Preface) compressible fluid dynamics) ) density) Reynolds number; ) Mach number) 0.3 5% 5% 300km M = km M = 0.41 M = shock wave) 0 wave

Size: px
Start display at page:

Download "Preface) compressible fluid dynamics) ) density) Reynolds number; ) Mach number) 0.3 5% 5% 300km M = km M = 0.41 M = shock wave) 0 wave"

Transcription

1 Compressible Fluid Dynamics Yoshiaki NAKAMURA Professor of Chubu University Emeritus Professor of Nagoya University April, 014

2 Preface) compressible fluid dynamics) ) density) Reynolds number; ) Mach number) 0.3 5% 5% 300km M = km M = 0.41 M = shock wave) 0 wave drag) airliner) M DD ) helicopter) blade) ) HSI 1 nonlinear) drag coefficinet) M > 1.5 M 1 afterburner) SST N ) M 5 hypersonic regime)

3

4 Crocco Taylor-Maccoll

5 i Newton

6

7 incompressible flow) compressible fluid) pressure) volume) density) gas dynamics convective velocity) Mach number) sound speed) compressible flow) M = V/a γ = C p /C v Re = ρv L/µ = V L/ν P r = µc p /k 1. M V a a = M V a ) p ρ s p ρ s s) 1.1) 1.)

8 1 1.13) ) 1..1 sound speed, sonic velocity, acoustic speed) shock wave) : calorically perfect gas a = γrt 1.3) γ the ratio of specific heats)r gas constant)t : absolute temperature) ) thermally perfect gas) calorically perfect gas) the equation of state) p = RT 1.4) ρ ) elastic wave) elastic body, elsatic solid) rigid body) compression wave) 1.1) u = 0, p, ρ, T ) du, p + dp, ρ + dρ, T + dt x du < 0) rarefaction wave) du > 0) 1.)

9 : ) 1.: ) a ) a, p, ρ, T ) a + du, p + dp, ρ + dρ, T + dt p ρ T 1.) A Aρa Aρ + dρ)a + du) Aρa = Aρ + dρ)a + du) 1.5) du = a dρ ρ 1.6) dρ > 0 du < 0 wave front) = control volume) pa p + dp)a = Aρa)a + du) Aρa)a 1.7)

10 : Aρa 1.7) dp = ρadu 1.8) 1.6) 1.8) du a = dp dρ 1.9) ) ) p a = ρ s p ρ 1.8) s 1.10) p = const 1.11) ργ 1.10) a = γ p ρ a = γ p ρ 1.1) 1.4 a = γrt 1.13) 15 C a = 340m/s 1 0 C a = 1, 48m/s Sir Isaac Newton; ) Newton 1.10) p = ρrt ) 1.13 γ

11 / t = 0 ρ V = ) nabla) differential operator) = / x, / y) 1.14 ρu x + ρv y = ) ρ = const u x + v y = ) 1.10) δp a δρ 1.17) the equation of motion) 1 V V x = 1 p ρ x V 1.18) V δv δp ρ 1.19) δp M = V/a) δρ ρ V δv a V or δρ ρ δv V δρ ρ M δv V 1.0) 1.0) 1.1) M = V a 1 1.) M < 0.3 M < )) ρ 0 ρ [ ρ 0 ρ = ] 1/γ 1) γ 1)M 1.3)

12 6 1 γ γ = C p /C v M 1) ρ ρ M 1.4) M = 0.3 ρ/ρ M = 0.3 5% M = 0.3 M = 0.3 M = 1 6 ρ/ρ ) ñˆ³k«ˆÿ ¹ ˆ³k«J ¹ M=0 M=0.3 M=0.7 M=1 J ¹ ¹ É ¹ M=1 M=1. M=5 ƒ}ƒbƒn 1.4: 1.4 incompressible flow) M < 0.3 subsonic flow) 0.3 < M < 0.8 transonic flow) 0.8 < M < supersonic flow) 1. < M < 5 hypersonic flow) 5 < M bow shock) shock layer

13 ) M < 1) elliptic type) 1.5: ) 1.5. M = 1) parabolic type) 3 ) 1.6: ) M > 1) V a

14 8 1 : Mach cone 1.7 ) 1.7: ) V a µ sin µ = a V = 1 M 1.5) M M µ µ = 90 tan tan µ = 1 M 1 1.6) ) shock wave) ) 1.6 compressible flow) incompressible flow) thermodynamics) the equation of continuity) the equation of motion) the equation of momentum) the equation of energy)

