2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2

Size: px
Start display at page:

Download "2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2"

Transcription

1 Y. Kondo Department of Physics, Kinki University, Higashi-Osaka, Japan (Dated: September 3, 27) [] PACS numbers: I. m cm 3 24 e =.62 9 As m = kg A. Drude-orentz Drude orentz N. i v i j = N q i v i = i= N ( e) v i () i= v i E Newton m d v i dt = e E (2) t v i e E t () j = ne2 m E t (3) n = N/ ( )τ t = τ (3) j σ j = σ E (4) σ = ne2 τ m (5) 2. FIG. : Drude-orentz UR: Electronic address: kondo@phys.kindai.ac.jp i E i () q = N E i v i (6) i=

2 2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2: x = const. E i T E i = ct (7) c q = x (dt/dx) x = x i x = x i τ v ix x = x i + v ix τ E + i E + i = ct (x i + v ix τ) ( = c T (x i ) + ( dt ) dx )v ixτ (8) E i ( E i = c T (x i ) ( dt ) dx )v ixτ (9) x = x i q = N E i v i i= = ct (x i v i τ) v i i = ( c T (x i ) T ) v i τ v i () i N i= i v ix, v iy, v iz v 2 ix = v 2 iy = v 2 iz (2) i v 2 ix = 2cT 3m N (3) E i = ct ( ) dt q x = κ dx κ κ = 2nc2 T τ 3m 3. Wiedelmann-Franz (4) (5) σ κ Wiedelmann Franz σ/(κt ) Wiedelmann-Franz κ/(σt ) 2 8 WK 2 σ κ κ σt = 3 2 ( kb e ) 2 (6) c = 3 2 k B Wiedelmann-Franz κ/(σt ). 8 WK 2 B. 2 k BT x, y, z v x, v y, v z 3 2 mv2 x = 2 mv2 x = 2 mv2 x = 2 k BT (7)

3 3 k B = J/K x, y, z x, y, z 2 k BT N E = 3 C ( 2 k BT ) N = 3 2 Nk BT (8) C = de dt = 3Nk BT (9) C. Drude-orentz 9 II. A. Schrödinger Schrödinger V ( r, t) Schrödinger ψ( r, t) i = 2 t 2m 2 ψ( r, t) + V ( r, t)ψ( r, t) (2) Ĥ = 2 2m 2 + V ( r, t) (2) (Hamiltonian ) i ψ t = Ĥψ (22) 2 ψ( r, t) 2 t r ψ( r, t) 2 d r = (23) A  Âψ = aψ, (24) A a a a  ψ  ˆp = i B. t ˆp = i x i x ϕ(x) = pϕ k (x) (25) ϕ k (x) e ikx (26) p = k ψ(x) ϕ k (x) ψ(x) = c k e ikx dk (27) c k e ikx ψ(x) Fourier e ikx C. () Hamiltonian Ĥ = 2 2m 2 (28) ϕ() = ϕ() = ϕ k (x) sin kx (29) sin k = (3)

4 4 2 k k = nπ (3) 2 ϕ k (x) = sin kx (32) E k = 2 k 2 2m = 2 π 2 n 2 2m 2 (33) D. (2) ϕ(x) = ϕ(x + ) ϕ k (x) = e ikx (34) k k = 2πn/ E k = 2 k 2 2m = 2 2 π 2 n 2 m 2 (35) E E + E k E + E = 2 (k + k) 2 2m E = 2 k k (36) m lim k E 2 m k k = k = 2mE/ k k = 2m 2m 2m 2 E = k 2 E = 2mE E E k k + k k 2π/ = m E (37) π 2E ±k 2 N = D(E) E (38) ( ) m D(E) = 2 = 2m (39) π 2E π E D(E) III. A.. Coulomb 3 = x, y, z Hamiltonian Ĥ = 2 2m 2 (4) x, y, z ψ(x, y, z) = ψ(x +, y, z) = ψ(x, y +, z) = ψ(x, y, z + ) (4) Hamiltonian 4 ψ k (r) = e ık r (42) k x = 2π n, k y = 2π n 2, k z = 2π n 3 (43) n, n 2, n 3 k E k = 2 2m (k2 x + k 2 y + k 2 z) = 2 2m (2π )2 (n 2 + n n 2 3) (44) k k 2π/ (2π/) 3 = (2π) 3 / (2π) 3 (45) E E + E k 2 2 2m = E (k + k) 2 2 2m = E + E

