Size: px
Start display at page:

Download ""

Transcription

1 29 7 5

2

3 i Slow roll inflation

4 ii Generation of Adiabatic perturbation via Inflation Scalar, vector, tensor decomposition of perturbation Gauge transformation of scalar perturbations Gauge invariant variables Power spectrum of scalar perturbation CMB Late stage evolution of density contrast and CMB spectrum :U = SR :U = RS

5 iii A 165 B E B 177

6

7 q i (t) i = x, y, z q i (t) q i (t) 6 q i (t), q i (t) (Lagrangian) L(q i (t), q i (t)) = T V T V V (q i ) m L(q i (t), q i (t)) = 1 m q i 2 V (q i ) 2 (action) I = t2 t 1 i dtl(q i (t), q i (t)) 1.1

8 2 1 q(t ) q(t) B q(t ) 1 A q(t ) 1 q(t ) q(t) 1.1 A t 1 B t 2 (q i (t), q i (t)) (q i (t) + δq i (t), q i (t) + δ q i (t)) δi = = = t2 t2 dtl(q i (t) + δq i (t), q i (t) + δ q i (t)) dtl(q i (t), q i (t)) t 1 t 1 t2 ( L(qi (t), q i (t)) dt δq i (t) + L(q i(t), q i (t)) ) δ q i (t) t 1 q i q i (t) [ ]t L(qi (t), q i (t)) 2 t2 ( L(qi (t), q i (t)) δq i (t) + dt δq i (t) d q i (t) t 1 t 1 q i dt L(q i (t), q i (t)) ) δq i (t) q i (t)

9 1.1 3 = t2 t 1 ( L(qi (t), q i (t)) dt d q i dt L(q i (t), q i (t)) ) δq i (t) q i (t) δq i (t 1 ) = δq i (t 2 ) = 0 δi = 0 δq i (t) L(q i (t), q i (t)) q i d L(q i (t), q i (t)) dt q i (t) = 0 (1.1) p i L q i (1.2) q i, q i q i, p i (Hamiltonian) H(q i, p i ) = i p i q i L(q i, q i ) (1.3) q i, p i q i q i + η i, p i p i + ζ i H(q i + η i, p i + ζ i ) = H(q i, p i ) + ( H η i + H ) ζ i i q i p i = ( p i q i + ζ i q i + p i η i L η i L ) η i L(q i, q i ) i q i q i = H(q i, p i ) + ( ṗ i η i + q i ζ i ) i (1.3)

10 4 1 (1.3) (1.1) (1.2) η i, ζ i H q i = ṗ i, H p i = q i (1.4) m p i = m q i H = i p 2 i 2m + V (q i) V q i = ṗ i, p i m = q i t = t + δt(t) x i = x i + δx i (t) δt, δx i t Lie δ L q i (t) q i(t) q i (t) (1.5)

11 1.1 5 t t δx δt q(t) x q(t) x q(t) x x x 1.2 t = t + δt, x = x + δx x t x q x(t) 1.2 δ L q i (t) = q i(t) q i(t ) + q i(t ) q i (t) (1.6) = q iδt + δx i (t) (1.7) δx i = 0 1.3

12 6 1 t t=t t =t t q(t) x q(t)=q(t) x qδt x x δt q(t) x q(t) x x x 1.3 t = t + δt, δx i = 0 q x(t) δt t t δt t δt q x δt t δ L q x = q x δt (1.7) I

13 1.1 7 δi = t 2 t 1 ( dt L q i(t ), dq i (t ) ) t2 dt t 1 dtl(q i (t), dq i(t) ) dt t dt = dt dt = (1 + δt)dt dt q i(t ) = q i (t) + δx i (t) dq i (t ) dt = dt dt d dt (q i(t) + δx i (t)) = (1 δt)( q i (t) + δẋ i (t)) = q i (t) δt q i (t) + δẋ i (t) δ L q i (t) = q i δt q i δṫ + δẋ i (t) dl dt = i ( L q i q i + L q i q i ) δi = = t2 t 1 t2 t 1 t2 + [ dt δtl(q i (t), q i (t)) + i dt d(δtl) dt t 1 dt i t2 dt t 1 i ( L(qi (t), q i (t)) δx i (t) + L(q i(t), q i (t)) q i q i ( L q i δt + L ) q i δt q i q i ) ( L q i δx i + L q i ( δt q i + δẋ i ) ( δt )] q i (t) + δẋ i (t)) t2 t 1 dt i L q i ( q i δt + δẋ i ) = t2 t 1 dt { d i dt ( L ) ( q i δt + δx i ) q i

14 8 1 δi δi = t2 t 1 dt d dt ( δtl + i +δt d L q i + δt dt q L q i d L δx i } i q i dt q i L ) t2 δ L q i + dt q i t 1 i ( L d L ) δ L q i q i dt q i (1.7) δi = 0 N dn/dt = 0 N δtl i L q i δ L q i (1.8) (Noether current) δt = ε δx i = 0 ε δ L q i = ε q i (1.8) N = εl + i p i q i ε = εh x δt = 0

15 1.2 9 δ x = (ε, 0, 0) δ L q = (ε, 0, 0) (1.8) N = L q x ε = εp x x x x m E p E = p2 2m E i t, p i i t ψ = 2 2m 2 2 ψ ψ E 2 = p 2 c 2 + m 2 c 4 φ 4π2 λ 2 φ = 0 or (1.9) c

16 10 1 φ m2 c 2 2 φ = 0 (1.10) 2 c 2 t λ c h/mc = c = 1 φ m 2 φ = 0 φ φ V (φ) φ dv dφ = 0 (1.11) (1.10) V = 1 2 m2 φ 2 (mass term) φ (1.11) φ = dv dφ φ(x) 4 µ φ(x) L(φ(x), µ φ(x)) x (x 0, x 1, x 2, x 3 ) = (t, x, y, z) 4 µ = 0, 1, 2, 3 I = d 4 xl(φ(x), µ φ(x)) V 4

17 V 4 4 V 4 3 φ, µ φ η(x) δi = d 4 x (L(φ + η, µ φ + µ η) L(φ, φ)) V 4 ( L = d 4 x V 4 φ η + L ) µ φ µη ( L = d 4 x V 4 φ L ) [ L ] µ η + d 4 x µ µ φ V 4 µ φ η 4 V 4 η η δi = 0 ( L 0 = d 4 x V 4 φ L ) µ η µ φ L φ L µ µ φ = 0 (1.12) µ 0 3 µ φ = φ/ x µ x µ L/ µ φ µ L µ φ = 3 µ µ=0 L µ φ

18 12 1 L = 1 2 ηαβ α φ β φ V (φ) (1.13) η αβ ( 1, 1, 1, 1) 4 4 (1.12) (1.11) π(x) L t φ(x) (1.14) x µ (x ) = x µ + δx µ (x) δx µ (x) 4 φ(x). φ (x ) = φ(x) + δφ(x) (1.15) δ L φ(x) φ (x) φ(x) (1.16) δ L φ(x) = φ (x) φ (x ) + φ (x ) φ(x) = δx α α φ (x) + δφ(x)

19 φ (x) φ(x) δx α δ L φ(x) = δx α α φ(x) + δφ(x) (1.17) δi = d 4 x L(φ (x ), µφ (x )) d 4 xl(φ(x), µ φ(x)) V 4 V 4 x x d 4 x = (x ) (x) d4 x (x )/ (x) (x ) (x) = 1 + ν δx ν µ = xν x µ x ν x ν x α x α x µ = δµ ν xν x µ 4 4 ( x ν x µ )

20 14 1 x ν x µ = δµ ν + δxν x µ x ν x µ = δµ ν δxν x µ µφ (x ) = µ φ(x) δxν x µ νφ(x) + µ δφ(x) = µ φ(x) + µ δ L φ(x) + δx ν ν µ φ(x) δi = 1 d 4 x(1 + α δx α ) c V 4 ( L(φ(x), µ φ(x)) + L φ δφ + L ) µ φ ( µδ L φ + δx ν ν µ φ) 1 d 4 xl c V 4 = 1 ( α δx α L + L c φ δφ + L ) µ φ ( µδ L φ + δx ν ν µ φ) d 4 x V 4 = 1 ( d 4 x µ δx µ L + δ L φ L ) + d 4 x L c V 4 µ φ V 4 µ φ δxν ν µ φ + 1 ( L d 4 x c V 4 φ δφ L ) µ µ φ δl φ δx µ µ L = 1 ( d 4 x µ δx µ L + δ L φ L ) + d 4 x L c V 4 µ φ V 4 µ φ δxν ν µ φ + 1 ( L d 4 x c V 4 φ δφ L ( µ µ φ δl φ δx µ L φ µφ + L = 1 ( d 4 x µ δx µ L + δ L φ L ) c V 4 µ φ + 1 ( L d 4 x c V 4 φ L ) µ δ L φ µ φ )) ν φ µ ν φ

21 δi = 1 c V 4 d 4 x µ ( δx µ L + δ L φ L ) µ φ 4 (1.18) (1.18) 4 V 4 µ N µ = 0 (1.19) N µ ( δx µ L + δ L φ L ) µ φ (1.20) (1.20) 4 (1.19) δφ(x) = 0 δx 0 = ε δx i = 0 i = 1, 2, 3 δ L φ = ε φ

22 16 1 N 00 L ( 1 = εl + ε φ φ = ε 2 ( φ 2 + ( φ) ) 2 ) + V N 0i L = ε φ i φ = ε φ i φ (1.13) L = 1 2 φ ( φ) 2 V N 00 N 0i x δx 0 = 0 δx 1 = ξ δx 2 = 0 δx 3 = 0 δ L φ = ξ 1 φ N 10 = ξ ( 1 φ φ) N 11 = ξl + ξ 1 φ L 1 φ = ξ ( 1 2 φ ( φ) 2 V + ( 1 φ) 2) N 12 = ξ 1 φ L 2 φ = ξ 1 φ 2 φ N 13 = ξ 1 φ 3 φ N 10 x (T µν )

23 ( φ 2 + ( φ) 2 ) + V φ 1 φ φ 2 φ φ 3 φ φ 1 φ 1 2 ( φ 2 ( φ) 2 ) V + ( 1 φ) 2 1 φ 2 φ 1 φ 3 φ φ 2 φ 1 φ 2 φ 1 2 ( φ 2 ( φ) 2 ) V + ( 2 φ) 2 3 φ 2 φ φ 3 φ 1 φ 3 φ 2 φ 3 φ 1 2 ( φ 2 ( φ) 2 ) V + ( 3 φ) 2 (T µν ) (1.21) ν T µν = 0 ( T µν = η µα α φη νβ β φ + η µν 1 ) 2 ηαβ α φ β φ V (φ) (1.22) φ = 0 ρ = 1 2 φ 2 + V (1.23) P = 1 2 φ 2 V (1.24) ( T µν = g µα g νβ α φ β φ + g µν 1 ) 2 gαβ α φ β φ V (φ) (1.25) g µν µ 00 (1.14) (1.13) T 00 H π φ L = 1 2 ( φ 2 + ( φ) 2 ) + V (1.26)

24 (Operator)A, B [A, B] AB BA (2.1) A, B {A, B} AB + BA (2.2) a (Hermite Conjugate a )a [a, a ] = 1 (2.3) [a, a ] = [a, a] = 0 (2.4) N a a (2.5) G > N G

25 N G > = G G > (2.6) G > < G G > = 1 (2.3),(2.4) N a, a [N, a] = Na an = a (2.7) [N, a ] = Na a N = a (2.8) G (2.6) G > < G < G a a G > = G < G a a G > a G > G 0 (2.9) N (2.6) a an G > = ag G >= Ga G > G C a (2.7) an = Na + a (Na + a) G > = Ga G > Na G > = (G 1)a G > (2.10) G > a a G > N G 1

