos θ) d(cos θ) :u l = rχ l [ ] d l(l + ) + U(r) + rχ dr r l = k rχ l r 0 d dr (rχ l(l + ) l) + rχ r l = 0 χ l { r (l+) : singular r l : nonsingular χ l (kr) (kr) l r ψ (+) (r) e ikr cos θ + eikr f(k, θ) r f(k, θ) (l + )T l (k)p l (cos θ) k l=0 e ikr cos θ ikr (l + )i l [e i(kr l π) e i(kr l π) ]P l (cos θ) l=0

113 ψ (+) ikr (l + )i [ l ( + it l )e i(kr l π) e i(kr l π)] P l (cos θ) l=0 S l + it l S l = S l S l (k) e iδ l(k) δ l (k) (phase shift) δ l (k) = Reδ l (k) + iimδ l (k) S l = e Imδ l Imδ l (k) 0 Imδ l (k) 0 (Imδ l (k) = 0) ψ (+) kr ( (l + )i l e iδ l sin kr l ) l=0 π + δ l P l (cos θ) r χ l (kr) ( kr sin kr l ) π + δ l 3

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

RN201602_cs5_0122.indd

RN201602_cs5_0122.indd ISSN 1349-1229 No.416 February 2016 2 SPECIAL TOPIC113 SPECIAL TOPIC 113 FACE Mykinso 113 SPECIAL TOPIC IUPAC 11320151231 RI RIBFRILAC 20039Zn30 Bi83 20047113 20054201283 113 1133 Bh107 20082009 113 113

More information

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合 1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合の実効線 務従事者 区域外の 区域外の 量係数 量係数 の呼吸す 空気中の 水中の濃 る空気中 濃度限度

More information

H1-H4

H1-H4 42 S H He Li H He Li Be B C N O F Ne Be B C N O F Ne H He Li Be B H H e L i Na Mg Al Si S Cl Ar Na Mg Al Si S Cl Ar C N O F Ne Na Be B C N O F Ne Na K Sc T i V C r K Sc Ti V Cr M n F e C o N i Mn Fe Mg

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

元素分析

元素分析 : このマークが付してある著作物は 第三者が有する著作物ですので 同著作物の再使用 同著作物の二次的著作物の創作等については 著作権者より直接使用許諾を得る必要があります (PET) 1 18 1 18 H 2 13 14 15 16 17 He 1 2 Li Be B C N O F Ne 3 4 5 6 7 8 9 10 Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

2_R_新技術説明会(佐々木)

2_R_新技術説明会(佐々木) % U: 6.58%, Np, Am:.5%, Pu:.% 5.8% Cs 6.5% Sr %.9%Mo 8.74% Tc.9% TODA C 8 H 7 C 8 H 7 N CH C CH N CH O C C 8 H 7 O N MIDOA C 8 H 7 DOODA NTA + HN(C 8 H 7 ) + H O DCC + SOCl + HN(C 8 H 7 ) + Cl TODA (TODA)

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

Planck Bohr

Planck Bohr I 30 7 11 1 1 5 1.1 Planck.............................. 5 1. Bohr.................................... 6 1.3..................................... 7 9.1................................... 9....................................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

CRA3689A

CRA3689A AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2

2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2 Y. Kondo Department of Physics, Kinki University, Higashi-Osaka, Japan (Dated: September 3, 27) [] PACS numbers: I. m cm 3 24 e =.62 9 As m = 9.7 3 kg A. Drude-orentz Drude orentz N. i v i j = N q i v

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 2004 3 3 2 3 4 5 6 7 8 9 10 T. Ito, A. Yamamoto, et al., J. Chem. Soc., Chem. Commun., 136 (1974) J. Chem. Soc., Dalton Trans., 1783 (1974) J. Chem. Soc., Dalton Trans., 1398 (1975) 11 T.Ito, A. Yamamoto,

More information

RAA-05(201604)MRA対応製品ver6

RAA-05(201604)MRA対応製品ver6 M R A 対 応 製 品 ISO/IEC 17025 ISO/IEC 17025は 試験所及び校正機関が特定の試験又は 校正を実施する能力があるものとして認定を 受けようとする場合の一般要求事項を規定した国際規格 国際相互承認 MRA Mutual Recognition Arrangement 相互承認協定 とは 試験 検査を実施する試験所 検査機関を認定する国際組織として ILAC 国際試験所認定協力機構

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

0 3 1 5 1.1.............................. 5 1. 3.................. 6 1.3.......................... 7 1.4.............................. 8 1.5.............................. 10 1.6.................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 Mg-LPSO 2566 2016 3 2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 1,.,,., 1 C 8, 2 A 9.., Zn,Y,.

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

i

i 18 16 i 1 1 1.1....................................... 1 1.................................. 3 1.3............................. 5 1.4........................................... 6 7.1..................................