5 5 k, k + k k 4πk 2 k 2π/ (2π) 3 4πk2 k (46) D(E) E D(E) D(E) = 4π 2 (2m 2 )3/2 E (47) D(E) k, k E 2 k k/m = E, k = 2mE/ 2. up,down k k F N e N e = 4π 3 k3 F (2π) 3 2 (48) (2π) 2 3 Fermi Fermi Fermi k F Fermi Fermi Fermi cm 24 Fermi 3 8 cm Fermi v F k F /m 3 8 cm/s Pauli 3. Fermi Fermi f (E) 2k B T T = E F FIG. 3: Fermi T = f(e) E f(e) = { E < EF E > E F (49) 3 T k B T Fermi k B T Pauli Fermi k B T Fermi Pauli Fermi k B T k B T Fermi k B T 3 f(e) = e (E µ)/k BT + E (5) Fermi µ N e D(E) N e = 2 de (5) e (E µ)/k BT + µ τ ϵ τ n τ {n τ } = (n, n 2, ) N = τ n τ E N = τ ϵ τ n τ Z N = {n τ } e β P τ ϵ τ n τ

6 6 Ξ = = e βnµ Z N N= e βnµ N= {n τ } = = τ N= {n τ } n τ e β P τ ϵτ nτ e β P τ (µ ϵτ )nτ e β(µ ϵτ )nτ Fermi n τ =, n τ e β(µ ϵ)nτ = + e β(µ ϵ) Ξ = τ { + e β(µ ϵτ ) } τ n τ P r (n τ ) P r (n τ ) = eβ(µ ϵτ )nτ σ = eβ(µ ϵτ )nτ + e β(µ ϵτ ) {n σ } eβ(µ ϵσ)nσ Ξ σ σ τ n τ n τ = n τ P r (n τ ) = n τ =, e β(ϵτ µ) + Fermi p k B T/2 Fermi k B T 2D(E F )k B T k B T 2D(E F )(k B T ) 2 T C e 4D(E F )k 2 BT Fermi D(E F ) D(E F ) = 4π 2 (2m 2 )3/2 ( 2 kf 2 N e 2m )/2 = 3 (52) 4 E F C e 3N e k B k B T E F (53) k BT E F k B T E F E F k B 4 4 K (54) 3 K IV. A.. NaCl a b 5 P R P R P = ma + nb (55)

7 7 (a) (b) (c) (a') (b') (c') FIG. 4: (a) (b) (c) (a ),(b ) (c ) (a),(b) (c) b a b' a' FIG. 5: B. X X X. X a k = 2π/λ X X Ae ıωt FIG. 6: X Ae ı(ωt 2ka)... Ae ıωt { + e 2ıka + e 4ıka + e 6ıka + } { ıωt e2nıka Ae for e = 2ıka e 2ıka NAe ıωt for e 2ıka = (56) e 2ıka e 2ıka =

8 8 X λ ke 2ıka = a A a = 2π A b = A c = B b = 2π B a = B c = C c = 2π C b = C a = (62) X Ae ı(ωt k r) e ıωt R i Ae ık R i (57) R A e ık R i e ık (R R i ) (58) A, B, C K = k k Bragg X G k G k G k = k k k = k X k' k G -k' A e ık R i e ık R i (59) K = k k A 59 FIG. 7: Bragg A e ık R l e ı(k a)l m e ı(k b)m n e ı(k c)n (6) 4. K K e ı(k a) = e ı(k b) = e ı(k c) = K a = 2πp, K b = 2πq, K c = 2πr, (6) p, q, r : integer X Bragg A b = A c = A b c A = α(b c) (63) a 2π A a = α(b c) a = 2π (64) α b c A = 2π a (b c) (65) A a (b c) B, C