15 the equation of state) µ µ T Sutherland ) 3/ µ T T 0 + C = µ 0 T 0 T + C air) C = 10, T 0 = 91.15, µ 0 = ) the Euler equations) the Navier-Stokes equations) viscous coefficient)µ thermal conductivity)k 3 Q t + E x + F y + G z = 0 1.8) Q = ρ, ρu, ρv, ρw, e t ) t 1.9) E = ρu, ρu + p, ρuv, ρuw, e t + p)u) t 1.30) F = ρv, ρvu, ρv + p, ρvw, e t + p)v) t 1.31) G = ρw, ρwu, ρwv, ρw + p, e t + p)w) t 1.3) v = u, v, w) 1.33) e t = ρe i + v /) 1.34) Q E, F, G x, y, z flux vector)e i e t + ρ p u, v, w x, y, z E { e t + p)u = ρe i + ρ 1 } u + v + w ) + p u = ρu e i + u + v + w + p ) ρ = ρu h + u + v + w ) = ρuh t 1.35) H t H t h + u + v + w )/ F ρvh t G ρwh t 1) CFD: Computational Fluid Dynamics) x, y, z) ξ, η, ζ) ˆQ t + Êξ + ˆF η + Ĝζ = )

16 10 1 ˆ) ˆQ = Jρ, ρu, ρv, ρw, e t ) t 1.37) Ê = JρU, ρuu + ξ x p, ρvu + ξ y p, ρwu + ξ z p, e t + p)u ξ t p) t 1.38) ˆF = JρV, ρuv + η x p, ρvv + η y p, ρwv + η z p, e t + p)v η t p) t 1.39) Ĝ = JρW, ρuw + ζ x p, ρvw + ζ y p, ρww + ζ z p, e t + p)w ζ t p) t 1.40) 1.41) Ê = ξ t Q + ξ x E + ξ y F + ξ z G 1.4) ˆF = η t Q + η x E + η y F + η z G 1.43) Ĝ = ζ t Q + ζ x E + ζ y F + ζ z G 1.44) ξ t, η t, ζ t 0 x, y, z) Q x, y, z E, F, G Q = ρ, ρu, ρv, ρw, e t ) t 1.45) E = ρu, ρuu + p, ρuv, ρuw, e t + p)u) t 1.46) F = ρv, ρvu, ρvv + p, ρvw, e t + p)v) t 1.47) G = ρw, ρwu, ρwv, ρww + p, e t + p)w) t 1.48) x, y, z) ξ, η, ζ) J U, V, W J = x, y, z) ξ, η, ζ) = x ξy η z ζ + x η y ζ z ξ + x ζ y ξ z η x ζ y η z ξ x η y ξ z ζ x ξ y ζ z η 1.49) U = ξ t + ξ x u + ξ y v + ξ z w 1.50) V = η t + η x u + η y v + η z w 1.51) W = ζ t + ζ x u + ζ y v + ζ z w 1.5) reciprocal) 1/J J ) ) Integral form) Finite Volume Method) Diffreential form) QdV + H nds = ) t H Ω Ω H = E, F, G) 1.54) n H n ) H n = En x + F n y + Gn z 1.55)

17 ρ = const p = pρ, T ) p ρ T ; thermally perfect gas p = ρrt 1.56) R R = 87m /s K) classical thermodynamics) [] 1.56) van der Waals) p V ) N a V Nb) = NkT 1.57) V N k a, b a b e i e i = C v T 1.58) C v calorically perfect gas) 1.58) h h = e i + p ρ 1.59)

18 1 1 h = C p T 1.60) C p specific heat) 1 C C p C v γ γ C p = γr γ 1, C v = R γ 1, C p C v = R 1.61) C p = 1005m /s K), C v = 718m /s K) 1.6) the ratio of specific heats) C p C v γ = C p C v 1.63) ) γ = 1.4 [] f γ γ = C p = 1 + C v f = f + f 1.64) He, Ne, Ar, Xe f = 3 γ = 5/3x, y, z 3 O, N f = 5 γ = 7/5 = 1.4x, y, z f = 6 γ = 8/6x, y, z 3 γ 1 γ ) γ = 1

19 ds = dq T 1.66) ds dq J/KgK) dq = de i + pdv 1.67) v v = 1/ρ) 1.66) ds = dq T = de i + pdv T = C v dt + ρrd T = C v T dt R ρ dρ ) 1 ρ = C v T dt C p C v dρ 1.68) ρ 1.68 S C C v S = C v lnt C p C v )lnρ + C 1.69) S C v = lnt γ 1)lnρ + C C v 1.70) = ln T ρ γ 1 + C C v 1.71) S C v = ln T ρ γ 1 + C 1.7) C v 1.71) 1.7) ) S S T ργ 1 = ln C v ργ 1 T 1.73) C p, C v C p = C p T ), C v = C v T ) T S p = RρT 1.74) p = RT ρ + Rρ T 1.75)

20 p p = ρ ρ + T T 1.76) 1.68) C v ds C v = dt T 1.76) γ 1)dρ ρ 1.77) ds = dp C v p γ dρ ρ 1.78) S C v = lnp γ ln ρ + C = ln p ρ γ + C 1.79) exps/c v C) = exp C) exps/c v ) = p ρ γ 1.80) exp C) C p ρ γ = C exps/c v) 1.81) 1.81) S = const p = const 1.8) ργ T ρ T p T T = const, ργ 1 = const 1.83) p γ 1)/γ S 1 S S S 1 = C p ln T T 1 R ln p p 1 = C v ln T T 1 R ln ρ ρ ) p 1, ρ 1, T 1 p, ρ, T S = S S ) S 1 = S p p 1 = ρ ρ 1 ) γ, T T 1 = ρ ρ 1 ) γ 1 = p p 1 ) γ 1)/γ 1.85)

