Size: px
Start display at page:

Download ""

Transcription

1 KamLAND

2

3

4 (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ

5 KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe νe) <.8-4 (9% C.L.) kton-day ( )

6 ν e 1. cm - s -1 (9% C.L.) (E ν > 19.3 MeV) for constant SN rate model Super-Kaimiokande SK νe Reactor νe 8 B solar νe hep νe Atmospheric νe KamLAND

7 ν e β : νe + p e + + n γ e + e - γ : e + + e - γ Eprompt = E ν - Tn MeV ν e p n μsec σtot () = π /me 5 f R τn γ Ee () pe () τn = ±.8 sec d cm ] 4 Cross Section [! Cross Section 5 15 : n + p d + γ Edelayed =. MeV.% Neutrino Energy [MeV]

8 νe 7.5 < Eprompt < 3. MeV 1.8 < Edelayed <.6 MeV.5 < ΔT <. µsec ΔR < 16 cm Rprompt, Rdelayed < 6 cm µ (ΔQ> 6 p.e.) sec veto µ (ΔQ< 6 p.e.) Events/.1MeV 3 Reactor e w/ oscillation Geo e 8 B = 8 e B e (.8 SRN (LL model) -4 ) 3m sec veto e - ν µ 1 C µ - τ=.μsec X µ 1-1 ν µ ν e β,γ 3m E prompt [MeV] 7.5MeV

9 Li 4. 5.

10 1. NUANCE ( ) Geant4 NC ν(ν) + 1 C ν(ν) + n + 11 C CC ν(ν) + 1 C l - (l + ) + n + + X ν + p l + + n -1 [m sec sr GeV] µ µ e e NUANCE Fermi gas model νe, ν µ, νe, ν µ / π CH(.78g/cm 3 ) 9m : % M.Honda, et al., ʼ neutrino energy [GeV] full mixing 5% (CC )

11 .6% L.A.Ahrens, et al., (ʼ87) Q <.45 (GeV/c) 71.7% σ =. (flux)+.6 ( ) Events/.5(GeV/c) % = 8.7% cm /nucleon] -38 [ nc free proton nc bound neutron nc bound proton q [(GeV/c) ] [MeV] E µ 6

12 5% E <.4 GeV 18.3% flux : % : 5% : 5% 59.4% Event/.5GeV % cm /nucleon] cc free proton cc bound neutron cc bound proton [ Energy [GeV] E µ [MeV] 6

13 Events/.5MeV 14 /ndf =.3 / Probability = 17.% f(e) = exp(-e / 19.76) /ndf = 9.8 / 7 Probability = 19.8% f(e) = -.9 E +.7 KamLAND σ = 7/7= 19.% E prompt [MeV] (5kton-day) NUANCE σ = 8.7% 7.5 < Eprompt < 15. MeV 7.5 < Eprompt < 3. MeV 11.9 ± ± ± ±.3 1

14 . μ μ MUSIC/MUSUN (3 ) Geant4 n n p Events/7MeV Measurement MC (tracked muon) MC (untracked muon) Visible Energy (MeV) (5kton-day) 3 Events/m Prompt Event Radius (cm) 7.5 < Eprompt < 15. MeV 7.5 < Eprompt < 3. MeV 1. ± 1.. ± Measurement MC (tracked muon) MC (untracked muon)

15 3. 9 Li 9 Li μ 6 dq > events /.1 sec p.e. μ 9 Li / ndf 3.49 / He/ Li Li ± 33.3 Offset 5.79 ±.84 β n τ = 57. msec, Q = 13.6 MeV, β - + n 6 dq < events /.1 sec time difference from muon [sec] p.e., dl < 3 m μ 3m 9 Li / ndf 1.43 / He/ Li Li ± 6. Offset ± 1.59 μ ± 33.3 sec veto.4 ±.1 μ ± 6. 3m sec veto 14.9 ± MeV 19.7% 3. ±.3 events / bin time difference from muon [sec] m 6 dq < p.e 95.8 % within 3m 95.8% distance from muon track [cm]