9 9 V. A.. V (x) = n v(x R n ) (69) R n = na Coulomb Coulomb R i v(r R i ) V (r) = i v(r R i ) (66) V (r) = V (r + R) (67) R = la + mb + nc P R P' [ 2 d 2 + V (x)]ϕ(x) = Eϕ(x) (7) 2m dx2 = Na N ϕ(x) = ϕ(x + ) (7) V (x) = ϕ k (x) = e ıkx, k = 2π m (72) v(x) ϕ(x) = c k e ıkx (73) ϕ(x) 73 7 [E k c k + c k V (x)]e ık x = Ec k e ık x k k E k = 2 k 2 2m /2 e ıkx x k E k c k k + c k k = Ec k k e ı(k k)x dx V (x)e ı(k k)x dx e ı(k k)x dx FIG. 8: P P [ 2 2m 2 + V (r)]ϕ(r) = Eϕ(r) (68) 2. a k k e ı(k k)x dx = e ı(2π/)(m m)x dx [ ] = e ı(2π/)(m m)x ı(2π/)(m m) = k = k Dirac δ e ı(k k)x dx = δ(k k) (74)

10 ϕ k (x) E k c k + k c k V (x)e ı(k k)x dx = Ec k 2 69 = n V (x)e ı(k k)x dx v(x R n )e ı(k k)x dx = Rn e ı(k k)r n n R n v(x )e ı(k k)x dx x R n x v(x ) x ( R n, R n ) (, ) n n e ı(k k)r n = n N n= e ı(k k)na k k = (2π/a)m m N k k (2π/a)m N n= e ı(k k)na = = = e ı(k k)na e ı(k k)a e ı 2π(n n) e ı(k k)a e ı2π(n n) e ı(k k)a = N 2 k = k + G m G m = (2π/a)m m (E k E)c k + m Na v Gm c k+gm = (75) v G v G = v(x)e ıgx dx (76) a 7 k E = E ϕ k (r) = e ık r, k = 2π (l, m, n) (77) ϕ(r) = c k e ık r (78) e ı(k k) r d 3 r = δ(k k) (79) V (r)e ı(k k) r d 3 r = v G δ(k k G) (8) v G = v(r)e ıg r d 3 r (8) G (E k E)c k + G k v G c k+g = (82) B.. Nearly Free Electron k c k c k 75 c k+gm (E k+gm E)c k+gm + m v Gm c k+gm +G m = (83) G m = G m E E k c k+gm v Gm E k E k+gm c k (84) 75 c k+gm G m = [E k + v + m v Gm 2 E k E k+gm E]c k = (85)

11 v G = vg ) c k [ E E k + v + m ] v Gm 2 E k E k+gm (86) E φ k (x) = e ıkx c k [ + v Gm e ıgmx ] (87) E k E k+gm m G m Nearly Free Electron Approximation NFE E k = E k+gm c k+gm c k k 2 = (k + G m ) 2, (k = G m /2) NFE k G m 75 (E k + v E)c k v Gm c k+gm + v Gm c k+gm + v Gm+ c k+gm+ + = c k c k+gm (E k+gm + v E)c k+gm v G m c k+g + v G m c k + v G m+ c k+g + = c k c k+gm (E k + v E)c k + v Gm c k+gm = (88) (E k+gm + v E)c k+gm + v Gm c k = E k + v E v Gm E k+gm + v E = (89) v Gm E = 2 (E k + E k+gm ) + v ± 2 (Ek E k+gm ) v Gm 2 (9) k = G m /2 E k = G m /2 E = E Gm /2 + v ± v Gm (9) E 9 G m = ±(2π/a)m m k = ± π a, ±2π a, (92) 2 v Gm -2p/a -p/a Energy Gap Energy Gap p/a 2p/a FIG. 9: Nearly Free Electron Approximation NFE 3. k = G m /2(m 2 v Gm k = G m /2 Bragg G m = 2π/a φ + (x) cos( πx a ), φ (x) sin( πx a ) (93) a/2 k potential FIG. : (a) (b) (a) (b) 4. Bragg (a) (b)