26 20 2 m Na m G > = (G m)a m G > m > G m G m < 0 (2.9) m = m 0 m > G m 0 Na m0 G > = (G m 0 )a m0 G > a Na m0+1 G > = (G m 0 1)a m0+1 G > a m0+1 G > N G m 0 1 (2.9) (2.9) a m0+1 G > = 0 (2.11) a m 0 G > a G > a m (2.11) a a a m0+1 G > = 0 a aa m 0 G > = Na m 0 G >= 0 a m 0 G > a m 0 G > G = m 0

27 N N 0 a N number operator N 0 > < 0 0 > = 1 (2.12) N 0 > = 0 0 > (2.13) a 0 > = 0 (2.14) (2.6) a (2.8) Na G > = (G + 1)a G > (2.15) G > a a G > N G + 1 N N n n > n a (2.10) n > a (2.15) n > N (2.3) (2.4) n n > n > = C n a n 0 >

28 22 2 < n n > = C n 2 < 0 a n a n 0 >= C n 2 < 0 a n 1 aa a n 1 0 > = C n 2 < 0 a n 1 (1 + a a)a n 1 0 > = C n 2 (< 0 a n 1 a n 1 0 > + < 0 a n 1 a aa a n 2 0 >) = C n 2 (< 0 a n 1 a n 1 0 > + < 0 a n 1 a (1 + a a)a n 2 0 >) = C n 2 (2 < 0 a n 1 a n 1 0 > + < 0 a n 1 a 2 aa n 2 0 >)... = C n 2 (n < 0 a n 1 a n 1 0 > + < 0 a n 1 a n a 0 >) = n C n 2 < 0 a n 1 a n 1 0 >... = n! C n < 0 0 >= n! C n 2 = 1 n > = 1 n! a n 0 > (2.16) {b, b } = 1 (2.17) {b, b} = {b, b } = 0 (2.18) (2.18) bb = bb = 0 b b = b b = 0 number operator N b b

29 NN = b bb b = b (1 b b)b = N b b bb = N N(N 1) = 0 (2.19) N 0 (2.17) (2.18) i ψ(t) > = H ψ(t) > (2.20) t H t = 0 ψ(0) > ψ(t) > = e iht/ ψ(0) > e iht/ e iht/ = n=0 1 ( iht n! H = H < ψ(t) = < ψ(0) e iht/ A < ψ(t) A ψ(t) > < ψ(t) A ψ(t) > = < ψ(0) e iht/ Ae iht/ ψ(0) > A A(t) A(t) e iht/ Ae iht/ )n

30 24 2 A < ψ(0) A(t) ψ(0) > A(t) da(t) dt = ih A(t) A(t)iH da(t) dt = i [A(t), H] (2.21) Maxwell rote + 1 B c t = 0 (2.22) rotb 1 E c t = 4π c j (2.23) dive = 4πρ (2.24) div B = 0 (2.25) ρ j (2.25),(2.22) 4 A ν = (φ, A) E = gradφ 1 A (2.26) c t B = rota (2.27) (2.26) (2.27) (2.23)

31 A c 2 t 2 ( 2 A 1 φ + grad c t + div A ) = 4π c j (2.28) ν A ν = 0 (2.29) (2.26) (2.27) 4 A new = A old + gradψ (2.30) φ new = φ old 1 c ψ t (2.31) ψ ψ 2 ψ = div A old diva new = 0 (2.32) 2 φ = 4πρ (2.33) (2.33) φ( x, t) = d 3 x ρ( x, t) x x (2.34) (2.34) φ = 0

32 26 2 div A = 0 (2.35) φ = 0 (2.36) A (2.28) 1 2 A c 2 t 2 2 A = 0 (2.37) E = A (2.38) c t B = rota (2.39) L A( x, t) = 1 V k r q (r) ( k, t) e r, k e i k x (2.40) V = L 3 e r, k k r A(x + L, y, z, t) = A(x, y, z, t) q (r) ( k, t) e r, k e i(kx(x+l)+kyy+kzz) = q (r) ( k, t) e r, k e i(kxx+kyy+kzz) k r

33 k x k x = 2πn x L (2.41) n x k y.k z k y = 2πn y L k z = 2πn z L (2.42) (2.43) (2.40) k = n x= n y= n z= L 0 dxe i(k x k x )x = 1 ( e 2πi(n x n i(k x k x) x ) 1 ) = 0 for k x k x = L for k x = k x n x, n x 1 V d 3 xe i( k k ) x = δ k, k (2.44) δ k, k = δ kx,k x δ k y,k y δ k z,k z (2.37) 1 2 q (r) ( k, t) c 2 t 2 + k 2 q (r) ( k, t) = 0 k ω k = ck (2.45)

34 28 2 ω k q (r) ( k, t) = q (r) e iω kt k A( x, t) = 1 V k r ( q (r) k e iω kt e i k x + q (r) k e iωkt e i k x ) e r, (2.46) k q (r) q (r) k k (2.46) (2.38),(2.39) E = B = 1 iω k V k r c e r, k 1 V k r ( (r) q e iωkt e i k x q (r) k e iωkt e i k x ) (2.47) k i ( (r) k e r, k q e iωkt e i k x q (r) k e iωkt e i k x (2.48) ) k V U = 1 d 3 x(e 2 + B 2 ) (2.49) 8π V (2.47) (2.48) d 3 xe 2 = 1 d 3 x ω k ω k V k r r c 2 e r, k e r, k ( q (r) q (r ) k e i( k+ k ) x i(ω k +ω k )t k V V k q (r) k q (r ) k e i( k+ k ) x+i(ω k +ω k )t +(q (r) q (r ) k + q (r) k q (r ) k )e i( k k ) x+i(ω k ω k )t ) k = k r ωk 2 c 2 ((q(r) q (r) k k q (r) q (r) k k e i2ω k q (r) k + q (r) q (r) k ) k q (r) k ei2ω k )

35 (2.44) ω k = ω k d 3 xb 2 = 1 d 3 x ( V k e r, k ) ( k e r, k r k )(q (r) q (r ) k e i( k+ k ) x i(ω k +ω k )t k r V V k +q (r) k q (r ) k e i( k+ k ) x+i(ω k +ω k )t +(q (r) q (r ) k + q (r) k q (r ) k )e i( k k ) x+i(ω k ω k )t ) k = k r k 2 ((q (r) q (r) k k +q (r) q (r) k k e i2ω kt + q (r) k + q (r) q (r) k ) k q (r) k ei2ω kt ) ( k e r, k ) ( k e r, k ) = k 2 e r, k = e r, k (2.45) U = ω 2 ( k (r) q k 4πc 2 k r q (r) k + q (r) q (r) ) k k (2.50) 1 M = d 3 xe 4πc B (2.51) V d 3 xe B = ω k k c e r, k ( k e r, k )((q(r) q (r ) k + q (r) k q (r ) k )δ k k, k V k r r q (r) q (r ) k e i2ωkt δ k k, k q (r) q (r ) k e i2ωkt δ k k, k ) = ω k k r c k(q (r) q (r) k + q (r) k q (r) k ) k ω k k r c ( k)(q (r) q (r) k k e i2ω kt + q (r) q (r) k k ei2ω kt ) = ω k k c k(q (r) q (r) k + q (r) k q (r) k ) k r

36 30 2 k r ω k c ( k )(q (r ) k q(r) k e i2ω k + q (r ) k q (r ) k e i2ω k ) k = k k = k ω k = ω k k, r k, r q (r) q (r) k = k q(r) k q(r) k q (r) q (r) k = k q(r) k q(r) k M = ω k k 4πc 2 k(q (r) k r q (r) k + q (r) q (r) k ) (2.52) k L r, k = ( 1) r 1 4πω k d 3 xe k B k (2.53) r = 1 r = 2 (2.52) c/ω k L = ( 1) r 1 k 4πc k(q (r) k r V q (r) k + q (r) q (r) k ) (2.54) k (2.21) (2.46) q (r), q (r) k k (2.50) U H (2.21) A( x, t) t = i V k r ( (r) ω k q e iωkt e i k x q (r) k e iωkt e i k x ) e k r, k (2.55)

37 [ (r) q, q (r ) ] k k [ (r) q, q (r )] k k = 4π c2 δ k, 2ω k δ r,r (2.56) k = [ q (r), q (r ) ] k k = 0 (2.57) [ (r) q, q (r ) k q (r ) ] k k [ (r) q, q (r ) k q (r ) ] k k [ (r) q, q (r ) k q (r )] k k [ (r) q, q (r ) k q (r )] k k = q (r) k q (r ) k q (r ) k q (r ) = q (r ) k = q (r ) k q (r) q (r ) k q (r ) k q (r) k k q (r) k q (r ) k q (r ) k k ( 4π c 2 δ k, 2ω k δ r,r + q (r k k = 4π c2 δ k, 2ω k δ r,r q (r k k ) = q (r) k q (r ) k q (r ) k q (r ) = q (r) q (r ) q (r ) k k q (r ) k k = q (r) q (r ) q (r ) k k k = 4π c2 δ k, 2ω k δ r,r q (r k k ) q (r ) k q (r) k k ( 4π c 2 q (r) q (r ) k k 2ω k ) = q (r) k q (r ) k q (r ) k q (r ) = q (r) q (r ) k q (r ) k q (r ) k k = q (r) q (r ) k q (r ) k k = 4π c2 δ k, 2ω k δ r,r q (r k k q (r ) k q (r) k k ) q (r) q (r ) k q (r ) k q (r) k k δ k, k δ r,r + q (r) q (r ) k k q (r) q (r ) k k ( 4π c2 ) = q (r) k q (r ) k q (r ) k q (r ) = q (r ) k = q (r ) k q (r) q (r ) k 2ω k q (r ) k q (r) k k q (r ) k q (r ) k k k ( 4π c2 δ k, 2ω k δ r,r + q (r k k = 4π c2 δ k, 2ω k δ r,r q (r k k ) ) δ k, k δ r,r + q (r) q (r ) k k q (r) ) ) q (r) k q (r ) ) q (r ) k q (r ) k q (r ) k q (r) k k

38 32 2 (2.21) i [ A( x, t), H] = i V k r ω k (q (r) e iωkt e i k x q (r) k e iωkt e i k x ) e k r, k (2.58) (2.55) (2.58) (2.56) (2.57) a (r), a (r) k k a (r) k a (r) k 2ωk 4π c 2 q(r) (2.59) k 2ωk 4π c 2 q(r) (2.60) k (2.56) (2.57) a (r), a (r) k k [ (r) a, a (r ) ] k k [ (r) a, a (r )] k k = δ k, k δ r,r (2.61) = [ a (r), a (r ) ] k k = 0 (2.62) a (r), a (r) k k (2.59) (2.60) (2.50) (2.61) (2.62) U = ( ω k k r a (r) a (r) k k ) (2.63) e r k number operator e r k n r, k

39 n r, k > < n r, k U n r, k > = ω k n r, k 1 ω k (2.52) M = k r ( k a (r) k a (r) k ) = k r ka (r) a (r) k (2.64) k k (2.54) L = ( 1) r k ( k k r a (r) k + 1 ) = k ( 1) r k k 2 a (r) r k a(r) k a (r) k (2.65) r = 1 r = 2 k (1.10) V (1.26) H = V [ 1 d 3 x 2c φ ( φ) ( mc ) ] 2 φ 2 (2.66)