21 [] Boltzmann1877) S = k log W 1.86) k W thermodaynamics) statistical mechanics)

22

23 d dt ρ ) e i + v dv + ) e i + v ρu j da j = u i σ ij da j q d A.1) v / kinetic energy) u i v i σ ij p da j d A = nda j 1 e i 1 q k T q = k T.) u 1 ƒï 1 A 1 1 A u ƒï.1:

24 18 1 ṁ ṁ = ρ 1 v 1 A 1 = ρ v A = const.3) 1 ) 1.1 ) [ e i + v ρu j da j = ṁ e i + 1 v e i1 1 ] v 1 1 u i σ ij da j = v 1 p 1 A 1 v p A.5) σ ij p q da = Q ṁ.6) Q [ ṁ e i + 1 v e i1 1 ] v 1 = v 1 p 1 A 1 v p A + Q ṁ.7).4).7).3 p1 v 1 p 1 A 1 v p A = v 1 ρ 1 A 1 p 1 /ρ 1 ) v ρ A p /ρ ) = ṁ p ) ρ 1 ρ.8).7) [ ṁ e i + p + 1 ρ v e i1 p 1 1 ] ρ 1 v 1 = Q ṁ.9) h h = e i + p ρ.10) [ ṁ h + 1 v h )] v 1 = Q ṁ.11) W Q 1 h + 1 v = H 0 =.1) H 0 stagnation enthalpy) T h = C p T, H 0 = C p T 0.13)

25 C p.1 C p T + 1 v = C p T 0.14) T 0 0 [] T 0 T 01 = T 0 [] C p C p T C p = γ γ 1 R.15) C p T = γrt γ 1 = a γ 1.16) a a = γrt.14 a γ v = a 0 γ 1.17) a 0 H 0 H 0 = a γ v = γ + 1 γ 1) a = a γ V = a 0 = const.18) γ 1 ) a M = v/a = 1 v = a = a.19).1) V max h 1/)v h = 0 V max = H 0 ) 1/ = c p T 0 ) 1/ = ) 1/ γ γ 1 RT 0.0) γ 1 V max.18.0) a γ + 1 V max = γ 1 a.1) γ γ = 1.4 γ = 1 γ

26 0 v ¹ V max ˆŸ ¹ a * A œ R œ A " œa' u.:. M..1.14) C p T C p =. 1 + v C p T = T 0 T γ γ 1 R C pt = γrt γ 1 = a γ 1.).3) 1 + γ 1)v a = T 0 T.4) T 0 γ 1) = 1 + M.5) T M = v/a T T 0 T.1...5) a M a 0 a = ) 1/ [ T0 = ] 1/ T γ 1)M.6)

27 : M) / T/T 0 ) / T 0 /T ) ).6) adiabatic.3 p ρ M p 0, T 0 ) p, T ) p = const.7) T γ/γ 1) p 0 p = ) γ/γ 1) T0.8) T.5 ) γ/γ 1) [ p 0 p = T0 = ] γ/γ 1) T γ 1)M.9).M = 1

28 M) p/p 0 ) : ˆ³ Í Æƒ}ƒbƒn 1.0 p/p 0 ˆ³ Í ä ƒ}ƒbƒn M ƒ}ƒbƒn.3: ρ = const.30) T 1/γ 1) ρ 0, T 0 ) ρ, T ) ρ 0 ρ =.5 ρ 0 ρ = ) 1/γ 1) T0.31) T ) 1/γ 1) [ T0 = ] 1/γ 1) T γ 1)M.3) ) p 0 ρ 0 0

29 .4. 3 p 0 ρ 0.4 v = a p ρ T a p 0 ρ 0 T 0 a 0.9).3).5).6) M = 1 p p 0 = ρ ρ 0 = T T 0 = a a 0 = ) γ/γ 1) = ) γ + 1 ) 1/γ 1) = ) γ + 1 = ) γ + 1 ) 1/ = ) γ + 1 γ = 1.4 a T p ρ ) V V = a = γrt ) 1/ =.36 ) 1/ ) 1/ γ a 0 = γ + 1 γ + 1 RT 0.37).0).37).0) V V max = ) 1/ γ 1.38) γ + 1

30

31 x x Ax) px), ρx), V x) 3 x dρ/dx ρ ρx)v x)ax) = const 3.1) + dv/dx V dx dx + da/dx A = 0 3.) dρ ρ + dv V + da A = 0 3.3) 1 ρv dv dx = dp dx 3.4) dx dx 1.9) ρv dv = dp 3.5) dp ρ 3.6 a dρ ρ + V dv = 0 3.6) dp = a dρ 3.7) + V dv = 0 3.8)