12 2 2 2m k 2 = 2 2m k + G 2 k ( G G ) = 2 G (94) G G k G C. Brillouin zone Brillouin zone Brillouin zone Brillouin zone FIG. : 2 Brillouin zone Brillouin zone 2Brillouin zone 2 Brillouin zone 3Brillouin zone 3 2Brillouin zone 4 5 Brillouin zone Brillouin zone (2π) n / unit cell 2π/a simple cubic (2π) 3 /a 3 Brillouin zone dim : 3 dim : 2π 2π a = a = N (95) (2π) 3 (2π)3 = = N N Brillouin zone Brillouin zone 2 D. Bloch k p = k k p = (k + G m ) k. k k φ k (x) = c k+gm e ı(k+gm)x, (96) m G m = ± 2π a m m k 2π/a k Brillouin zone 2π/a Brillouin zone 96 φ k (x) = e ıkx u k (x) (97) u k (x) = c k+gm e ıgmx (98) m u k (x) a u k (x + a) = c k+gm e ıgm(x+a) m = c k+gm e ıg mx m = u k (x) (99) e ıg ma = φ k (x) φ k (x + R n ) = e ıkr n φ k (x), R n = na () Bloch Bloch k 2

13 3 u k (r) exp(ıkr) ) FIG. 2: Bloch E. Tight Binding. NFE NFE 3s 3s NFE NFE NFE 2. Bloch k Brillouin zone k u k (x) unit cell 3 2. Tight Binding NFE N NFE ψ(r) = i c i ϕ(r R i ) () -p/a E Energy Gap p/a Energy Gap k ϕ(r) R i i c i ± Bloch c i e ık R i ψ k (r) = e ık Ri ϕ(r R i ) (2) N i Bloch ψ k (r + R) = e ık R i ϕ(r R i + R) N i = e ık (Rj+R) ϕ(r R j ) = e ık R ψ(3) k (r) N j R i R R j 3. FIG. 3: Brillouin zone NFE 3. Hamiltonian ψ k (x) = e ıkrn ϕ(x R n ), (4) N Hamiltonian n d 2 Ĥ = 2 + V (x) (5) 2m dx2

14 4 V (x) 69 k Ẽk Ẽ k = = N ψ k (x)ĥψ k(x)dx ψ k (x)ψ k(x)dx ψ k(x)ψ k (x)dx n n exp( ık(r n R n )) ϕ(x R n )ϕ(x R n )dx (6) ϕ(x) n = n ϕ(x) ϕ(x) ϕ(x R n ) 2 dx = ϕ(x ) 2 dx = ϕ(x) a (, ) (, ) n n ϕ(x) x = R n R n ϕ(x R n ) ϕ(x R n ) n = n ± = ϕ(x R n± )ϕ(x R n )dx ϕ(x a)ϕ(x )dx S (7) S ψ k(x)ψ k (x)dx = { N }{{} +S( }{{} e ıka + } e ıka {{ } )} n n =n n =n n =n+ = + 2S cos ka (8) 6 = N ψ k(x)ĥψ k(x)dx n n exp( ık(r n R n )) ϕ(x R n )Ĥϕ(x R n)dx n = n, n = n ± E = = E = = ϕ(x R n )Ĥϕ(x R n)dx ϕ(x)ĥϕ(x)dx (9) ϕ(x R n± )Ĥϕ(x R n)dx ϕ(x )Ĥϕ(x)dx () ψ k(x)ĥψ k(x)dx = { E +E N }{{} ( }{{} e ıka + e } ıka {{ } )} n n =n n =n n =n+ = E + 2E cos ka () 8 6 S S E Ẽ k = E + 2(E E S) cos ka (2) simple cubic ϕ(r) s Ẽ k = E + 2(E E S)(cos k x a + cos k y a + cos k x a) (3) Tight Binding 4. NFE Tight Binding k 2 NFE k k 2 Brillouin zone NFE ϵ k k 2 ka 2 Ẽ k = const. (E E S)a 2 k 2 (4) m 2 m = 2(E E S)a 2 (5) Ẽ k const + 2 k 2 2m (6)