40 34 2 natural unit cgs gauss φ( x, t) = 1 V k q( k, t)e i k x (2.41) (2.43) (1.10) ω k = ( kc) 2 + (mc 2 ) 2 (2.67) q( k, t) = q k e iω kt φ( x, t) = 1 V k ( q k e iω kt+i k x + q k e iω kt i k x ) (2.66) (2.68) δ k, k H = k ω 2 k c 2 (q k q k + q k q k ) (2.69) ω 2 k k 2 c 2 (mc/ ) 2 (2.67) M ( M = d 3 x 1 c φ ) 2 φ (2.70) V natural unit cgs gauss 1/c c (2.68) M = k ω k c 2 k(q k q k + q k q k ) (2.71)

41 k k δ k, k ω k k = ω k ( k) k = ω k k = ω k k k k = φ = i [φ, H] (2.72) [ q k, q k ] a k, a k = c2 2ω k δ k, k (2.73) [q k, q k ] = [ q k, q k ] = 0 (2.74) a k a k 2ωk c 2 q k (2.75) 2ωk c 2 q (2.76) k (2.73) (2.74) a k, a k [ a k, a k ] = δ k, k (2.77) [a k, a k ] = [ a, a k k ] = 0 (2.78) a k, a k

42 36 2 H = ( ω k a a k k + 1 ) k 2 (2.79) M = k ka k a k (2.80) (2.64) k k 1 2 = 0

43 Friedmann H 2 = 8πG 3 ρ H = ȧ/a a ρ Hubble length l H = c/h Hubble length Hubble length Friedmann M H = 4π 3 l3 Hρ = c2 2G l H Hubble length Hubble length Schwarzschild 2GM H c 2 Schwarzschild Hubble length Schwarzschild

44 38 3 Schwarzschild Schwarzschild Hubble length Hubble length M H c 2 E < M H c 2 t t 2 1 M H c 2 Hubble length t age l/c = 1/H Hubble time 1 ( H = c ) 3 1 H2 H c 3 = 2GM H c 3 2M H c 2 M H 1 c 2 G Planck mass c M pl = G = g = GeV (3.1) c2 Planck

45 ρc 2 < ( )4 3 c 3 32π( c) 3 G c2 = 32π( c) 3 (M plc 2 ) 4 (3.2) π 2 15( c) 3 (k BT ) 4 k B T < M pl c 2 Planck time Reduced Planck mass t pl = sec (3.3) M pl M pl = GeV (3.4) 8π c ( ds 2 = c 2 dt 2 + a(t) 2 1 ) 1 Kr 2 dr2 + r 2 (dθ 2 + sin 2 θdφ 2 ) (3.5) a(t) (r, θ, φ) 3 3 K

46 40 3 K > K = 0 K < 0 H 2 = H 2 0 (Ω r0 (1 + z) 4 + Ω m0 (1 + z) 3 + Ω K0 (1 + z) 2 ) (3.6) H = ȧ/a t H z = a 0 /a a 0 Ω r0, Ω m0 Ω K0 ρ K = 3Kc2 8πGa 2 0 (1 + z) 2 z Ω K = ρ K ρ cr = Kc2 ȧ 2 = ȧ2 0 ȧ 2 Ω K0 (3.7) ȧ (3.7) Ω K a = (t/t 0 ) 0.5 ȧ 2 0/ȧ 2 = t/t 0 = (a/a 0 ) 2 T a = T 0 a 0 Ω K (t pl ) ( )2 kb T 0 M pl c 2 Ω K Ω K0 (3.8) 0 < Ω K0 < O(1) 62 0

47 Ω K = 0 t cdt l p (t) = a(t) 0 a (3.9) a t n ä n(n 1)t n 2 n = 1 n < 1 n > 1 (3.9) 1 l p (t) = 1 n ctn (t n+1 (t = 0) n+1 ) ct = 1 n for n < 1 = for n > 1

48 42 3 CMB 2.73K CMB CMB t i l p = ct n t 1 n i /(1 n) t i = 0 (3.7) ȧ Ω K ä a = 4πG 3 ( ρ + 3P c 2 ) (3.10) P = wρc 2 w < Slow roll inflation φ

49 ρc 2 = 1 φ 2 2c + V 2 H 2 = 8πG 3 [ 1 2c φ ] c 2 V = c [ 1 3 M pl 2 2c φ ] c 2 V (3.11) M pl c/8πg reduced Planck mass P = wρc 2 1 < w < 1/3 φ + 3H φ + dv dφ = 0 (3.12) Slow roll 1 φ 2 2c 2 φ slow roll parameters slow roll ε 1 2 M 2 pl η M pl 2 V V ( V V )2 (3.13) (3.14) V, V φ Slow roll H M V (3.15) pl 2 3H φ V (3.16) 1 2c 2 φ 2 V 1 1 V 2 2 V 9H M ( V pl 2 V )2 = 1 3 ε (3.17)

50 44 3 ε (3.15) 2HḢ = 1 3 M V φ pl 2 H 2 H 2 Ḣ = 1 6 M 2 pl V H φ 1 18 M V 2 pl 2 (3.16) H 4 Ḣ H 2 = ε (3.18) (3.16) 3H φ + 3Ḣ φ = V φ (3.12) φ 3H V φ 9H ε = 1 3 M pl 2 V V ε = 1 ( η + ε) (3.19) 3 ε, η e-folding N(t) = ln a(t end) a(t) = a(tend ) a(t) da a (3.20) t t end

51 (3.15),(3.16) (3.20) N(t) = tend t ȧ φ(tend ) a dt = φ(t) H 2 dφ = H φ φ(tend ) φ(t) V V dφ (3.21) M pl 2 ε(φ(t end )) = 1 (3.22) reheating) (event horizen) cdt l H = a(t) t a (3.23) a t n n > 1 l H = 1/(n 1)ct n < 1 c/h = ct/n l H = n c n 1 H c H

52 46 3 r H l H a t1 n t λ λ a(t λ )λ = c H(t λ ) λ λ = 1 a 0 c H 0 a 0 a(t λ )H(t λ ) a 0 H 0 = 1 a(t λ )H(t λ ) = a(t λ) a(t end ) H(t λ ) a 0 H 0 a(t end ) a 0 H 0 a(t end )T end = a 0 T 0 k B T /( )ev, k B T end GeV

53 H(t λ ) 2 = 8π 3 G V c 2 8π 3 GaT 4 end c 2 H 2 0 = 8π 3 G at 4 0 Ω γ c 2 Ω γ = h , a = 8π5 k 4 B /15c3 h 3 e-folding N(t λ/a(tλ )=c/h 0 ) = 61 (3.24) Exponential 61 horizen exit horizen reentry

54 g( x, t) g( x, t) = k ĝ k (t)e i k x (4.1) x r a(t) r = a(t) x φ 0 (t) δφ( x, t) (φ 0 + δφ) V (φ 0 + δφ) = 0 (4.2) φ 0 V (φ 0 ) = 0 δφ V (φ 0 )δφ = 0 (4.3)

55 δφ = g µν µ ν δφ = g µν µ ν δφ (4.4) = g µν ( µ ν δφ α δφγ α µν) (4.5) ds 2 = c 2 dt 2 + a(t) 2 (dx 2 + dy 2 + dz 2 ) (4.6) Γ 0 oo = 0, Γ i 00 = 0, Γ 0 ij = aȧδ ij (4.7) δ φ + 3Hδ φ 1 a 2 2 δφ + V δφ = 0 (4.8) du dt = P dv dt U = ρv V P d ( 1 dt 2 φ φ 0 δ φ + V (φ)) = ( φ φ 0 δ φ) 1 V V = a 3 d 3 x peculiar velocity 1 V dv dt = 3ȧ a + div v div v v( x, t) t dv dt

56 50 4 x(t) x(t) + d x(t) d 3 x(t) dt x(t + dt) = x(t) + v( x(t), t)dt x(t + dt) + d x(t + dt) = x(t) + d x(t) + v( x(t) + d x((t), t))dt d x(t + dt) = d x(t) + ( v( x(t) + d x(t), t) v( x(t), t)) dt ( x(t + dt)) ( x(t)) = 1 + x v x dt y v x dt z v x dt x v y dt 1 + y v y dt z v y dt x v z dt y v z dt 1 + z v z dt 1 + div vdt div v peculiar velocity v = φ 0 1 a 2 δφ ρ 0 + P 0 = 1 a 2 δφ φ 0 dv (φ 0 + δφ) dt = (V (φ 0 ) + V (φ 0 )δφ)( φ 0 + δ φ) = V φ0 + V δ φ + V δφ φ 0 φ 0 ( φ 0 + 3H φ 0 + V ) +δ φ 0 ( φ 0 + 3H φ 0 + V ) + φ 0 (δ φ + 3Hδ φ 1 a 2 δφ + V δφ) = 0

57 Massless scalar field massless free field V = 0 δφ k (t) δ φ k + 3Hδ φ k + k2 a 2 δφ k = 0 (4.9) δφ(t) δφ k δφ k = w k (t)a k + w k(t)a k (4.10) a k, a k w k δφ k ( w k = A i + k ) e i k ah (4.11) ah A Hubble horizen a/k 1/H subhorizen scale t 1 Hubble time t H(t t 1 ) 1 a(t) a 1 + ȧ 1 (t t 1 ) = a 1 (1 + H(t t 1 )) (4.12) a 1 = a(t 1 ) t 1 w k

58 52 4 k a(t)h k a 1 H k (t t 1 ) (4.13) a 1 subhorizen scale k/ah 1 w k w k k a 1 H Aei k a 1 H +i k a t 1 1 e i k a t 1 (4.14) mass less free scalar field φ( r, t) = 1 ( a p e iωpt + a V p 2ω eiω pt ) e i p r p (4.15) p V r, p r = a(t) x, p = k/a(t) ω p = p = k/a(t) subhorizen scale A = H e iδ 1 1p (4.16) ω 1p V 2ω 1p H(t t 1 ) 1 t 1 1 δ 1p = k a 1 H + k a 1 t 1 (4.17) A V = a(t) 3 V c δφ( x, t) = H 2Vc ( + i + ( k [ i + 3/2 k 1 k a(t)h k ) e i k ah iδ ip a k (4.18) ah ) e i k ah +iδip a k ]ei k x (4.19)

59 > a k 0 > = 0 (4.20) < 0 δφ( x, t) 0 > = 0 (4.21) < 0 a k = 0 < 0 δφ( x, t) 2 0 > = H2 2V c k 1 k 3 ( 1 + k2 a 2 H 2 ) (4.22) V c k (2π) 3 d3 k (4.23) Hubble horizen super horizen limit a/k 1/H k/ah 1 < 0 δφ( x, t) 2 0 > = H 2 d 3 k ( H )2 2(2π) 3 k 3 = dk 2π 0 k (4.24) g < g 2 > = 0 P g (k) dk k (4.25)

60 54 4 P φ = ( H 2π )2 (4.26) ε t /ε c t c/h ε < H H c, (Conformal time) dτ = dt a Conformal time (4.27) τ τ 1 = = t t 1 [ 1 1 a H dt a a = da a 2 H a 1 ]a a da + a 1 a 1 a a = 1 ah + 1 a 1 H 1 + = 1 ah + 1 a 1 H 1 + a 1 a a 1 d ( 1 ) da H da aȧ da a 2 H ε ( Ḣ H 2 = 1 ah + 1 ε a 1 H 1 ah + ε 1 + a 1 H 1 ) a a 1 ( da a 2 Ḣ H H 2 ε + ε ) H

61 ε = Ḣ/H2 d/dt = φ 0 d/dφ 0 ε ε = M 2 pl ( V V 2 V 2 V 3 ) V φ0 H 2 V/3 M 2 pl V φ 0 = 6 M pl 2 HḢ ε = 2H(2ε η)ε (4.28) τ Conformal time τ τ 1 = = 1 ah + 1 a 1 H 1 + ε(τ τ 1 ) τ = ε ah (4.29) w k = u k /a u k ε ( u k + k ε ) τ 2 u k = 0 (4.30) ξ = kτ u k = ξh k (ξ) d 2 H k dξ ξ dh ( k dξ + 9/4 + 3ε ) 1 ξ 2 H k = 0 (4.31) ν ν = 9/4 + 3ε 3/2 + ε Bessel J ν Neumann N ν Hankel H ν (1), H ν (2) w k