32 6 3 a 3.3 V A dv V = da A 1 M 1 = dp ρv 3.9) da A = dv V M 1) 3.10) M M = V/A M 1 M > 1) M < 1) dv > 0) M > 1 V > a) da > 0 M < 1 V < a) da < 0 1) M 1 < 0) da > 0 dv < 0 3.9) dp > 0 da < 0 dv > 0 dp < 0 ) M 1 > 0) da > 0 dv > 0 3.9) dp < 0 da < 0 dv < 0 dp > 0

33 3.. 7 M = dv da = 0 M=1 ) M=1 Laval nozzle; convergent-divergent nozzle) M<1 M=1 throat A M>1 3.1: 3. A M ρv A = ρ V A A A = ρ ρ V V 3.11) V A 3.11) ρ { [ ρ = ρ ρ 0 ρ 0 ρ = ]} 1/γ 1) γ + 1 γ 1)M 3.1).3).34)

34 8 3 M) A/A ) : V V = γrt ) 1/ V = = 1 M γrt )1/ V { γ + 1 T T 0 ) 1/ ) 1/ T0 3.13) T [ γ 1)M ]} 1/ 3.14) A A = 1 M [ γ 1)M 1 γ + 1) ]1/)γ+1)/γ 1) 3.15) A/A M M < 1 M > 1) A/A > 1) A=A * M<1 M>1 M=1 3.: A 1 A 3.15) A 1 = M [ γ 1)M ]1/)γ+1)/γ 1) 1 A M γ 1)M 3.16) A 1 M 1 A M 3.9) 3.10)

35 choking ) ρv ρ V = A A = M [ γ 1)M 1 γ + 1) ] 1/)γ+1)/γ 1) 3.17) M = 1 1 A/A 1 ṁ max A ṁ max = γ γ + 1 = γ γ + 1 p 0 T 0 ) 1/)γ+1)/γ 1) A ρ 0 RT 0 ) 1/ 3.18) ) 1/)γ+1)/γ 1) A p 0 RT 0 ) 1/ 3.19) A p ) ṁ max = ρ V A 3.0) ρ.34) V.37) p 0 /ρ 0 = RT 0 A/A M 3.15) combustor) ) ) M 1cr )

36 30 3 M) A/A ) : M cr )

37 rrecovery factor) isothermal wall) T w = const) adiabatic wall) T/ y) w = 0) T w r y T T w 4.1: ) y T T w 4.: ) T w = T 1 + r γ 1 M ) 4.1) T ) ad = r γ 1 M 4.) T

38 3 4 T ) ad = T w T 4.3) r 0.85 r r M ) T w /T ) : r r = 0.89 M > 5) 0,000m M = 5 T 0K T w 100K ρu) x ρ + ρv) y u u x + v u y ρc p u T x + v T y = 0 4.4) ) = dp dx + µ u ) 4.5) y y ) = u dp dx + k T ) ) u + µ 4.6) y y y u v, x y p = ρrt 4.7)

39 R R = 87m /s K) = 87J/kg K) 4.. µ µ t ρũ x + ρṽ y = 0 4.8) ρũũ x + ρũṽ y = d p dx + [ µ + µ t ) ũ ] 4.9) y y ρũ H [ ρṽ H + = µ x y y P r + µ ) ] t H P r t y + µ + µ t)ũ ũ 4.10) y ũ, ṽ x, y H H = h + 1 ũ + ṽ ) 4.11) h h = ē i + p ρ 4.1) µ t P r t x, y) ξ, η ξ = x ρ e u e µ e dx, η = u y e ρdy 4.13) ξ 0 0 e e x ξ) ) Levy Levy s transformation) Levy ξ = x 0 ρ e µ e u e r k 0 dx, η = ρ eu e ξ) 1/ y 0 r k 0ρ/ρ e dy 4.14)

40 : k = 0 ) k = 1 r ) chain rule) x = ξ ξ x + η η x = ρ eu e µ e ξ + η x η y = ξ ξ y + η η y = u e ρ ξ η 4.15) 4.16) 4.4) ψ ψ y = ρu, ψ x = ρv 4.17) 4.3. x 4.5) ψ u y x ψ u x y = dp e dx + µ u ) y y 4.18) p p/ x = p e / x 4.15)4.16) x, y) ξ, η) ue ρ ψ ) u ρ e u e µ e ξ η ξ + η ) u ψ ρ e u e µ e x η ξ + η ) ψ ue ρ u x η ξ η dp e = ρ e u e µ e dξ + u e ρ µ u e ρ u ) 4.19) ξ η ξ η ξ/u e ρ ψ u ρ e u e µ e η ξ + η ) u x η = ρ e dp e ξµe ρ dξ + η ψ ρ e u e µ e ξ + η x ρ u ) ξ η µ u e ) ψ u η η 4.0)