15 5 simple cubic Ẽ k const + 2 k 2 2m (7) NFE p p 4 E E S 2 E E S E S 5. TB TB NFE e ık r u k (r) Bloch ϕ k (r) 8 Bloch ṽ kk = ϕ k (r)v(r) ϕ k (r)d 3 r (9) v(r) ϕ k (r) ϕ k (r) Bloch NFE G.. v ev Bloch ψ(x) = ϕ(k)e ık(x x) dk (2) F. Coulomb /r Coulomb Coulomb NFE TB Bloch k v kk = }{{} matrix element ϕ k (r) } {{ } v(r) }{{} ϕ k (r) } {{ } creation interaction annihilation d 3 r (8) k v(r) k v kk Bloch V D ϕ(k) k = k δk δk k φ(x) x δx /δk 2 t = t = t ψ(x, t) = ϕ(k)e ı[k(x x) Ekt/ ] dk (2) E k k E k E k + ( de k dk ) k (k k ) (22) t = t ψ(x, t) e ı[e k ( de k dk ) k k ]t/ ϕ(k)e ık[(x x ) ( de k dk ) k t/ ] dk (23) e t = x t = t x + (de k dk ) k t (24) v = (de k dk ) k (25) E k / = ω k e ı(kx ω kt) ω k /k dω k /dk

16 6 k v k = de k k = dk }{{} m E k = 2 k 2 /2m (26) E empty states k v = p/m filled states 2. Bloch Bloch m v k = k m (27) (a) (b) (c) FIG. 4: (a) (b) (c) 3. δt E δe = ee }{{} v k δt }{{} force distance (28) k k + δk δe = de k δk (29) dk δk = e d( k) Eδt = ee (3) dt ṗ = ee Bloch ection H. Bloch 2N 4 J = e k v k δt (e/ )Eδt 5(b) E G ω ω I. Fermi Brillouin zone Fermi 4 Fermi Fermi Fermi i, Na, K, Rb, Cs Brillouin zone Fermi NFE

17 7 E Energy Gap E G (a) (b) (c) k -p/a (a) p/a filled states empty states E Energy Gap E G (b') (c') k -p/a (a2) E p/a Energy Gap FIG. 6: (a) Brillouin zone Fermi Brillouin zone Brillouin zone 2π/a (b) Brillouin zone (c) Brillouin zone (b ) Fermi (b) (c ) Fermi (b ) E G J. -p/a (b) p/a 2p/a FIG. 5: (a) (a2) (b) k k + 2π/a Be, Mg, Ca, Sr, Ba 6 Chapter 9 in Solid State Physics, Saunders College, by Ashcroft and Mermin, ISBN # Fermi Al Cu, Ag, Au d k. K Ge E G = 4.3 ev Si E G = 4. ev GaAs InAs CdS 3k B.7 ev n e n e e E G/k B T (3)

18 8 σ σ e E G/k B T (32) E G 2. Ge As As As + Ge Ge Ge As As + Coulomb m Coulomb As + e 2 /ϵr a B = ϵ 2 m e 2 = m m ϵa B (33) Eg = m e 4 2ϵ 2 2 = m ϵ 2 m E g hydrogen (34) m.25m ϵ = 6 a B 6a B / E g. ev.7 ev Ge As donner Ga Ga acceptor K. VI. A.. N n R n u n U(R) R n n + U((R n+ + u n+ ) (R n + u n )) = U(a + u n+ u n ) U(a) + 2 K(u n+ u n ) 2 (35) u n+ u n a K R = a U(x) u n+ u n U T = NU(a) + N n= u N+ = u 2 K(u n+ u n ) 2 (36) FIG. 7: n M 2 t 2 u n N n = U T u n = K(u n u n ) + K(u n+ u n ) = K( u n + 2u n u n+ ) (37)

19 9 37 M 2 t 2 Q q u n (t) = Q q (t)e ıqr n (38) = K( e ıqa + 2 e ıqa )Q q = 4K sin 2 ( qa 2 )Q q (39) u n+n = u n q = 2π n (4) = Na 37 Q q 39 4K ω = ± M sin(qa ) (4) 2 q u n (t) = Q q e ı(qr n ωt) (42) q 8 Brillouin zone π/a < q < π/a q /a K ω ±c q, c = M a (43) c w p/a FIG. 8: q 2. q = q = 9 q = q = (a) (b) FIG. 9: q = (a) (b) 3. 3N (n + /2) ω ω/2 n ω phonon photon Brillouin zone ω D k B T ω D k B T