62 56 4 w k = 1 a [ α(k) ξh (1) ν (ξ) + β(k) ξh (2) ν (ξ) ] (4.32) Hubble horizen flat space time Subhorizen limit ξ = kτ k/ah 1 Hankel ξ 2 H ν (1) (ξ) H (1) ν (ξ) πξ exp [ i 2 πξ exp [ i ( ξ (2ν + 1) π )] 4 ( ξ (2ν + 1) π )] 4 (4.33) (4.34) Subhorizen limit t 1 t ξ ξ k a 1 H 1 k a 1 (t t 1 ) w k subhorizen limit w k 1 2 k [α(k) a 1 π e i a (t t 1) 1 e i( k a 1 H π (2ν+1)) a (t t +β(k) 1 ) 1 e i( k a 1 H π (2ν+1)) 1 4 π ei k Flat space time mass less scalar field β(k) = 0 (4.35) α(k) = 1 π Vc 4k e i( k a 1 H π (2ν+1)) 1 4 (4.36) V c = v/a 3 1 ω p = p = k/a 1 p r = k x w k

63 w k = 1 1 π a Vc 4k e i( k a 1 H π (2ν+1)) 1 4 ξh (1) ν (ξ) (4.37) horizen super horizen limit ξ = kτ k/ah 1 H ν (1) i Γ (ν) ( ξ π 2) ν w k H V c Γ (ν) 1 Γ (3/2) k 3/2 2ν 2 e i( k a 1 H + π (ν 1/2)) ( ah 1 2 k )ε (4.38) Γ (3/2) = π/2 Γ (ν)/γ (3/2) 1 massless P δφk (k) = ( Γ (ν) ( H )2 ( a2h )2ε k Γ (3/2))2 2ε (4.39) 2π k Super horizen limit w k ẅ k + 3Hẇ k 0 H > 0 w k = const. horizen exit k Horizen exit t a(t ) k = 1 H(t ) a H /k = 1 super horizen horizen exit P δφk (k) = ( Γ (ν) )2 ( )2 H Γ (3/2) 2π (4.40)

64 58 4 H horizen exit H(t) 2 (H + Ḣ (t t )) 2 = H 2 (1 2H ε(t t )) (a(t)/a ) 2ε e 2εH (t t ) 1 + 2H ε(t t ) H 2 a 2ε H 2 a 2ε horizen exit n n = d ln P δφ k (k) d ln k (4.41) d d ln k = φ 0 d H dφ M 2 V d pl 0 V dφ 0 d ln H 2 d ln k 2ε n 2ε massless scalar field (ε > 0) horizen exit k Scalar filed with non zero mass simplified treatment V 0 u k 3a 2 H 2 ηu 3η τ 2 u k (4.42) H k ν = 9/4 + 3ε 3η 3/2 + ε η

65 P δφk (k) k 2ε+2η (4.43) η > 0 horizen exit Generation of Adiabatic perturbation via Inflation T Inf = GeV ct pl ( Tpl T Inf )2 = cm a

66 60 4 a 0 CMB a 0 a = T Inf T 0 ( )2 Tpl T Inf ct pl = cm T Inf T δt reh δt reh = δφ φ 0 t reh g i ġ i g i δt reh δg i = g i δt reh (4.44)

67 i δg 1 = δg 2 =,,, = δg n (4.45) g 1 g 2 g n density contrast δ m, δ r ρ m = 3Hρ m ρ r = 4Hρ r ρ m δ m ρ m = ρ rδ r ρ r δ m 3 = δ r 4 (4.46) Scalar, vector, tensor decomposition of perturbation T µν g µν z Conformal time ds 2 = a 2 (τ){ (1 + 2A)dτ 2 2B i dτdx i + [(1 + 2D)δ ij + 2E ij ]dx i dx j }

68 62 4 g µν = a 2 (τ) (1 + 2A) B 1 B 2 B 3 B D + 2E 11 2E 12 2E 13 B 2 2E D + 2E 22 2E 23 B 3 2E 31 2E D + 2E 33 A lapse function B i = (B 1, B 2, B 3 ) shift vector det(g µν ) = a 8 (τ)(1 + 2A + 2D 3) g µν g µν 1 2A 6D = a 2 (τ) 1 + 6D B 1 B 2 B 3 B A + 4D + 2E E 33 2E 21 2E 31 B 2 2E A + 4D + 2E E 33 2E 32 B 3 2E 13 2E A + 4D + 2E E 22 g µν = 1 a 2 (τ) (1 2A) B 1 B 2 B 3 B 1 1 2D 2E 11 2E 21 2E 31 B 2 2E D 2E 22 2E 32 B 3 2E 13 2E D 2E 33 A, D Shift vector k B/k = B 3 = ib (B 1, B 2, 0) E ij

69 E S ij = 1 3 E V ij = i 2 E E E 0 0 E E 2 E 1 E 2 0 (4.47) (4.48) E T ij = E + E 0 E E (4.49) T µν (ρ + P )U µ U ν + P g µν + Σ µν (4.50) ρ = ρ 0 P = P 0 Σ µν = 0 U µ = dx µ /dλ = (1/a, 0, 0, 0) Σ µν v i = dxi dτ λ dλ 2 = g µν dx µ dx ν = a 2 (τ)dτ 2 { (1 + 2A) 2B i v i + [(1 + 2D)δ ij + 2E ij ]v i v j } a 2 (τ)dτ 2 (1 + 2A + 2B i v i v 2 ) dλ = a(τ) ( 1 + 2A + 2B i v i v 2 dτ = a(τ) 1 + A + B i v i 1 2 v2) dτ Conformal time A lapse function U i = dx i /dλ = v i /a, U 0 = (1 A

70 64 4 B i v i + v 2 /2)/a v i v i U µ = g µν U ν U i = a(τ)( B i + v i ) (4.51) U 0 = a(τ)(1 + A v2 ) a(τ) (4.52) Shift vector shift vector T µ ν = g να T µα T µ ν = (ρ 0 + δρ + P 0 + δp )U µ U ν + (P 0 + δp )δ µ ν + Σ µ ν (4.53) T 0 0 = (ρ 0 + δρ) (ρ 0 + P 0 )( B i v i + v 2 ) (ρ 0 + δρ)(4.54) T 0 i = (ρ 0 + P 0 )(v i B i ) (4.55) T i 0 = (ρ 0 + P 0 )v i (4.56) T i j = (P 0 + δp )δ ij + Σ i j (4.57) δρ δp k v/k = iv v = (V 1, V 2, 0) T µν = g µα T α ν T 00 = g 00 T 0 0 = a 2 (1 + 2A)(ρ 0 + δρ) = a 2 (ρ 0 + 2Aρ 0 + δρ) T 0i = g 00 T 0 i + g 0j T j i = a2 (ρ 0 + P 0 )(v i B i ) a 2 B j P 0 δ ij T ij = g i0 T 0 j + g ik T k j = a 2 [(1 + 2D)δ ik + 2E ik ][(P 0 + δp )δ k j + Σ k j ] = a 2 (P 0 δ ij + (2DP 0 + δp )δ ij + 2P 0 E ij + Σ ij ) Σ S ij = 1 3 Σ Σ Σ (4.58)

71 Σ V ij = i 2 Σ T ij = 0 0 Σ Σ 2 Σ 1 Σ 2 0 Σ + Σ 0 Σ Σ Gauge transformation of scalar perturbations (4.59) (4.60) x µ = x µ + ξ µ (4.61) ξ µ z ξ µ = (δτ, 0, 0, 0), (0, 0, 0, iδx) ξ µ = (0, δx 1, δx 2, 0) δρ ρ(t) t = t + ξ 0 (x i ) ρ( t(x i ))

72 66 4 t(x i ) = t t = t t = t ξ 0 t ρ( t(x i ) = t) = ρ(t ξ 0 (x i )) ρ(t) ξ 0 (x i ) ρ(t) (4.62) ρ < 0 ξ 0 (x i ) > 0 ρ(t) ξ 0 ρ ρ t = t + ξ 0 ξ 0 t t ξ 0 ξ 0 ξ 0 ρ Lie δ L ρ = ρ(t) ρ(t) (4.63) Lie B µν x σ = x σ + ξ σ B µν B µν ( x σ ) = xα x µ x β x ν B αβ(x σ ) (4.64)

73 x α x xα µ x µ x α x µ = δ α µ + µ ξ α (4.65) x α x µ 1 + i ξ i 0 ξ 1 0 ξ 2 0 ξ 3 = (1 µ ξ µ ) 1 ξ ξ ξ ξ 3 1 ξ 2 1 ξ 3 2 ξ 0 2 ξ ξ ξ ξ 3 2 ξ 3 3 ξ 0 3 ξ 1 3 ξ ξ ξ ξ 2 = 1 0 ξ 0 0 ξ 1 0 ξ 2 0 ξ 3 1 ξ ξ 1 1 ξ 2 1 ξ 3 2 ξ 0 2 ξ ξ 2 2 ξ 3 3 ξ 0 3 ξ 1 3 ξ ξ 3 x α x µ = δ α µ µ ξ α (4.66) Lie δ L B µν (x σ ) = B µν (x σ ) B µν (x σ ) (4.67) = ξ σ σ B µν (x σ ) µ ξ α B αν (x σ ) ν ξ β B µβ (x σ ) (4.68) ξ µ = (δτ, 0, 0, iδx) g 00

74 68 4 g 00 = g 00 0 ξ β g 0β 0 ξ α g 0α ξ σ σ g 00 = a 2 (1 + 2A) + 2δτ a 2 (1 + 2A) + 2iδx a 2 ( B 3 ) + δτ(a 2 (1 + 2A)) iδx(a 2 (1 + 2A)), 3 Ã = A δτ a a δτ = A δτ ahδτ (4.69) 0 τ, 3 x 3 0 a = a 2 H g 0i g 03 = g 03 0 ξ β g 3β 3 ξ α g 0α ξ σ σ g 03 = g 03 0 ξ 3 g 33 3 ξ 0 g 00 3 δτ = ikδτ g ij B = B + δx + kδτ (4.70) g ij = g ij i ξ β g jβ j ξ α g iα ξ σ σ g ij = g ij i ξ k g jk j ξ k g ik ξ 0 0 g ij a 2 [(1 + 2 D)δ ij + 2Ẽij] = a 2 [(1 + 2D)δ ij + 2E ij ] i ( iδx)a 2 δ j3 j ( iδx)a 2 δ i3 δτ2aa δ ij = a 2 [(1 + 2D)δ ij + 2E ij ] kδxa 2 δ i3 δ j3 kδxa 2 δ j3 δ i3 δτ2aa δ ij Ẽ = E + kδx (4.71) D = D k δx ahδτ (4.72) 3 T 00