41 f u = f u e η = f 4.1) f η f = fη) f ξ η f = fη, ξ) u ξ = f du e dξ + u f e ξ, u η = u ef 4.) ψ y = ρu u e ξ ρ ψ η = ρu = ρu ef ψ η = ξf 4.3) ψ ψ = ξf 4.4) ψ ψ ξ = 1 f + ξ f ξ ξ, ψ η = ξf 4.5) y = δ ) u y y=δ = 0 4.6) u e u e x = dp e dx 4.0 η Cf ) + ff = ξ { f ) ρ } e due f u e ρ dξ + ξ f ) f f ξ ξ 4.7) 4.8) C = ρµ ρ e µ e 4.9) ρ e /ρ p = p e p = ρrt p = p e ρrt = ρ e RT e ρ e ρ = T T e = C pt C p T e = h h e 4.30) C p h ;static enthalpy) g g = h h e 4.31)

42 ) η Cf ) + ff = ξ { f ) g } du e u e dξ + ξ f f ξ ) f f ξ 4.3) ξ du e u e ξ = C 1) du e/u e = C 1 ln u e = C 1 ln ξ 4.33) dξ/ξ u e = ξ C1 u e = ξ n 4.34) ξ x) f = fη) 4.3 η Cf ) + ff = ξ { f ) g } du e u e dξ = C { 1 f ) g } 4.35) du e /dξ = 0 η Cf ) + ff = ) ρu h h + ρv x y = udp e dx + y k T ) + µ y ) u 4.37) y g = gξ, η) = h h e 4.38) h x = ρ h e g eu e µ e + η h e g ξ x η, h y = u e ρ h eg ξ η 4.39) 4.37) u e ρ ψ ξ η h e g ρ e u e µ e + η ξ x ) h e g ψ ρ e u e µ e η ξ + η x ) ψ ue ρ h eg η ξ η 4.40) 4 ψ = ξf = u eρ ξf h e g ξf ρ e u e µ e ρ e u e µ e ueh e ρ g ξ η ξ ξ ξ = u eρρ e µ e f h eg ξ ρρ eu eµ e h e g ξf ξ ξ 4.41)

43 ) u dp e dx = 1 ψ dp e ρ y dx = 1 u e ρ ψ ρ ξ η = u e ξ ψ η ρ eu e µ e = ρ eu 3 eµ e ξ ρ e u e µ e p e ψ du e η dξ = ρ eu 3 eµ e f du e dξ ξ + η x ) ρ e u e du e dξ ) p e η 4.4) dp e = ρ e u e du e 4.43) ψ 4.4 k T ) y y = u e ρ ξ η = u e ξ ρ η = u e ξ ρh e c p k u e ρ ξ η kρ η η g h ) e c p kρ ) η g ) T 4.44) T T = h c p = h h e h e c p = g h e c p 4.45) ) u ue µ = µ ρ ) ) u y ξ η f u e = µ e ρ f 4.46) ξ = ρ eu 3 eµ e f du e dξ + u e ρh e kρ g ) ) u + µ e ρ f 4.47) ξ C p η η ξ 4.41) 4.47) u eρρ e µ e f h eg ξ = ρ eu 3 eµ e f du e dξ + u e ρh e ξ C p ρρ eu eµ e h e g ξf ξ ξ η kρg ) = η kρ g η η kρ ρ e µ e ρ e µ e g ) ) u + µ e ρ f 4.48) ξ )

44 38 4 u e ρh e ξ C p = ρµ η = η ρ e µ e kρ ρµ ρ eµ e g C = C p ρ e µ e η η kρg ) = u eρ e µ e h e ρ ξ η ) k ) C p ρ e µ e g µc p ) C g P r ) C g P r 4.49) 4.50) 4.48) ξ f h eg ξg ξf h e ξ ξ u eρ e µ e h e ρ ξ 1 ξ h e dh e dξ f g + ξf g ξ g f ξg f ξ = η 4.51) = ) C g ξ u e gf du e η P r h e dξ + u e Cf ) 4.5) h e C P r g ) ξ u e h e gf du e dξ + u e h e Cf ) 4.53) f = fη), g = gη) ξ dh e h e dξ f g g f = ) C g ξ u e gf du e η P r h e dξ + u e Cf ) 4.54) h e dh e /dξ = 0, du e /dξ = 0 g f = ) C g + u e Cf ) 4.55) η P r h e ) 4.55) cf ) + ff = ) c P r g ) + fg + c u e f ) = 0 h e 4.57) f = fη), g = gη) ) η ) = d)/dη ψ = ξf, ) e u = f, g = h, c = ρµ 4.58) u e h e ρ e µ e

45 ξ x, y) ξ, η) ξ = x ρ e u e µ e dx, η = u y e ρdy 4.59) ξ 0 0 ξ = ρ e u e µ e x, η = u y e ρdy ξ 4.60) 4.57 u e/h e 0 u e h e = u e C p T e = u e γ γ 1 RT = γ 1)u e e γrt e = γ 1)u e a e = γ 1)M e 4.61) M e µ 0.5 < n < 1.0 c ) n µ T = 4.6) µ e T e c = ρ µ = T ) n ) n 1 e T T = 4.63) ρ e µ e T T e T e y p = p e ) p ρ = RT, p e = RT e ρ = T e ρ e ρ e T 4.64) 4.63 h ) n 1 ) n 1 ) n 1 T Cp T h c = = = = g) n ) T e C p T e h e 4.57) cf ) + ff = ) c P r g ) + fg + γ 1)M e g) n 1 f ) = ) η = 0 f0) = f 0) = 0, g o) = 0 ) 4.68) η = 0 f0) = f 0) = 0, g0) = g w ) 4.69) η = f ) = 1, g ) = )