20 2 3N C C = 3Nk B Dulong-Petit Debye θ D = ω D k B (44) T θ D θ D K T θ D k B T ω ω > k B T ω < k B T q ω = cq q < k B T/ c ( ) 3 4π kb T (2π) 3 3 (45) 3 c 3 () (2) k B /2 C k B ( kb T c ) 3 (46) T 3 Debye B.. n R n u n V (x) = N v(x R n ) (47) n= Ṽ (x) = N v(x R n u n ) (48) n= V (x) δv (x) N δv (x) = Ṽ (x) V (x) = v (x R n )u n (49) n= v (x) v(x) u n = q 5 49 δv (x) = q N Q q n= Q q e ıqrn (5) v (x R n )e ıqr n (5) k Bloch k Bloch [δv ] k k = φ k (x)δv (x)φ k(x)dx (52) [δv ] k k = q = q N Q q n= e ıqr n N Q q e ı(q k +k)r n n= } {{ } Nδ(q k +k G m ) v k k = a v (x R n )e ı(k k)x dx v (x )e ı(k k)x dx } {{ } v k k /N (53) v (x)e ı(k k )x dx (54) n G m (2π/a)m [δv ] k k = v k kq q δ(q k + k G m ) (55) 55 k k q = k k + G m ω q q ω q q 55 k q = k k + G m k k q = k k+g m k 2 q = k k + G m G m

21 2 (a) k' k q (b) k' k -q FIG. 2: D. Coulomb ξ aξ ξ 2 k, k, q Brillouin zone k, q Brillouin zone k Brillouin zone k 2. C. Tight Binding Model Coulomb polaron ϵ = aξ + 2 bξ2 (56) ϵ min ϵ min = a2 2b at ξ = a b (57) 2ϵ min ϵ = 2aξ + 2 bξ2 (58) ϵ ϵ min = 2a2 b at ξ = 2a b (59) ϵ min < 2ϵ min 2 k k' k - q q k' + q FIG. 2: E.

22 22 k k W k k W k k v k 2 k Q q 2 (6) E k k = q + G (6) dk E k E k = ± ω q (62) Pauli k τ τ = k W k k (63) x δt x k x k x + δk, δk = e Eδt (64) δk k x v kx v kx + v kx k x δk (65) v kx = k x /m v kx v kx ee δt (66) m m n J = e k (v kx ee m δt) = ne2 E δt (67) m 22 τ 67 δt τ J = σe (68) σ = ne2 τ m (69) FIG. 22: τ Q q 2 T τ T σ T (7) VII. BOSE-EINSTEIN CONDENSATION A. Bose-Einstein Condensation Bose-Einstein condensation Bose

23 23 µ Bose BEC BEC Bose p de Broglie λ = h/p T < p > mk B T de Broglie λ db h mkb T (72) de Broglie BEC FIG. 23: Bose T > T c T T c T < T c) Taken from n λ 3 db (73) Bose BEC Bose Bose Bose p Bose-Einstein < n p >= exp[(ϵ p µ)/k B T ] (7) µ µ k B T Bose Boltzmann µ k B T condensation 4 K 2 K Bose 4 2 BEC B. 9 eiden Kamerlingh Onnes n n n. e p e p e p FIG. 24: Bose T µ ) T µ )T = K Bose p = ϵ p = Fermi Fermi K Meissner effect H c

24 24 Hc(T), in gauss In Hg Sn Pb Tl Temperature, in K Cooper Fermi Bose Bose BEC K Fermi sea Fermi sea Pauli ψ (r, r 2 ) = k g k e ık r e ık r 2 (74) FIG. 25: 26 siglet 74 ψ (r r 2 ) = (α β 2 β α 2 ) k g k cos k (r r 2 ) (75) Hc - 4 p M Hc Applied Magnetic Field Ba Hc - 4 p M Hc Hc Applied Magnetic Field Ba FIG. 26: H c Mesissner type I type II H c Meissner type I H c2 vortex type II H c type I Hc2 α up spin β down spin triplet singlet singlet r r 2 Schrödinder E Eg k = 2ϵ k g k + k >k F V kk g k (76) 2 2 2ϵ k V kk = V (r)e ı(k k) r dr (77) r 76 g k E < 2E F V (r) { V ϵk E V kk = F < ω c (78) otherwise 2. Cooper 956 Coper Cooper Cooper Fermi sea gk g k = V 2ϵ k E (79) 79 k g k V = k>k F (2ϵ k E) (8)