16 4. νe neutrino spectrum [/fission/mev] νe 35 U U Pu Pu Events/.1MeV 3 1 KamLAND neutrino energy [MeV] 8MeV Double Chooz (hep-ex/453) E prompt [MeV] 1.5 ±.5

17 5. Events/.MeV MeV 3MeV.sec 1.sec >.161 Events/.4sec > E prompt [MeV] T [sec]. < ΔT < 1. sec 1/. ±.1

18 7.5 Eprompt 15. MeV 7.5 Eprompt 3. MeV 11.9 ± ± ± ±.3 1. ± 1.. ±. 9 Li 3. ±.3 3. ± ± ±.5. ±.1. ± ± ± 8.3

19 7.5 < Eprompt < 15. MeV 19.3 ± 3.7 ( ) σ σ = Confidence interval P (N) = σ = dσ de ν SdE ν SdE ν cm ( νe) ={ cm ( 8 Bνe) 1 (ν Nexp ) πσ e σ ν N (N unknown σ sys ) +(N BG σ BG ) BPS8(GS) 8 Bνe W.T.Winter, et al.(ʼ6) νe Lawrence Livermore group (T.Totani, et al., ʼ98) N! e ν dν Nunknown : 8 Bνe or νe ( ) NBG (19.3 ) N exp = Nunknown + NBG σsys =.% σbg = 19.%

20 Events/MeV 1 8 B (9% C.L.).3 events SRN (9% C.L.) 11. events Reactor 1.5 events 9 Li 3. events Neutral Current 11.9 events Charged Current 1.6 events 8 Fast Neutron 1. events Accidental. events 6 NUANCE KamLAND E prompt [MeV] (9%C.L.) 8 Bνe KamLANDʼ4 νe Flux [cm - s -1 ] νe νe

21 kton-day KamLAND νe 19.3 ± 3.7 (7.5 < Eprompt < 15. MeV) 37.6 ± 8.3 (7.5 < Eprompt < 3. MeV) ν e νe (9% C.L.) 16 cm - s -1 (9% C.L.) NC

untitled

untitled /, S=1/2 S=0 S=1/2 - S// m H m H = S G e + + G Z (t) 1 0 t G Z (t) 1 0 t G Z (t) 1 0 t SR G Z (t) = 1/3 + (2/3)(1-2 t 2 )exp(- 2 t 2 /2) G Z (t) 1-1/3 1/3 0 3/ 3/ t G Z (t)

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2 12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

SC210301 Ł\†EŒÚ M-KL.ec6

SC210301 Ł\†EŒÚ M-KL.ec6 30 36 01 02 07 08 05 95 11 94 11 97 13 91 13 9T 14 15 15 96 16 BE 16 BF 16 BG 17 CL 17 00 17 17 17 1 180 28 28 180 2 180 181 60 180 180 90 32 180 30 15 29 29 30 14 3 15 30 29 29 14 30 14 19 19 30 30 22

More information

「諸雑公文書」整理の中間報告

「諸雑公文書」整理の中間報告 30 10 3 from to 10 from to ( ) ( ) 20 20 20 20 20 35 8 39 11 41 10 41 9 41 7 43 13 41 11 42 7 42 11 41 7 42 10 4 4 8 4 30 10 ( ) ( ) 17 23 5 11 5 8 8 11 11 13 14 15 16 17 121 767 1,225 2.9 18.7 29.8 3.9

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

スライド 1

スライド 1 WIMP 対消滅ニュートリノ探索 2009 年度宇宙グループ研究発表会 名古屋大学太陽地球環境研究所 CR 研田中隆之 Introduction 1 ダークマター : 宇宙に存在し自力で光を発しておらず観測が困難な物質 様々なダークマターの存在示唆 銀河団の観測 銀河の回転速度の観測 銀河形成シミュレーション 宇宙マイクロ波放射の観測 etc しかしながらその正体は 70 年来の謎! Introduction

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

untitled

untitled 27.2.9 TOF-SIMS SIMS TOF-SIMS SIMS Mass Spectrometer ABCDE + ABC+ DE + Primary Ions: 1 12 ions/cm 2 Molecular Fragmentation Region ABCDE ABCDE 1 15 atoms/cm 2 Molecular Desorption Region Why TOF-SIMS?