More information

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A IS(A3)- 284 - No.e1 核種核種半減期エネルギー放出割合核種通番数値単位 (kev) (%) 1 1 1 MG-28 20.915 H 29.08 27.0000 β-/ce K Al-28 2 1 2 MG-28 20.915 H 30.64 2.6000 β-/ce L Al-28 3 2 1 SC-44M 58.6 H 270.84 0.0828 EC/CE CA-44 4 2

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

MP-AES ICP-QQQ Agilent 5100 ICP-OES Agilent 5100 (SVDV) ICP-OES (DSC) 1 5100 SVDV ICP-OES VistaChip II CCD Agilent 7900 ICP-MS 7700 / 10 7900 ICP-MS ICP-MS FTIR Agilent 7900 ICP-MS Agilent Cary 7000 (UMS)

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

希少金属資源 -新たな段階に入った資源問題-

希少金属資源 -新たな段階に入った資源問題- H 耐用 TMR 占有増大 Li 94.5 4CL 0 Na 56 0 K 800 6CA 99 Rb 0. Cs 0.0 Fr Be.5 86US 4 Mg 5500 0.07 8CN 5 Ca 0.09 7 Sr 0.5 48ES Ba 0.5 47 Ra Sc. Y 6.7 7 (Ln) 800-97CN 6 (An) Center for Strategic Material NIMS,Japan

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

Note5.dvi

Note5.dvi 12 2011 7 4 2.2.2 Feynman ( ) S M N S M + N S Ai Ao t ij (i Ai, j Ao) N M G = 2e2 t ij 2 (8.28) h i μ 1 μ 2 J 12 J 12 / μ 2 μ 1 (8.28) S S (8.28) (8.28) 2 ( ) (collapse) j 12-1 2.3 2.3.1 Onsager S B S(B)

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

hv (%) (nm) 2

hv (%) (nm) 2 HOLLOW CATHODE LAMPS hv 1 2 1 8 5 3 4 6 (%) 6 4 7 8 2 16 2 24 28 32 36 4 44 (nm) 2 1 328.7 346.5 Ag 47-47NB(AG) 338.28 1 2 Re 75-75NB(RE) 346.47 2 25 39.27 343.49 Al 13-13NB(AL) 396.15 1 2 Rh 45-45NB(RH)

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

β

β β 01 7 1 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 s s s d 10 s p s p s p 3 s p 4 s p 5 s p 6 1 1H He 1.01 4.00 3Li 4Be 5B 6C 7N 8O 9F 10Ne 6.94 9.01 10.81 1.01 14.01 16.00 19.00 0.18 3 11Na 1Mg 13Al 14Si

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

Basic Welding 1. welding processes and equipments

Basic Welding  1. welding processes and equipments オーステナイト FCC: 面心立方格子 Face Centered Cubic = 最密 (closed pack)! α,δ- フェライト BCC : 体心立方格子 Body Centered Cubic A1 変態温度 (A1 変態線 ) A3 変態温度 (A3 変態線 ) 変形 = 転位の動き 最大せん断応力方向 刃状転位 変形 = 転位の動き 最大せん断応力方向 刃状転位 粒界 鉄鋼材料の熱処理

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

http://www1.doshisha.ac.jp/ bukka/qc.html 1. 107 2. 116 3. 1 119 4. 2 126 5. 132 6. 136 7. 1 140 8. 146 9. 2 150 10. 153 11. 157 12. π Hückel 159 13. 163 A-1. Laguerre 165 A-2. Hermite 167 A-3. 170 A-4.

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

Z 2 10Z MPa MPa MPa MPa 1.5MPa s s s JIS 6g/6H SD SD/B LB LS

Z 2 10Z MPa MPa MPa MPa 1.5MPa s s s JIS 6g/6H SD SD/B LB LS 3 03 0.01MPa 0.1MPa 0.1MPa 0.01MPa 1.MPa 0s 0s 0s JIS g/h SDSD/BLB LS0 F FBTT/BTB TB/BCUCU/B SDLCFTT/B TCTC/BDBD SDSD/BLB LS0 F FBTT/BTB TB/BCUCU/B SDLBFTT/B SKSPLK LP FKFP SKSPLK LP FKFP TKTPDPBDBP TKTPDPBDBP

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

a,, f. a e c a M V N W W c V R MN W e sin V e cos f a b a ba e b W c V e c e F af af F a a c a e be a f a F a b e f F f a b e F e ff a e F a b e e f b e f F F a R b e c e f F M N DD s n s n D s s nd s

More information

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () 64: ィャ 9997ィ 34978 998 3. 73 68, 86 タ7 9 9989769 438 縺48 縺 378364 タ 縺473 399-4 8 637744739 683 6744939 3.9. 378,.. 68 ィ 349 889 3349947 89893 683447 4 334999897447 (9489) 67449, 6377447 683, 74984 7849799 34789 83747

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information