75 Ãρ 0 + δ ρ = 2Aρ 0 + δρ 2δτ ρ 0 2δτaHρ 0 δτρ 0 δ ρ = δρ ρ 0δτ (4.73) T 0i a 2 (ρ 0 + P 0 )(ṽ 3 B 3 ) a 2 P 0 B3 = a 2 (ρ 0 + P 0 )(v 3 B 3 ) a 2 P 0 B 3 δx 3a 2 P 0 δτ, 3 a 2 ρ 0 Ṽ = V + δx (4.74) x x = 0 x = δx x δx δx T ij a 2 (P 0 δ ij + (2 DP 0 + δ P )δ ij + 2P 0 Ẽ ij + Σ ij ) = a 2 (P 0 δ ij + (2DP 0 + δp )δ ij + 2P 0 E ij + Σ ij ) i ξ k a 2 P 0 δ kj j ξ k a 2 P 0 δ ik ξ 0 (2aa P 0 + a 2 P 0)δ ij (2 DP 0 + δ P )δ ij + 2P 0 Ẽ ij + Σ ij = (2DP 0 + δp )δ ij + 2P 0 E ij + Σ ij kδxp 0 δ 3 i δ k 3 δ kj kδxp 0 δ 3 j δ k 3 P 0 δ ik δτ(2ahp 0 + P 0)δ ij Σ = Σ (4.75) δ P = δp δτp 0 (4.76) δφ ρ = 1/2 φ 2 + V = 1/2a 2 φ 2 + V P = 1/2 φ 2 V = 1/2a 2 φ 2 V φ = φ 0 + δφ δρ δp

76 70 4 δ φ = δφ φ 0δτ (4.77) k R (3) k R (3) k = (D 4k2 a 2 + E ) 3 (4.78) ϕ D E (4.79) Gauge invariant variables ϕ = ϕ ahδτ (4.80) Bardeen variable ζ ζ ϕ + 1 δρ (4.81) 3 ρ 0 + P 0 ρ 0 = 3aH(ρ 0 + P 0 ) Entropy perturbation P P δp P 0 ρ δρ (4.82) 0 P = P (ρ) P = dp dρ ρ

77 P = ( δp δρ dp ) δρ (4.83) dρ δp δρ = dp dρ P = 0 P 0 Velocity perturbation V s Scalar field perturbation φ V s V E k (4.84) φ δφ + 1 k Sasaki-Mukuhanov variable Q ) (B E φ 0 (4.85) k Q δφ φ 0 ah ϕ = δφ φ 0 H ϕ (4.86) threading slicing Conformal Newtonian gauge ds 2 = a 2 [ (1 + 2Ψ N )dτ 2 + (1 2Φ N )δ ij dx i dx j ] (4.87) A N Ψ N (4.88) D N Φ N (4.89) B N = E N = 0 (4.90) R (3) kn = 4k2 a 2 Φ N (4.91) slicing threading

78 72 4 Total matter gauge δφ = 0 Conformal Newtonian gauge scalar comoving gauge Slicing threading Conformal Newtonian gauge thread thread conformal Newtonian gauge δφ = 0 δx = 0 (4.92) δτ = V N k total matter gauge (4.93) Ψ T M = Ψ N V N k ah V N (4.94) k B T M = V N (4.95) D T M = Φ N ah V N (4.96) k E T M = 0 (4.97) V T M = V N (4.98) δρ T M = δρ N ρ V N 0 k δp T M = δp N P 0 V N k (4.99) (4.100) Spatially flat gauge (slicing) D = E = 0 ϕ = 0 Q = δφ (4.101) ds 2 = a 2 [ (1 + 2A)dτ 2 2B i dτdx i + δ ij dx i dx j ] (4.102)

79 g 00 = a 2 (1 + 2A) g 0i = a 2 B i g ij a 2 δ ij (4.103) g 00 = 1 a (1 2A) g 0i = Bi 2 a g ij = 1 2 a δ 2 ij Comoving gauge (slicing) T 0 i = 1 a 2 φ 0 i δφ = 0 (4.104) i δφ = 0 δφ = 0 (4.105) Q = φ 0 H ϕ (4.106) Spatially flat δφ SP F TM ϕ T M ϕ T M = H δφ SP F φ 0 = ȧδt a (4.107) δt = δφ SP F / φ 0 φ TM φ TM δφ = 0 Spatially flat δφ Spatially flat 0 δt Spatially flat by definition TM δt a = ȧδt δt < 0 a < 0 a

80 74 4 TM a a TM a/a Spatially flat gauge Q spatially flat spatially flat Γ 0 00 = 1 2 (g00 g 00,0 + g 0i (g i0,0 + g i0,0 g 00,i )) = 1 2 ( 1 a 2 (1 2A)(2aa (1 + 2A) + a 2 2A )) = a a + A Γ 0 i0 = 1 2 (g00 g 00,i + g 0j (g ji,0 + g j0,i g i0,j )) = A,i a a B i = iδ i3 (ka + a a B) Γ 0 ij = 1 2 (g00 (g 0i,j + g 0j,i g ij,0 ) + g 0k (g ki,j + g kj,i g ij,k )) = a a δ ij (B i,j + B j,i ) 2 a a Aδ ij = a a + kbδ i3δ j3 2 a a Aδ ij Γ i 00 = 1 2 (gi0 g 00,0 + g ij (2g j0,0 g 00,j )) = a a B i B i + A,i = iδ i3 ( a a B + B + ka) Γ i j0 = 1 2 (gi0 g 00,j + g ik (g kj,0 + g k0,j g j0,k )) = a a δ ij 1 2 (B i,j B j,i ) + D δ ij + E ij = a a δ ij + D δ ij + E ij

81 Γ i jk = 1 2 ( gi0 g jk,0 ) = a a B iδ jk = i a a Bδ jkδ i3 Γ µ 0µ = 4 a a + A + 3D (4.108) Γ µ iµ = A,i = ikaδ i3 (4.109) µ T ν µ = µ T ν µ + Γ µ µβ T ν β ΓµνT β µ β = 0 (4.110) T ν µ = ( g µα α φ ν φ + δ ν µ 1 ) 2 gαβ α φ β φ V (4.111) [ 1 T0 0 = 2a 2 φ V (φ 0 ) A ] a 2 φ φ 0 a 2 δφ + V δφ (4.112) T 0 i = 1 a 2 φ 0 i δφ = ik 1 a 2 φ 0δφ (4.113) T0 i = B i a 2 φ a 2 φ 0 i δφ = i a 2 (Bφ kφ 0δφ) (4.114) ( φ Tj i = δj i 2 0 2a 2 V (φ 0) + φ 0 a 2 δφ A ) a 2 φ 2 0 V δφ (4.115) δρ φ = A a 2 φ φ 0 a 2 δφ + V δφ (4.116) δp φ = φ 0 a 2 δφ A a 2 φ 2 0 V δφ (4.117) (T 0 0 ) + i T i 0 + Γ µ 0µ T Γ µ iµ T i 0 Γ 0 00T 0 0 Γ 0 0iT i 0 Γ i 00T 0 i Γ i 0jT j i = 0 0 = (ρ 0 + δρ) k a 2 (Bφ kφ 0δφ) (4 a a + A + 3D )(ρ 0 + δρ)

82 76 4 +( a a + A )(ρ 0 + δρ) 3 a a (P 0 + δp ) 3D P 0 0 = δρ k a 2 (Bφ kφ 0δφ) 3 a a (δρ + δp ) 3D (ρ 0 + P 0 ) δρ = A a 2 φ 2 0 2A a 2 φ 0φ 0 + 2a a 3 Aφ φ 0 a 2 δφ + φ 0 a 2 δφ 2a a 3 φ 0δφ +V φ 0δφ + V δφ φ 0 + 2aHφ 0 + a 2 V = 0 (4.118) 0 = δφ + 2aHδφ + (a 2 V + k 2 )δφ A φ 0 + 2a 2 AV + kbφ 0 + 3D φ 0 (4.119) spatially flat gauge T = T µ µ = ρ 0 + 3P 0 δρ + 3δP R µν = Γ α µν,α Γ α µα,ν + Γ α ασγ σ µν Γ α νσγ σ αµ (4.120) R 00 R 00 = Γ00,α α Γ0α,0 α + ΓασΓ α 00 σ Γ0σΓ α α0 σ = ( a ( a ) a + A ) + i 3 a B + B + ka + (4 a a + A ) (4 ( a a + A ) a ( a ) a + A ) + ia,3 a B + B + ka

83 ( a a + A )2 ( a a )2 = 3 a a + 3a 2 a 2 +3aHA k 2 A kahb kb T T g 00 = g 0µ T µ T g 00 = a 2 (1 + 2A)( ρ 0 δρ) a2 (1 + 2A)( ρ 0 δρ + 3P 0 + 3δP ) = a2 2 (ρ 0 + 3P 0 ) + a2 2 (δρ + 3δP ) + a2 A(ρ 0 + 3P 0 ) = a2 2 (ρ 0 + 3P 0 ) + 2φ 0δφ a 2 V δφ 2a 2 V A 00 (4.121) 3 a a + 3a 2 a 2 = ä a 1 M 2 pl a 2 2 (ρ 0 + 3P 0 ) (4.122) = 4π 3 G(ρ 0 + 3P 0 ) (4.123) 3aHA k 2 A kahb kb 3D 3 a a D = 1 M 2 pl (2φ 0δφ a 2 V δφ 2a 2 V A) (4.124) R 0i R 0i = Γ0i,α α Γ0α,i α + ΓασΓ α 0i σ ΓiσΓ α α0 σ [ ( = iδ i3 2k a a A + a a )2 ] a B + B a

84 78 4 T 0i 1 2 T g i0 = g 00 Ti 0 + g 0j T j i 1 2 T g 0i = a 2 (1 + 2A) ( 1 ) a 2 ikφ 0δφδ i3 a 2 B i P a2 B i ( ρ 0 + 3P 0 ) = ikφ 0δφδ i3 + a2 2 B i( ρ 0 + P 0 ) = ikφ 0δφδ i3 i a2 2 B( ρ 0 + P 0 )δ i3 = ikφ 0δφδ i3 + ia 2 BV δ i3 ( 2ik a a )2 a A + ia a B + i B = a 1 M 2 pl (ikφ 0δφ + ia 2 BV ) ij ( a 3 a )2 = a2 ρ M pl 2 0 (4.125) (4.122) a ( a )2 a + a = a 2 2 M 2 pl (ρ 0 P 0 ) = a2 V (4.126) M pl 2 03 B 2 a a A = 1 φ M 0δφ (4.127) pl 2 R ij R ij = Γ α ij,α Γ α iα,j + Γ σ ασγ σ ij Γ α jσγ σ αi = Γ 0 ij,0 + Γ k ij,k Γ α iα,j + Γ α α0γ 0 ij + Γ α αkγ k ij Γj0Γ 0 0i 0 ΓjkΓ 0 0j k Γj0Γ l li 0 ΓjkΓ l li k

85 = ( a a + ( a a )2) ( a ( a )2) δ ij 2A a + δ ij a a a A δ ij +k 2 Aδ i3 δ j3 + 2k a a Bδ i3δ j3 + k a a Bδ ij + kb δ i3 δ j3 T ij 1 2 T g ij = g iµ T µ j 1 2 T g ij = a 2 (P 0 + δp )δ ij a2 2 ( ρ 0 + 3P 0 δρ + 3δP )δ ij = a2 2 (ρ 0 P 0 )δ ij + a 2 V δφδ ij ( a ( a )2) a + a = a 2 2 M (ρ pl 2 0 P 0 ) (4.128) a 2 ( a ((V M ( a )2) δφ + 2D)δ pl 2 ij + 2E ij ) = 2A a + δ ij a a a A δ ij + k 2 Aδ i3 δ j3 +2k a a Bδ i3δ j3 + k a a Bδ ij + kb (4.129) δ i3 δ j3 3a 2 ( a V M ( a )2) δφ = 6 pl 2 a + A 3 a a a A +k 2 A + 5k a a B + kb (4.130) a = a 2 H, a = 2a 3 H 2 + a 3 Ḣ a ( a )2 a + a = a 2 (3H 2 + Ḣ)