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

2

2 2 6 7 9 4 6 7 2 3 4 5 6 7 8-0 - G G G G G G f f 9 e f - e f 0 5 e fe e c c cc B FD F 5 2 5 D F C e e e b 3 f f 5 ff ff f f f f b b bb b b b c c c ee ee e ee ee e f f 4 e e 7 5 5 e bb 6 7 f GE 8 f 9 5 F

More information

日本目録規則1987年版改訂2版第2章図書改定案

日本目録規則1987年版改訂2版第2章図書改定案 2.0.1 2.0.2 2.0.3 2.0.4 2.0.5 2.0.6 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.2.1 2.2.2 2.2.3 2.2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.5.1 2.5.2 2.5.3 2.5.4 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 ISSN 2.6.6 2.6.7 2.7.1 2.7.2 2.7.3

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

mains.dvi

mains.dvi 8 Λ MRI.COM 8.1 Mellor and Yamada (198) level.5 8. Noh and Kim (1999) 8.3 Large et al. (1994) K-profile parameterization 8.1 8.1: (MRI.COM ) Mellor and Yamada Noh and Kim KPP (avdsl) K H K B K x (avm)

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

p.2/76

p.2/76 kino@info.kanagawa-u.ac.jp p.1/76 p.2/76 ( ) (2001). (2006). (2002). p.3/76 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k,

More information

i 1 1 Super-Kamiokande

i 1 1 Super-Kamiokande 41417122 27 3 9 i 1 1 Super-Kamiokande 2 1.1.......................................... 2 1.2........................................... 3 1.2.1 2............................... 4 1.3....................................

More information

(1) (2)

(1) (2) 3 3.1 3.1.1 3.1.2 (1) (2) 3.1.3 3-3.1.3.1 3.1.3.1 1 2 3.1.4 3.23.4 NATM 1980-3.1.4.1-3.1.4.2 NATM 20 1) NATM No.1235, 1983. 2) No.A-84-511984. -3.1.4.1 NATM -3.1.4.2 NATM Vp Vp 23/2882% 1983 : 0 A i X

More information

Y. Nambu and G. Jona-Lasinio, A Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity I, Phys. Rev. 122, 345 (1961). http://prola.aps.org/pdf/pr/v122/i1/p345_1 Y. Nambu and

More information

プラズマ核融合学会誌1月【83-2】/講座2-3

プラズマ核融合学会誌1月【83-2】/講座2-3 2.3 Plasma Flow Measurements Spectroscopic Methods KADO Shinichiro author s e-mail: kado@q.t.u-tokyo.ac.jp Czerny-Turner GN: grating normalmn: mount normalfn: facet normal. f L L Fig. 3 μ μ in-situ μ

More information

Microsoft Word - .....J.^...O.|Word.i10...j.doc

Microsoft Word - .....J.^...O.|Word.i10...j.doc P 1. 2. R H C H, etc. R' n R' R C R'' R R H R R' R C C R R C R' R C R' R C C R 1-1 1-2 3. 1-3 1-4 4. 5. 1-5 5. 1-6 6. 10 1-7 7. 1-8 8. 2-1 2-2 2-3 9. 2-4 2-5 2-6 2-7 10. 2-8 10. 2-9 10. 2-10 10. 11. C

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

1 48

1 48 Section 2 1 48 Section 2 49 50 1 51 Section 2 1 52 Section 2 1 53 1 2 54 Section 2 3 55 1 4 56 Section 2 5 57 58 2 59 Section 2 60 2 61 Section 2 62 2 63 Section 2 3 64 Section 2 6.72 9.01 5.14 7.41 5.93

More information

Section 1 Section 2 Section 3 Section 4 Section 1 Section 3 Section 2 4 5 Section 1 6 7 Section 1 8 9 10 Section 1 11 12 Section 2 13 Section 2 14 Section 2 15 Section 2 16 Section 2 Section 2 17 18 Section