46 f = m 4.71) m = w c w = f w c 4.7) 4.73) g = P r c x 4.74) x = f P r c x γ 1)M e w 4.75) q q = f, m, w, g, x) 4.65 c g η = 0 w0) = C1, g0) = C 4.76) C1 = 0.5, C = 0.5)η η = ) 1.0 M=0.5 M=1.0 u/u 0 0 ƒå 6 4.4: ) 1.4 T/T M=0.5 M= ƒå 4.5: M

47 M = 1 dissipation M M M M=8) ) M = 8.1, P o = 4.0MP a, T 0 = 900K, P = 370.6P a, T = 63.73K 4.77) T w isothermal) T w = 80K µ/µ = T/T ) 0.6 n n = / : ): M=8, T w /T e = 4.4; η : 4.6 y m) x=10mm η y 4.13) η = u y e ξ 0 ρ dy = u y eρ e ξ 0 ρ dy = u y eρ e ρ e ξ 0 1 dy 4.78) g

48 ) g = h = C pt = T = p/ρr = ρ e h e C p T e T e p/ρr) e ρ 4.79) p = p e ) 4.78) y η = u eρ e ξ y gη) ξ y = u e ρ e η ) gη) dη 4.81) : : M=8, T w /T e = 4.4) : 4.8 y m) x=10mm

49 43 5 C p p p 1/)ρ V p p, ρ, V 5.1) ƒï p V p 5.1) 5.1: C p = p p ) p p 1/)ρ V = 1/)ρ V 1 p = γp ) /ρ ) p γv 1 p = a ) p γ V 1 p = ) 1 p 1 γ p M 5.) a = γ p ρ 5.3) V V u, v, w) V = V + q 5.4) q q = u, v, w) 5.5)

50 44 5 V = V + u, v, w), V = V + u) + v + w 5.6) u, v, w V 5.7) a a γ { V + u) + v + w } = a γ V 5.8) ) 1 a + V + u) + v + w γ 1 a a = 1 γ 1 + M a a ) = 1 + γ 1 M γ 1) V + u) + v + w a 5.9) 5.10) p T ) γ/γ 1) p T = = p T = ) γ/γ 1) p T = 5.11) p T ) T a = 5.1) T a [ 1 + γ 1 M γ 1) V + u) + v + w ] γ/γ 1) a 5.13) [ 1 γ 1 { M u + u + v + w }] γ/γ 1) V V 5.14) 1 γ { M u + u + v + w } V V 5.15) 5.7) 5.) { u C p = + u + v + w } V V 5.16) C p u V 5.17)

51 C p u V v r V 5.18) v r x C p = u/v 5. C p 5. C p = γ ) 1 p 1 = γ p M 1 M p p 0.9) p p ) p p0 1 p 0 p 5.19) [ p 0 p = ] γ/γ 1) γ 1)M 5.0) [ p 0 = γ/γ 1) p ] γ 1)M 5.1) 5.0),5.1) 5.19) C p = γ 1 M { [1 + 1 γ 1)M } ]γ/γ 1) γ 1)M 5.) M = 1 C p C p = γ 1 M { [1 + 1 γ 1)M 1 + γ) M = 0.6, 0.7, ]γ/γ 1) 1 } 5.3) staganation point) 1

52 p p 0 C pst C pst = = = p 0 p 1/)ρ V ) p p0 p 1 1/)ρ V [ ] 1 + γ 1 γ/γ 1) M ) 1 γm 5.4) 5.1) M 1 5.4) 1 + γ 1 ) γ/γ 1) M 1 + γ M + γ 8 M ) C pst M 5.6) C pst M M = 0.6, 0.7, critical Mach number) M cr ) 3 3 K )M cr ) + 3M cr 1 = 0 5.7) K K = γ + 1) ui V ) max γ + 1) C ) p i max 5.8) max a γ V = a γ V 5.9) a = a + γ 1 M V γ 1 V 5.30) M = V a = V a + γ 1 V γ 1 V

53 = = V a 1 + γ 1 V a M ) V V γ 1 V ) V a V ) V V 1 + γ 1 M γ 1 M ) 5.31) V V V V 5.31) ) = V + u) + v V M = V + V u + u + v V 1 + u V 5.3) ) M 1 + u V 1 γ 1)M u 5.33) V Prandtl-Glauert u = C p V = 1 C pi 1 M = i 5.34) 5.33) 1 + u M = M 1 M M 1 γ 1) 1 M ) 1 u 1 M V i V )i u V )i 5.34) 5.35) M = ) 1 + u 1 = M 1 M M 1 γ 1) 1 M V )i u V )i 5.36) NACA001 0 x/c = 0.1C V/V = 1.19