86 80 4 a ( a )2 a a (4.138) H 2 = = a 2 2 M 2 pl (ρ 0 P 0 ) = a2 V (4.131) M pl 2 = a 2 ä a = a2 4π 3 G(ρ 0 + 3P 0 ) (4.132) 1 3 M 2 pl ρ 0 = 1 ( 1 ) 3 M pl 2 2a 2 φ V (4.133) 3H 2 + Ḣ = V M 2 pl (4.134) (4.140) (4.141) Ḣ = 1 φ 2 0 2a 2 M 2 pl (4.135) conformal time Ḧ = φ 0φ 0 a 3 M pl 2 = 2φ 0 aφ 0 + H φ 2 0 a 2 M pl 2 Ḣ 2HḢ (4.136) V = 1 a 2 (φ 0 + 2aHφ 0) 3 H ( k )2 a A A k a a HB k a 2 B = 1 M 2 pl ( 2φ 0δφ a 2 V δφ 2V A) (4.137)

87 HA = 1 a M φ 0δφ (4.138) pl 2 3 M 2 pl V δφ = 6(3H 2 + Ḣ)A 3H a A ( k )2 + A + 5 k a a HB + k a 2 B (4.139) δφ + 2aHδφ + (a 2 V + k 2 )δφ A φ 0 + 2AV + kbφ 0 = 0 (4.140) (4.149) A = 1 2 M 2 pl 1 δφ ah φ 0δφ = aḣ H φ 0 (4.141) (4.148) (4.150) 1 M 2 pl ( φ 0δφ a 2 + V δφ V A) = 3(3H 2 + Ḣ)A + 2k a HB (4.146) 1 M 2 pl φ 0δφ a 2 = φ 2 0 2a 2 M 2 pl 2δφ = 2Ḣ δφ φ 0 (4.145) conformal time V φ M pl 2 0 = 6aHḢ + aḧ (4.142) Ṽ M 2 pl A = (3H 2 + Ḣ)A

88 82 4 (1.152) 2 k δφ HB = 2Ḣ a φ + (6aHḢ + aḧ)δφ 0 φ 0 +2(3H 2 + Ḣ)A 2 k δφ HB = 2Ḣ a φ + aḧ δφ 2aḢ2 δφ 0 φ 0 H φ 0 k a B = Ḣ δφ H φ + a δφ ( ) Ḧ 0 φ 0 2H Ḣ2 H 2 (4.143) δφ + 2aHδφ + (a 2 V + k 2 )δφ (4.152) conformal time A = a Ḣ Hφ δφ + aḣ 0 H +a 2 Ḣ2 H 2 φ δφ a 2 0 (4.155) = A φ 0 2AV kbφ 0 (4.144) φ 0 φ 2 0 Ḧ Hφ 0 (r.h.s.) = φ 0[ a Ḣ Hφ δφ + aḣ 0 H +a 2 Ḣ2 H 2 φ δφ a 2 Ḧ 0 ( 2 a Ḣ aφ 0 [ = a 2 Ḣ ah Hφ 0 δφ Hφ 0 δφ a 2 Ḣ φ δφ (4.145) 0 φ 0 φ 2 0 δφ δφ a 2 Ḣ φ δφ] 0 ) ) ( 1 a 2 (φ 0 + 2aHφ 0) ( δφ Ḣ H φ + a δφ 0 φ 0 φ 0 2Ḣ2 φ + 0 ( Ḧ 2H Ḣ2 H 2 H 2 3 Ḧ 2 H 5Ḣ δφ )) ] δφ

89 (4.147) ( (r.h.s.) = 2a 2 3Ḣ Ḣ2 H 2 + Ḧ ) δφ H δφ + 2aHδφ + k 2 δφ +a (V (3Ḣ Ḣ2 H 2 + Ḧ H )) δφ = 0 (4.146) Klein-Golden mass term m 2 V + 2 (3Ḣ Ḣ2 H 2 + Ḧ ) H (4.147) d dt d dt ( a 3 ) Ḣ H ( a 3 ) Ḣ H = a 3 Ḧ H + 3a2 ȧḣ H a3 Ḣ2 H 2 (Ḧ ) = a 3 Ḣ2 + 3Ḣ H = 1 M 2 pl d dt ( a 3 φ2 0 H H 2 ) +a 2 [ (k a )2 Mass term δφ + 2aHδφ + V 1 a 3 M 2 pl d dt V = d [ 1 ] dφ 0 a 2 (φ 0 + 2Haφ 0) = dτ dφ 0 d dτ ( )] a 3 φ2 0 δφ = 0 (4.148) H [ 1 a 2 (φ 0 + 2Haφ 0) ]

90 84 4 m 2 = 1 a 2 [ = 1 [ φ 0 a 2 φ 0 φ 0 φ 0 2H 2 a 2 + 2aH ] + 2H 2 a 2 2 H 2 H 2 + 4H H u = aδφ u = a 2 Hδφ + aδφ φ 0 φ 0 u = aδφ + 2a 2 Hδφ + (a 2 H + 2a 3 H 2 )δφ ( u (a 2 H + 2a 3 H 2 )δφ + a 3 k a +a [ φ 0 φ 0 + 2H 2 a 2 2 H 2 H 2 + 4H H u + [k 2 φ 0 φ ah 2 H 2 0 H 2 + 4H H )2 δφ φ 0 φ 0 φ 0 φ 0 ] ] δφ = 0 ] u = 0 z φ 0 H (4.149) H = 2 φ 0 φ ahh (4.150) 0 1 z z = φ 0 φ 0 2 H H φ 0 φ H 0 H + 2H 2 H 2 (4.151) [ u + k 2 1 d 2 z ] z dτ 2 u = 0 (4.152) Spatially flat Q = δφ P aq [ P + k 2 1 d 2 z ] z dτ 2 P = 0 (4.153)

91 Power spectrum of scalar perturbation 1 d 2 z z dτ 2 (4.160) 2 3η + 9ε τ 2 ν 3 η + 3ε (4.154) 2 ( P Q (k) = (2H) 6ε 2η )2 H ( Γ (ν) ( k ) 6ε+2η 2π Γ (3/2))2 a (4.155) spatially flat Q = ϕ TM TM spatial curvature spatially flat ϕ T M = Ḣ φ 0 δφ SF (4.156) ( P ϕ (k) = (2H) 6ε 2η )2 H ( H )2 ( Γ (ν) ( k ) 6ε+2η (4.157) φ 0 2π Γ (3/2))2 a (4.144),(4.146) P ϕ (k) 1 24π 2 M 4 pl V ε ( k ) 6ε+2η 1 2aH 2 M pl 2 ( )2 H 1 2π ε (4.158) dε d ln k = 2εη + 4ε 2 (4.159) n

92 86 4 n 1 d ln P ϕ d ln k = 2η 6ε (4.160) n 1 δρ k 2 k n (4.161) n 1 2 Φ N = 4πGa 2 δρ k Φ N k 2 δρ k d ln kp Φ (k) d ln kk 3 k 4 δρ k 2 d ln kk n 1 n = 1 n = 1 n = 1 Harrison-Zel dovich spectrum Conformal Newtonin Conformal Newtonian g 00 = a 2 (1 + 2Ψ) g 0i = 0 g ij = a 2 (1 2Φ)δ ij g 00 = 1 a 2 (1 2Ψ) g0i = 0 g ij = 1 (1 + 2Φ)δij a2

93 Γ 0 00 = 1 2 g00 g 00,0 = a a + Ψ Γ 0 i0 = 1 2 g00 g 00,i = Ψ,i = ikψδ i3 Γ 0 ij = 1 2 g00 ( g ij,0 ) = ( a a (1 2Ψ N 2Φ N ) Φ N)δ ij Γ i 00 = 1 2 gii ( g 00,i ) = Ψ,i = ikψδ i3 Γ i 0j = 1 2 gii g ij,0 = ( a a Φ )δ i j Γ i jk = 1 2 gii (g ij,k + g ik,j g jk,i ) = Φ,k δ ij Φ,j δ ik + Φ,i δ jk = ikφ( δ k3 δ ij δ j3 δ ik + δ i3 δ jk ) Γi0 i = 3( a a Φ ) Γji i = 3ikΦ N δ j3 Γ0α α = 4 a a 3Φ N + Ψ N Γiα α = ( 3ikΦ N + ikψ N )δ i3 T 0 0 = ρ 0 δρ T 0 i = (ρ 0 + P 0 )v i T i 0 = (ρ 0 + P 0 )v i T i j = (P 0 + δp )δ i j + Σ i j P 0 = wρ 0 (4.162) density contrast δ δρ ρ 0 (4.163) µ T µ 0 = 0 0 = µ T µ 0 = T 0 0,0 + Γ 0 0σT σ 0 Γ σ 00T 0 σ + T i 0,i + Γ i iσt σ 0 Γ σ i0t i σ = ρ 0 δρ k(1 + w)ρ 0 V N 3(aH Φ )ρ 0 3aHδρ 3(aH Φ )P 0 3aHδP

94 88 4 ρ 0 + 3aH(1 + w)ρ 0 = 0 (4.164) δρ + k(1 + w)ρ 0 V N 3Φ N (1 + w)ρ 0 + 3aH(δρ + δp ) = 0 (4.165) δ N + k(1 + w)v N 3(1 + w)φ N 3aHwδ N + 3aH δp N ρ 0 = 0 (4.166) V Conformal Newtonian V = a 3 (1 2Φ N ) 3/2 d 3 x Φ peculiar velocity div v d(ρ 0 + δρ)v dt + (P 0 + δp ) dv dt = 0 1 V dv dt = 3ȧ a 3 Φ + div v V δ ρ + 3Hδρ 3ρ 0 (1 + w) Φ + kv N (1 + w)ρ 0 + 3HδP = 0 (4.167) (4.165)

95 = 0 T 0 i + j T j i = T 0 i,0 + Γ 0 σ0t σ i Γ σ 0iT 0 σ +T j i,j + Γ j σj T σ i Γ σ jit j σ = ((ρ 0 + P 0 )v i ) + δp,i + Σ j i,j + a a (ρ 0 + P 0 )v i + ikψ(ρ 0 + P 0 )δ i3 a a (ρ 0 + P 0 )v i +3 a a (ρ 0 + P 0 )v i δ i3 a a (ρ 0 + P 0 )v i i = 3 V N + ah(1 3w)V N + w 1 + w V N kψ N kδp + 2 (1 + w)ρ 0 3 kσ = 0 (1 + w)ρ 0 T = ρ 0 δρ + 3P 0 + 3δP ( R 00 = 3 a a )2 a + 3 k 2 Ψ N + 3Φ N + 3aH(Ψ N + Φ N ) a g 00 (T T ) = a2 2 (ρ 0 + 3P 0 + δρ + 3δP + 2Ψ(ρ 0 + 3P 0 )) (4.168) a ( a )2 a a = a2 6 M (ρ pl P 0 ) (4.169) k 2 Ψ N + 3Φ N + 3aH(Ψ N + Φ N ) = a 2 2 M (δρ + 3δP + 2Ψ(ρ pl P 0 )) (4.170) R ij R ij = ( a a + ( a a )2) ( a ( a )2) δ ij 2 a + (Ψ N + Φ N )δ ij a +k 2 (Ψ N Φ N )δ i3 δ j3 k 2 Φ N δ ij Φ N δ ij a a (Ψ N + 5Φ N )δ ij

96 90 4 ( a ( a )2) a + a = a 2 2 M (ρ pl 2 0 P 0 ) (4.171) i = j = 2 ( a ( a )2) 2 a + (Ψ N + Φ N ) k 2 Φ N Φ N a a a (Ψ N + 5Φ N ) i = j = 3 = a2 2 M (δρ δp + 2 pl 2 3 Σ 2Φ(ρ 0 P 0 )) ( a k 2 ( a )2) (Ψ N Φ N ) 2 a + (Ψ N + Φ N ) k 2 Φ N Φ N a a a (Ψ N + 5Φ N) = a2 2 M (δρ δp 4 pl 2 3 Σ 2Φ(ρ 0 P 0 )) k 2 (Ψ N Φ N ) = a2 Σ (4.172) M pl 2 Σ Ψ N = Φ N R 30 2ikΦ N + 2 a a ikψ N = 1 M 2 pl (ρ 0 + P 0 )a 2 iv (4.173) Φ N + ahψ N = a 2 2 M 2 pl ρ 0 (1 + w) V k (4.174) 3k 2 Φ N + k 2 (Ψ N Φ N ) 3Φ N 3aH(Ψ N + 5Φ N ) = a2 2 M [6(ρ pl 2 0 P 0 )Ψ N + 3(δρ δp )] (00) (30)