25 25 V EF + ω c = N() dϵ E F 2ϵ E = 2 N() ln(2e F E + 2 ω c ) (8) 2E F E N()V E 2E F 2 ω c e 2/N()V < 2E F (82) Fermi sea 2E F 2E F V = ψ (r) = (α β 2 β α 2 ) k cos k r 2ξ k + E (83) ξ k = ϵ k E F and E = 2E F E > (84) 83 k ξ k < E Fermi ξ k N()V E = 2 ω c e 2/N()V ω c ω c 78 E p v F Cooper x h/ p hv F /E T c E E k B T c Cooper ξ hv F /k B T c ae F /k B T C a 3. Coulomb 2 K C. BCS Cooper Fermi sea Fermi sea BCS [].

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

S = k B (N A n c A + N B n c B ) (83) [ ] B A (N A N B ) G = N B µ 0 B (T,P)+N Aψ(T,P)+N A k B T n N A en B (84) 2 A N A 3 (83) N A N B µ B = µ 0 B(T,

S = k B (N A n c A + N B n c B ) (83) [ ] B A (N A N B ) G = N B µ 0 B (T,P)+N Aψ(T,P)+N A k B T n N A en B (84) 2 A N A 3 (83) N A N B µ B = µ 0 B(T, 8.5 [ ] 2 A B Z(T,V,N) = d 3N A p N A!N B!(2π h) 3N A d 3N A q A d 3N B p B d 3N B q B e β(h A(p A,q A ;V )+H B (p B,q B ;V )) = Z A (T,V,N A )Z B (T,V,N B ) (74) F (T,V,N)=F A (T,V,N A )+F B (T,V,N

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

3 - { } / f ( ) e nπ + f( ) = Cne n= nπ / Eucld r e (= N) j = j e e = δj, δj = 0 j r e ( =, < N) r r r { } ε ε = r r r = Ce = r r r e ε = = C = r C r e + CC e j e j e = = ε = r ( r e ) + r e C C 0 r e =

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

BaHfO 3 PLD GdBa 2 Cu 3 O 7 δ 24 2 17 1 1 1.1.................................. 1 1.2............................... 2 1.3............................. 2 1.4................................. 3 1.5.........................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx 1 1 1 1 1. U(x, t) U(x, t) + c t x c, κ. (1). κ U(x, t) x. (1) 1, f(x).. U(x, t) U(x, t) + c κ U(x, t), t x x : U(, t) U(1, t) ( x 1), () : U(x, ) f(x). (3) U(x, t). [ U(x, t) Re u k (t) exp(πkx). (4)

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

FORES II [フォレスII]

FORES II [フォレスII] ORES Z7 M06 G699 MG59 M59 M49 M06 Z7 G699 1 JOIA ABS 02 231 1 2013-2014 40 -OPEN -LOK L L 1 1 L 735 A4BOX6 /653 2 601 A4BOX5 /525 257 40 2 OA 40 P252 1230 02 232 2 2013-2014 A B 9G-MP59 920RG-MP 59 106,6

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

ssp2_fixed.dvi

ssp2_fixed.dvi 13 12 30 2 1 3 1.1... 3 1.2... 4 1.3 Bravais... 4 1.4 Miller... 4 2 X 5 2.1 Bragg... 5 2.2... 5 2.3... 7 3 Brillouin 13 3.1... 13 3.2 Brillouin... 13 3.3 Brillouin... 14 3.4 Bloch... 16 3.5 Bloch... 17

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Andreev Josephson Night Club

Andreev Josephson Night Club Andreev Josephson Night Club email: asano@eng.hokudai.ac.jp 27 6 25 1 1 2 2 2 2.1...................................... 2 2.2 2......................... 3 2.3 Cooper.......................... 8 2.4.......................................