More information

橡matufw

橡matufw 3 10 25 3 18 42 1 2 6 2001 8 22 3 03 36 3 4 A 2002 2001 1 1 2014 28 26 5 9 1990 2000 2000 12 2000 12 12 12 1999 88 5 2014 60 57 1996 30 25 205 0 4 120 1,5 A 1995 3 1990 30 6 2000 2004 2000 6 7 2001 5 2002

More information

O

O 11 2 1 2 1 1 2 1 80 2 160 3 4 17 257 1 2 1 2 3 3 1 2 138 1 1 170 O 3 5 1 5 6 139 1 A 5 2.5 A 1 A 1 1 3 20 5 A 81 87 67 A 140 11 12 2 1 1 1 12 22 1 10 1 13 A 2 3 2 6 1 B 2 B B B 1 2 B 100 B 10 B 3 3 B 1

More information

コロイド化学と界面化学

コロイド化学と界面化学 x 25 1 kg 1 kg = 1 l mmol dm -3 ----- 1000 mg CO 2 -------------------------------------250 mg Li + --------------------------------1 mg Sr 2+ -------------------- 10

More information

2

2 th 37 ICh Theoretical Examination - - - - 5 - - : - ( ): ( ) - : 279 - - - - - - - G D L U C K 1 2 1 amu = 1.6605 10-27 kg N = 6.02 10 23 mol -1 k = 1.3806503 10-23 J K -1 e = 1.6022 10-19 C F = 9.6485

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

PHITS PHITS PHITS PHITS INCLINC-ELF SMM JENDL/PD- - - Kurotama OpenMP PC

PHITS PHITS PHITS PHITS INCLINC-ELF SMM JENDL/PD- - - Kurotama OpenMP PC PHITS Features of the latest version of the PHITS code PHITS PHITS version PHITS Particle and Heavy Ion Transport code System NMTC/JAM PHITS RIST KEK JAXA CEA PHITS PHITS RIST OECD/NEA RSICC PHITS PHITS

More information

09基礎分析講習会

09基礎分析講習会 データ解析の意味を理解しないでパソコンで計算して 序論 誤差解析 何のために も意味がない 以下の本でちゃんと勉強しよう R. A. Millikan ミリカン 水滴の蒸発 大学院生H. Fletcher 水滴を油滴に 博士論文単名 140の観測のうち49個除外 データ削除 実験データを正しく扱うために 化学同人編集部編 油滴実験 Regener がもともとThompsonの実験室(Cambridge

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

untitled

untitled 1. Web21 2001 4 2. Web21 2001 4 3. Web21 2001 4 4. Web21 2001 4 5. BCS Web21 2001 6 6. Web21 2001 6 7. Web21 2001 8 8. - Web21 2001 10 9. 9-1. Web21 2001 10 9-2. d Web21 2001 12 9-3. Web21 2001 12 1. T

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

180 30 30 180 180 181 (3)(4) (3)(4)(2) 60 180 (1) (2) 20 (3)

180 30 30 180 180 181 (3)(4) (3)(4)(2) 60 180 (1) (2) 20 (3) 12 12 72 (1) (2) (3) 12 (1) (2) (3) (1) (2) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (1) (2) 180 30 30 180 180 181 (3)(4) (3)(4)(2) 60 180 (1) (2) 20 (3) 30 16 (1) 31 (2) 31 (3) (1) (2) (3) (4) 30

More information

... 6

... 6 ... 6 1) 2) No. 01 02 03 04 05 06 07 08 09 10 11 12 No. 1 2 2 3 3cm 4

More information

untitled

untitled 1....1 2....2 2.1...2 2.2...2 3....14 3.1...14 3.2...14 4....15 4.1...15 4.2...18 4.3...21 4.4...23 4.5...26 5....27 5.1...27 5.2...35 5.3...54 5.4...64 5.5...75 6....79 6.1...79 6.2...85 6.3...94 6.4...

More information