54

55 M )ϕ xx + ϕ yy + ϕ zz = 0 6.1) ) xx, ) yy, ) zz M = 1 0 M < 1) M > 1 1 M 1)ϕ xx ϕ yy ϕ zz = 0 6.) [] 6.1) M = 0 ϕ xx + ϕ yy + ϕ zz = 0 6.3) 6.1 full potential equation) a Φ x)φ xx + a Φ y)φ yy + a Φ z)φ zz Φ x Φ y Φ xy + Φ y Φ z Φ yz + Φ z Φ x Φ zx ) = 0 6.4) Φ ϕ ) V x = Φ x, V y = Φ y, V z = Φ z 6.5) Φ.18) 1 Φ x + Φ y) + a γ 1 = 1 V + a γ 1 6.6)

56 50 6 ) 6.4) 6.6) Φ 6.4) div ) = ) div ρ V ) = ρ div V + V ρ = 0 6.7) V ) V = 1 ρ p = a ρ 6.8) ρ dp = a dρ p = a ρ 6.9) V 6.8) V V ) V = a ρ V ρ 6.10) 6.7) V ρ = ρ div V 6.11) 6.10) V V ) V = a V 6.1) V 6.5) 6.4) v V V = V + v v V 6.13) V = Φ, v = ϕ 6.14) x Φ = V x + ϕ 6.15) V = V x, V y, V z ) = V + u, v, w) 6.16)

57 ) Φ ϵ Φ x = V + ϕ x ) = V + V ϕ x + ϕ x = Oϵ 0 ) Φ xx = ϕ xx = Oϵ) Φ y = ϕ y = Oϵ ) Φ yy = ϕ yy = Oϵ) Φ z = ϕ z = Oϵ ) Φ zz = ϕ zz = Oϵ) Φ x = V + Oϵ) Φ y = ϕ y = Oϵ) 6.17) V 0 Oϵ 0 )) ϕ 1 Oϵ)) ) a = a + 1 γ 1)V V ) = a + 1 γ 1)[V V + ϕ x ) ϕ y ϕ z] = a + 1 γ 1)[ V ϕ x ϕ x ϕ y ϕ z] = a + Oϵ) 6.18) ) ϕ { + + a + 1 γ 1) V ϕ x ϕ x ϕ y ϕ z) V V ϕ x ϕ x { a + 1 } γ 1) V ϕ x ϕ x ϕ y ϕ z) ϕ y ϕ yy { a + 1 } γ 1) V ϕ x ϕ x V ϕ x ϕ z) ϕ z ϕ zz } ϕ xx {V + ϕ x )ϕ y ϕ xy + ϕ y ϕ z ϕ yz + ϕ y V + ϕ x )ϕ zx } = ) ϵ 1 ϵ 1 a a V )ϕ xx + a ϕ yy + a ϕ zz = 0 6.0) 1 M )ϕ xx + ϕ yy + ϕ zz = 0 6.1) 6.1)

58 5 6 1 M > 0 1 > M 1 M )ϕ xx + ϕ yy + ϕ zz = 0 6.) 1 M < 0 1 < M M 1)ϕ xx ϕ yy ϕ zz = 0 6.3) ) ) x, y) Plandtl-Glauert 6.1) 1 M 1 ϕ x + 1 ϕ 1 M1 y = 0 6.4) M 1 M 1 = 0.4 M 1 = 0.7 x ) x ) y = t 1 f = τ 1 cf c c y x ) c = τ 1f c 6.5) t 1 thickness) c chord length) τ 1 = t 1 /c thickness ratio) f = dfξ)/dξ ) ϕ dy = V 1 y dx = V 1τ 1 f x ) c y=0 6.6) x y = ) C p1 = u V 1 = V 1 ) ϕ x y=0 6.7)

59 Φξ, η) ξ, η) V M ϕ Φ ϕx, y) = A V 1 V Φξ, η) = A V 1 V Φ x, y) ξ, η) ξ = x, η = 6.8) 6.9) 6.4) ϕ M 1 6.4) Φ M 6.30) x, ) 1 M1 1 M y 6.8) 1 M1 1 M y 6.9) Φ ξ + 1 Φ 1 M η = ) 6.6) 6.8) ) ϕ = A V 1 1 M1 y y=0 V 1 M ) Φ η η=0 = V 1 τ 1 f x ) c 6.31) τ 1 M1 A 1 M τ = τ 1 6.3) A 6.31) ) ) Φ ξ = V τ f η η=0 c 6.33) V M τ 6.6) 1 C p1 6.7) 6.8) C p1 = ) ϕ = ) Φ A 6.34) V 1 x y=0 V ξ η=0 C p C p = ) Φ V ξ η=0 6.35)