97 k 2 Φ N = a2 2 M ρ pl 2 0 [δ N + 3aH(1 + w) V N k ] (4.175) Bardeen Bardeen conformal time (4.166) ζ = Φ N + δ N 1 + w = k 3 V N ah P 1 + w ρ 0 P = 0 conformal time w = 0 (4.168) ζ = k 3 [ kw ( δ N + 3aH(1 + w) V N 1 + w k ) ahv N + kψ N ] (4.175) ζ = k [ k w ( 2 k 2 ) ] w 3 a 2 H 2 Φ N ahv N + kφ N = ahζ + 1 ( 3 k2 Φ N w k 2 ) w a 2 H 2 (4.176) (4.175) Φ N = 3 2 ( ah k )2 [ δ N + 3aH(1 + w) V N k ah/k 1 Bardeen ζ + 2H ζ = 0 P 0 = wρ 0 H = 2/(3(1 + w)t) ζ = t n n = 0, (3w 1)/3(1 + w) 1 < w < 1/3 ζ const. ]

98 CMB CMB CMB (last scattering surface) 0.01 COBE CMB CMB CMB Sachs-Wolfe Spatially flat TM Bardeen TM Newtonian TM TM δ = δ N + 3aH(1 + w) V N k (4.177) δp = V N δp N + 3aHw(1 + w)ρ 0 k V N w ρ 0 k (4.178) V = V N (4.179) TM

99 δ = 3aHwδ (1 + w)kv (4.180) V = δp ahv + + kψ N (1 + w)ρ 0 (4.181) k 2 Φ N = 4πGa 2 ρ 0 δ (4.182) Ψ N = Φ N (4.183) ϕ = Φ N ah k V (4.184) ζ = Φ N ah k V + 1 δ w (4.185) k 2 δ = 2 3 a 2 H 2 Φ (4.186) TM δ Φ N ζ ϕ TM (4.180) conformal time t (4.182) δ TM (4.184) Φ w HΦ = 3 (1 + w)hϕ (4.187) 2 2 ϕ = constant (4.188) w = 1 H = constant Φ = Φ 0 e Ht a t 2 3(1+w)

100 94 4 Φ N decay Φ N w 1 3(1 + w) t Φ N = 1 t ϕ (4.189) Φ N t 5+3w 3(1+w) 3(1 + w) Φ N = 5 + 3w ϕ (4.190) radiation dominant w = 1/3 matter dominant w = 0 Φ N = 2 3 ϕ (4.191) Φ N = 3 5 ϕ (4.192) COBE DMR Q rms = 17.1 ± 1.5µK (4.193) δt T = (4.194) COBE COBE Sachs-Wolfe CMB

101 Sachs-Wolfe Newtonian ds 2 = (1 + 2Ψ)dt 2 + a 2 (1 2Φ)δ ij dx i dx j (4.195) (A.47) hν d x0 dλ (4.196) ε = hν P 0 = η 00 P 0 = ε P 0 = xµ x 0 P µ g 00 = (1 + 2Ψ) = xµ x 0 x ν x 0 η µν g 0i = 0 = xµ x 0 x ν x i η µν g ij = a 2 (1 2Φ)δ ij = xµ x i x ν x j η µν P 0 x 0 x = (1 + Ψ), x0 x 0 x i = 0, i x 0 = 0 x i x j = a(1 Φ)δ ij (4.197) P 0 = (1 + Ψ)ε (4.198) x 1 (A.47)

102 96 4 d(1 + Ψ)ε dx 0 = 1 2 g P α P β αβ,0 P 0 = 1 (g 00,0 P 0 (P 1 ) 2 ) + g 11,0 2 P 0 = 1 P 0 ( Ψ(P 0 ) 2 a 2 Φ(P 1 ) 2 + H(1 2Φ)a 2 (P 1 ) 2 ) 0 = g µν P µ P ν = (1 + 2Ψ)(P 0 ) 2 + a 2 (1 2Φ)(P 1 ) 2 a 2 (P 1 ) 2 d(1 + Ψ)ε dx 0 = ( Ψ + Φ)P 0 + H(1 + 2Ψ)P 0 P 0 = g 00 P 0 = (1 2Ψ)P 0 = (1 Ψ)ε 1 dε ε dt 1 daε aε dt = dψ dt + Ψ t + Φ t H = dφ dt + 2 Φ t (4.199) Ψ = Φ Sachs-Wolfe m m d v dt = m Φ dε dt = v Φ = dφ dt + Φ t ε = v 2 /2

103 CMB Sachs-Wolfe CMB intrinsic Θ 0 (t ls, x ls, n) (last scattering surface) (δt/t ) jour t ls x ls CMB n ( δt T ) jour = δ(aε) aε t0 Φ( x, t) = Φ( x ls, t ls ) Φ( 0, t 0 ) + 2 t ls t dt (4.200) Sachs-Wolfe CMB CMB

104 98 4 Integrated Sachs-Wolfe Intrinsic δ N r δn m N Conformal Newtonian δ N r 4 = δn m 3 (4.201) Θ = δt/t CMB intrinsic Θ0 N (t ls, x ls, n) = δn r 4 = δn m 3 (4.202) TM (w = 0) δ m = δ N m + 3 ah k V (4.203) V + ahv = d dt (av ) = kφ N (4.204) Φ N (4.190) Φ N (4.204) Φ N V = t k a Φ N = 2 k 3 ah Φ N (4.205) Ω m = 1 a t 2/3, t = 2/3H (4.202)

105 Θ0 N (t ls, x ls ) = 1 (δ m 3 ah ) 3 k V = 1 3 δ m(t ls, x ls ) 2 3 Φ N (t ls, x ls ) 2 3 Φ N(t ls, x ls ) (4.206) intrinsic ( δt T ) obs = 1 3 Φ N (t ls, x ls ) (4.207) (4.192) CMB ( δt T ) obs = 1 5 ϕ(t ls, x ls ) (4.208) (4.208) (4.158) CMB (4.194) V 1/4 ε 1/4 = GeV (4.209) CMB (4.186) (4.191) k 2 δ = 2 5 a 2 H 2 ϕ (4.210) density contrast

106 100 4 ( k )4 P δ = δh 2 (4.211) ah δh P R (4.212) δ H k = a 0 H 0 COBE COBE normalization n = 1 δ H (k pivot ) = (4.213) k pivot = 7.5a 0 H 0 (4.214) Late stage evolution of density contrast and CMB spectrum (4.204) Φ N CMB CMB z = 1100 z = 0 Sachs-Wolfe Integrated Sachs-Wolfe Ω m = 1 (ah/k 1)

107 (4.175) k 2 Φ = 3 2 a2 H 2 δ (4.215) Density contrast (4.166) peculiar velocity (4.168) δ + kv = 0 V + ahv kψ = 0 Newtonian δ + ahδ 3 2 a2 H 2 δ = 0 Ω m = 1 δ + 2H δ 3 2 H2 δ = 0 (4.216) δ + 4 3t δ 2 3t 2 δ = 0 δ t 1 δ t 2/3 a (4.217) (4.215) k 2 Φ = 1 2 M ρ pl 2 0 a 2 δ ρ 0 a 3 = const (4.218) ρ 0 a 3 = const

108 102 4 density contrast Φ (4.215) ρ 0 δ Φ CMB l Integrated Sachs Wolfe L = M [ pl 2 ( E +2 + ( E + ) 2 ) + ( E 2 + ( E ] ) 2 )(4.219) Ψ + 2 M pl E +, Ψ 2 M pl E L = 1 2 [( Ψ + ) 2 + ( Ψ + ) 2 ] [( Ψ ) 2 + ( Ψ ) 2 ] (4.220) Ψ +, Ψ mass less free scalar field P T (k) = 2 1 ( Γ (ν) ( H )2 ( ah 2 M pl 2 Γ (3/2))2 2π k )2ε

109 k 2ε (4.221) r P T /P δ 12.5ε (4.222) r V 1/4 = r 1/4 GeV (4.223) mass less scalar field exact ḧ + 3Hḣ + k2 a 2 h = 0 (4.224) H > 0 h = const Conformal time h + 2aHh + k 2 h = 0 (4.225) Conformal time η

110 104 4 Conformal time t e Conformal time η e (4.28) a ε H I η q H I η (4.226) H I (4.236) α = kη Conformal time a = 1 k 1 ε Hα (4.227) H I a Conformal time η energy equipartition t eq a eq a(t) = a eq ( t t eq )1/2 η η e = = t dt t e a = 2t eq a 2 (a(t) a(t e )) = 2t ( e teq ) eq a 2 (a(t) a(t e )) eq t e 2t e a(t e ) 2 (a(t) a(t e)) 1 2ε k 2 H I αea(t) ε k α e

111 H I = ȧ a (t e) = 1 2t e (4.228) a(t e ) = 1 k 1 ε H I α e (4.229) a(t) = 1 k (α (2 ε)α e ) 1 2ε H I α 2 e (4.230) Conformal time t eq t 1/2 t 2/3 t eq a(t) = a eq ( t t eq )2/3 (4.231) η η eq = 3t eq (a 1/2 a 1/2 eq ) = 3 2 a 3/2 eq a(t) = 1 1 k ε H I α 2 e 1 H 2 I a2 e a 1/2 eq (a 1/2 a 1/2 eq ) (2α + α eq 3(2 ε)α e ) 2 α eq (2 ε)α e (4.232) (4.30) V = 0 ξ = α u k = ξhk (ξ) d 2 H k dξ ξ dh ( k dξ + 9/4 + 3ε ) 1 ξ 2 H k = 0 (4.233) h u h = u/a (4.36)

112 106 4 h k = 1 1 π a Vc 4k e i( k a 1 H π (2ν+1)) 1 4 ξh (1) ν (ξ) (4.234) Conformal time η R = t 0 dt a = 2t eqa a 2 eq (4.235) ah = a 1 t eq 2t eq t = a2 eq 2t eq 1 a = 1 η R η R h + 2 η R h + k 2 h = 0 h = u/a u ξ R k η R u + k 2 u = 0 d 2 u dξr 2 + u = 0 (4.236) Conformal time η M = t 0 dt a = 3t eq a 1/2 (4.237) a 3/2 eq ah = 2a 3/2 eq 3t eq a 1/2 = 2 η M h + 4 η M h + k 2 h = 0

113 h = u/a ξ M = k η M d 2 u dξ 2 M ( ) ξm 2 u = 0 (4.238) ν u = ξχ d 2 u ( dξ ν2 1/4 ) ξ 2 u = 0 (4.239) d 2 χ dξ ( ) ξ χ + 1 ν2 ξ 2 χ = 0 (4.240) ν = ±1/2 ν = ±3/2 h k = 1 ξ(aj1/2 (ξ) + BJ 1/2 (ξ)) = 1 2 (A sin ξ + B cos ξ) a a π = 2t eq 2 ( a 2 k A sin ξ R + B cos ξ ) R eq π ξ R ξ R = 1 2ε H I αe 2 k 2 π ( A sin ξ R + B cos ξ ) R ξ R ξ R (4.241) ξ R = ka 2t eq a 2 eq = ka 1 H I a 2 e = a(1 2ε) H I k α2 e = α (2 ε)α (4.242) e t 0 ξ 0 B = 0 (4.245) (4.245) A