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

H1-H4

H1-H4 42 S H He Li H He Li Be B C N O F Ne Be B C N O F Ne H He Li Be B H H e L i Na Mg Al Si S Cl Ar Na Mg Al Si S Cl Ar C N O F Ne Na Be B C N O F Ne Na K Sc T i V C r K Sc Ti V Cr M n F e C o N i Mn Fe Mg

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2 1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

untitled

untitled 4/6 S. Hara@ [.ppt] On Road 4/9 4/6 4/ 5/7 4 Scott 5/4 5 Off Road 5/ 5/8 6 7 S. Hara@ [.ppt] ... 4. [] S. Hara@ [.ppt] : 4 ε s ε a ε b Anti-bonding orbital bonding orbital Anion Cation ε c ε a ε a ε b

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

QMI_10.dvi

QMI_10.dvi 75 8 8.1 8.1.1 8.1 V 0 > 0 V ) = 0 < a) V 0 a a ) 0 a0 ft) ft) = e iωt ω = Ē h 8.2) ω 76 8 1 1 2 2m 1 k d

More information

QMI_09.dvi

QMI_09.dvi 63 6 6.1 6.1.1 6.1 V 0 > 0 V ) = 0 < a) V 0 a a ) 0 a0 Ct) Ct) = e iωt ω = Ē h 6.2) ω 64 6 1 1 2 2m 1 k d

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

RN201602_cs5_0122.indd

RN201602_cs5_0122.indd ISSN 1349-1229 No.416 February 2016 2 SPECIAL TOPIC113 SPECIAL TOPIC 113 FACE Mykinso 113 SPECIAL TOPIC IUPAC 11320151231 RI RIBFRILAC 20039Zn30 Bi83 20047113 20054201283 113 1133 Bh107 20082009 113 113

More information

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha http://astr-www.kj.yamagata-u.ac.jp/~shibata P a θ T P M Chapter 4 (f4a). 2.. 2. (f4cone) ( θ) () g M θ (f4b) T M L 2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( )

More information

dvipsj.4131.dvi

dvipsj.4131.dvi 7 1 7 : 7.1 3.5 (b) 7 2 7.1 7.2 7.3 7 3 7.2 7.4 7 4 x M = Pw (7.3) ρ M (EI : ) M = EI ρ = w EId2 (7.4) dx 2 ( (7.3) (7.4) ) EI d2 w + Pw =0 (7.5) dx2 P/EI = α 2 (7.5) w = A sin αx + B cos αx 7.5 7.6 :

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

untitled

untitled 3,,, 2 3.1 3.1.1,, A4 1mm 10 1, 21.06cm, 21.06cm?, 10 1,,,, i),, ),, ),, x best ± δx 1) ii), x best ), δx, e,, e =1.602176462 ± 0.000000063) 10 19 [C] 2) i) ii), 1) x best δx

More information

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C 3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C nn (r r ) = C nn (R(r r )) [2 ] 2 g(r, r ) ˆn(r) ˆn(r

More information

3 5 18 3 5000 1 2 7 8 120 1 9 1954 29 18 12 30 700 4km 1.5 100 50 6 13 5 99 93 34 17 2 2002 04 14 16 6000 12 57 60 1986 55 3 3 3 500 350 4 5 250 18 19 1590 1591 250 100 500 20 800 20 55 3 3 3 18 19 1590

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

案内最終.indd

案内最終.indd 1 2 3 4 5 6 IC IC R22 IC IC http://www.gifu-u.ac.jp/view.rbz?cd=393 JR JR JR JR JR 7 / JR IC km IC km IC IC km 8 F HPhttp://www.made.gifu-u.ac.jp/~vlbi/index.html 9 Q01a N01a X01a K01a S01a T01a Q02a N02a

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin ( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

esba.dvi

esba.dvi Ehrenberg-Siday-Bohm-Aharonov 1. Aharonov Bohm 1) 0 A 0 A A = 0 Z ϕ = e A(r) dr C R C e I ϕ 1 ϕ 2 = e A dr = eφ H Φ Φ 1 Aharonov-Bohm Aharonov Bohm 10 Ehrenberg Siday 2) Ehrenberg-Siday-Bohm-Aharonov ESBA(

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information