114 108 4 H V c = 1 2ε H I αe 2 k Γ (ν) 1 Γ (3/2) k 3/2 2ν 2 e i( k a 1 H + π (ν 1/2)) ( a 1 2 e H I k 2 π Asin ξ R,e (4.243) ξ R,e ξ R,e Conformal time ξ 1 h const ξ > 1 ξ 1 )ε h 1 ξ 1 a (4.244) h = a 1 ξ(cj3/2 (ξ) + DJ 3/2 (ξ)) = 1 2 [ ( sin ξ ) ( C cos ξ D a π ξ = 9t2 eq 2 a 3 k 2 eq π 1 ξ 2 M sin ξ + cos ξ )] ξ [ ( sin ξm ) C cos ξ M D ξ M (4.245) ( sin ξ M + cos ξ M ξ M )] (4.246) ξ M = 3 1 ka 1/2 1/2 1 2ε eq a 2 H I k 2 HI 2 αe 2 = α + α eq (2 ε)α e (4.247) energy equipartition ξ 1 D = 0 Energy equipartition t = t eq (4.252) C

115 ξ 1 h const ξ 1 h 1 ξ 2 1 a (4.248) α e 1 α eq 1 ξ M α α e 1 α eq > 1 ξ R α ξ M α + α eq /2

116 A, B [A, B] = ic < ( A)2 > (< B >) 2 < C > 2 (5.1)

117 A = A < A > B = B < B > t < A + t < A, B > B, A + t < B, A > B > 0 < B, B > < A, B > 2 t < A, B > 2 t+ < A, A > 0 t D = < A, B > 4 < A, A >< B, B > < A, B > 2 0 (5.2) < A, B > 2 4 < A, A >< B, B > (5.3) A, B { A, B} < A, B > = 1 2 < [ A, B] > +1 < { A, B} > 2 < [ A, B] > = < [ B, A] >= < [ A, B] > < { A, B} > = < { B, A} >=< { A, B} > < [ A, B] > < { A, B} > < A 2 >< B 2 > 1 < [ A, B] > + < { A, B} > 2 4 = 1 4 < [ A, B] > 2 + < { A, B} > 2 1 < [ A, B] > 2 4 [ A, B] = ic

118 112 5 A, B e λa Be λa = B + λ[a, B] + λ2 2! f(λ) = e λa Be λa λ3 [A, [A, B]] + [A, [A, [A, B]]]+,,, 3! (5.4) f(λ) λ f (λ) = Ae λa Be λa e λa Be λa A = [A, f(λ)] f (λ) = Af (λ) f (λ)a = [A, [A, f(λ)]] f (λ) = [A, [A, [A, f(λ)]]] f(λ) λ = 0 f(λ) = f(0) + f (0)λ + 1 2! f (0)λ ! f (0)λ = B + [A, B]λ + 1 2! [A, [A, B]]λ ! [A, [A, [A, B]]]λ A, B [A, B] = C C C λ2 λ(a+b)+ e 2 C = e λa e λb (5.5) l.h.s. = 1 + λ(a + B) + λ2 2 C + 1 (λ 2 (A 2 + AB + BA + B 2 ) + λ 3 C(A + B) + λ4 2! 4 C2) + 1 3! (λ3 (A 3 + AAB + ABA + BAA + ABB + BAB + BBA + B 3 ) + O(λ 4 )) = 1 + λ(a + B) + λ2 2 (C + A2 + B 2 + 2AB C) + 1 3! λ3 (A 3 + B 3 + 3AAB 3CA + 3ABB 3CB + 3C(A + B))...

119 = 1 + λ(a + B) + λ2 2 (A2 + B 2 + 2AB) + 1 3! λ3 (A 3 + B 3 + 3AAB + 3ABB)... r.h.s = (1 + λa + λ2 2! A2 + λ3 3! A3...) (1 + λb + λ2 2! B2 + λ3 3! B3...) = 1 + λ(a + B) λ2 2 (A2 + B 2 + 2AB) + λ3 3! (A3 + B 3 + 3AAB + 3ABB)... Baker-Hausdorff B(t) [B(t ), B(t )] = C(C C ) T [ t ] T exp dt B(t ) 0 ( t = exp dt B(t ) t 0 t dt 0 ) dt [B(t ), B(t )] N N t t/n N [ t ] T exp dt B(t ) 0 [ t = T exp dt B(t ) + (N 1) t (N 1) t (N 2) t (5.6) dt B(t )... + t k = k t (1/2) t t 0 ] dt B(t ) l.h.s. = T exp [ t(b(t N ) + B(t N 1 )... + B(t 1 ))] = e tb(t N ) e tb(t N 1)...e tb(t 1) (5.7) (5.18) e tb(t N ) e tb(t N 1) ] = exp [ t(b(t N ) + B(t N 1 )) + t2 2 [B(t N ), B(t N 1 )] [ t ] T exp dt B(t ) = exp( t(b(t N ) + B(t N 1 )... + B(t 1 )) 0 + t2 2 {[B(t N ), B(t N 1 )] + [B(t N ) + B(t N 1 ), B(t N 2 )] +...

120 [B(t N ) + B(t N 1 ) B(t 2 ), B(t 1 )]}) = exp( t(b(t N ) + B(t N 1 )... + B(t 1 )) + t2 2 {[B(t N ), B(t N 1 ) + B(t N 2 ) B(t 1 )] +[B(t N 1 ), B(t N 2 ) B(t 1 )] [B(t 2 ), B(t 1 )]}) θ < θ > θ H Ψ S (t) i Ψ S(t) t = HΨ S (t) (5.8) H 0 = p2 2 + Ω2 2 q2 (5.9) Ω p.q [q, p] = i a a

121 a = a = 1 (Ωq + ip) (5.10) 2 Ω 1 (Ωq ip) (5.11) 2 Ω [a, a ] = 1 (5.12) H 0 = Ω(a a ) (5.13) ω n = Ω(n + 1/2) Ψ S,n (t) = n > e iω nt = 1 n! (a ) n 0 > e iω nt p = i q ( Ω ) 1 2 ξ q 2 2 H 0 = Ω 4 ξ 2 + Ωξ2 (5.14) a = ξ 1 2 ξ (5.15) a = ξ ξ (5.16)

122 116 5 a a = ξ (5.17) n = 0 u 0 (ξ) = ( 2 π )1/4 e ξ2 (5.18) n u n (ξ) = 1 ( ξ 1 n! 2 )n ( 2 ξ π )1/4 e ξ2 (5.19) q = i p ( )1/2 1 η p 2 Ω H 0 = ( Ω η 2 + η2) (5.20) a = i 1 iη 2 η (5.21) a = i 1 + iη 2 η (5.22) a + a = i η (5.23) u 0 (η) = ( 2 π )1/4 e η2 (5.24)

123 u n (η) = 1 ( )n (i) n 1 ( 2 )1/4 n! 2 η η e η2 (5.25) π e ikq = e i p q = e 2iξη ξ η ˆf(η) = 1 π dξf(ξ)e 2iηξ (5.26) dη ˆf(η) 2 = dξ f(ξ) 2 (5.27) u 0 (ξ) 1 π ( 2 )1/4 dξ e ξ2 e 2iξη = π ( 2 π )1/4 e η2 = u 0 (η) < q2 > < p 2 > 2 (5.28) < ξ 2 > = ( 2 dξxi 2 u 0 (ξ) 2 )1/2 = dξξ 2 e 2ξ2 = 1 π 4 < q2 > = ( 2 )1/2 < ξ2 > = Ω 2Ω

124 < q2 > < p 2 > = 2 hattori_cosmo < η 2 > = 1 4 < p2 > = Ω 2 < m H 0 n > = ω n < m n >= ω m < m n > < m n > = δ mn (5.29) dq q >< q = I (5.30) n >< n = I (5.31) n I ψ S (q, t) Ψ S (t) > = dq q >< q Ψ S (t) > ψ S (q, t) = < q Ψ S (t) > (5.32) u n (q)

125 u n (q) = < q n > (5.33) u n(q )u n (q) n = < q n >< n q >=< q q > n = δ(q q) (5.34) u n (q) f(q) u n (q) f(q) = n c n u n (q) (5.35) u n (q) f(q) = n dq f(q )u n(q )u n (q) = dq f(q ) n u n(q )u n (q) f(q) V i Ψ S(t) > t = (H 0 + V ) Ψ S (t) > (5.36) t 0 t U(t, t 0 ) Ψ S (t) > = U(t, t 0 ) Ψ S (t 0 ) > (5.37) i U(t, t 0) t = HU(t, t 0 ) (5.38) < Ψ S (t) Ψ S (t) > = < Ψ S (t 0 ) Ψ S (t 0 ) >

126 120 5 U (t, t 0 ) = U 1 (t, t 0 ) U (t, t 0 ) i U (t, t 0 ) t = U (t, t 0 )H (5.39) U(t 0, t 0 ) = 1 t1 ( i ) t ( i )2 t U(t, t 0 ) = 1 + dt 1 H(t 1 ) + dt 1 dt 2 H(t 1 )H(t 2 ) t 0 t 0 t 0 ( i )3 t t1 t2 + dt 1 dt 2 dt 3 H(t 1 )H(t 2 )H(t 3 )+,,(5.40),, t 0 t 0 t 0 step function U(t, t 0 ) = n=0 ( i θ(τ) = 1 for τ 0 )n t t t 0 = 0 for τ < 0 t 0... t dt 1 dt 2,,, dt n θ(t 1 t 2 )θ(t 2 t 3 )...θ(t n 1 t n )H(t 1 )...H(t (5.41) n t 0 U(t, t 0 ) = 0 1 n! ( ih(t t0 ) )n ( = exp i H(t t 0) T ) (5.42) T [H(t 1 )H(t 2 )...H(t n )] = p Θ(t p1, t p2,..., t pn )H(t p1 )H(t p2 )...H(t pn ) (5.43) Θ(t p1, t p2,..., t pn )H(t p1 ) = θ(t p1 t p2 )θ(t p2 t p3 )...θ(t pn 1 t pn ) (5.44) t 1, t 2,..., t n p

untitled

untitled 20 11 1 KEK 2 (cosmological perturbation theory) CMB R. Durrer, The theory of CMB Anisotropies, astro-ph/0109522; A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t, 1 Gourgoulhon BSSN BSSN ϕ = 1 6 ( D i β i αk) (1) γ ij = 2αĀij 2 3 D k β k γ ij (2) K = e 4ϕ ( Di Di α + 2 D i ϕ D i α ) + α ] [4π(E + S) + ĀijĀij + K2 3 (3) Ā ij = 2 3Āij D k β k 2αĀikĀk j + αāijk +e

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

2 1 ds 2 = a 2 (η) ( dη 2 + γ ij dx i dx j ) (1.2) ( dt ) conformal time η η = a(t) a(t) (scale factor) t =const (3) R ijkl = K a 2 (t) (γ ikγ jl γ il

2 1 ds 2 = a 2 (η) ( dη 2 + γ ij dx i dx j ) (1.2) ( dt ) conformal time η η = a(t) a(t) (scale factor) t =const (3) R ijkl = K a 2 (t) (γ ikγ jl γ il 1 1.1 Robertson-Walker [ ds 2 = dt 2 + a 2 dr 2 ] (t) 1 Kr 2 + r2 (dθ 2 + sin 2 θdφ 2 ) sin 2 χ = dt 2 + a 2 (t) dχ 2 + χ 2 (dθ 2 + sin 2 θdφ 2 ) = dt 2 + sinh 2 χ a 2 (t) (1 + K 4 r2 ) [d r 2 + r (dθ

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information