60 54 6 C p1 C p C p1 = AC p 6.36) τ 1 τ C p1 C p M 1 M 6.3) 6.36) 1 M1 A 1 M τ = τ ) A) C p1 = AC p 6.38) M = ) τ 1 τ = A 1 M1 C p = C p1 A 6.39) 6.40) C p = fτ ) 6.41) τ τ C p = fτ ) = f τ 1 A 1 M ) 1 ) C p1 A = f τ 1 A 1 M1 ) 6.4) 6.43) C p1 τ 1 M 1 A Prandtl-Glauert 6.43) ) C p A = f 1 τ, AR 1 M A 1 M )

61 τ AR ) ) C p A = f 1 τ A 1 M ) A A = ) A = 1 ) τ C p = f 1 M 6.46) M 0 i C pi = fτ i ) 6.47) 6.46) 6.47) τ 1 M = τ i 6.48) C p = C pi 6.49) 1/ 1 M τ L Γ M A = 1/ 1 M 6.45) A = 1/ 1 M M 0 C L = C Li, C m = C mi, Γ = Γ i 6.50) C p 1 M = fτ) 6.51) C pi = fτ i ) 6.5) τ = τ i C p 1 M = C pi 6.53) C p = C pi 1 M 6.54) C L = C Li 1 M, C m = C mi 1 M, Γ = Γ i 1 M 6.55)

62 56 6 A = τ 6.45) A = τ ) C p τ = f 1 1 M 6.56) C p τ C p τ 6.57)

63 57 7 ÕŒ g V 1 V p 1 ƒï1 T 1 < < < p ƒï T 7.1: cm 1) ) 3) [] δ δ V ν 1 7.1)

64 58 7 V V = V 1 V ν T 1 = 300K a 1 = 347m/sV 1 = 694m/s M = T = a = m/s V = 60.m/s V = 434.m/s 7.1) ν = δ = m 7. control vlume) ÕŒ g Ê1 Ê ŒŸ ÌÏ 7.: x ρ 1 V 1 = ρ V 7.) p 1 p = ρ V ρ 1 V 1 7.3) h V 1 = h + 1 V 7.4) p 1 ρ 1 T 1 = p ρ T 7.5) S S 1 7.6) ) 1 ) ρ V p h T h = C p T = γr γ 1 p ρr = γp γ 1)ρ, γ = C p = 7.7) C v C p C v γ

65 total enthalpy) H 01 = γ p γ 1 ρ 1 V 1 = H 0 = γ p + 1 γ 1 ρ V 7.8) H 0 ) 1 = H 0 ) T 0 ) 1 = T 0 ) a 0 ) 1 = a 0 ) T ) 1 = T ) a ) 1 = a ) 7.9) H 0 = C p T 0 T 0 a 0 = γrt 0.35) a = γrt T.0) V max ) 1 = V max ) 7.10) )7.5) V, p, ρ ) ρ, V M 1 p = 1 + γ [ ρ1 V ] 1 1 = 1 + γ p 1 γ + 1 γp 1 γ + 1 M 1 1) = γ γ + 1 M 1 γ 1 γ ) ρ γ + 1)M1 = ρ 1 γ 1)M ) V = γ 1 V 1 γ γ ) M 1 T γ 1) γm1 + 1 = 1 + T 1 γ + 1) M1 1) 7.14) M 1 a 1 = γrt 1 M 1 ) ρ γ + 1 ρ 1 γ ) γ shock standoff dsitance 0

66 60 7 M 1 ) M ) : M1:M:) M 1 M M 1 M M = γ 1)M 1 + γm γ 7.16) 7.16).5 T = 1 + γ 1 ) 1 M 7.17) T 0 T 0 T /T 1 T = T /T 0 = 1 + γ 1 M 1 T 1 T 1 /T γ 1 M 7.18) 1.56) T T 1 = p ρ 1 p 1 ρ = p p 1 V V ) 7. M T = p Ma = p M T 7.0) T 1 p 1 M 1 a 1 p 1 M 1 T 1 1.3) 1 T /T 1 T T 1 = p p 1 ) ) M 7.1) M ) 7.1) p = M 1 + γ 1 1 M 1 p 1 M 1 + γ 1 M 7.)

67 ρv = ρ V a a = 7.3) p RT M a = pm γrt RT = γpm 7.3) p 1 + ρ 1 V 1 = p + ρ V 7.4) 7.3) p 1 + γp 1 M 1 = p + γp M p γm 1 ) = p 1 + γm ) 7.) 7.5) M γ 1 M γm1 p 1 p = 1 + γm 1 + γm 1 = M 1 + γ 1 M 1 + γm 7.5) 7.6) M = M 1 M = M 1, M = M 1 + γ 1 γ γ 1 M ) M = M 1 + γ 1 γ γ 1 M 1 1 = γ 1)M 1 + γm1 γ 1) 7.8) M 1 1 M 1 7.9) γ 1 M 1 M 7.30) γ γ = ) 7.3) 7.4) V 1, V Rankine-Hugoniot) p = γ + 1)ρ γ 1)ρ 1 = γ + 1)ρ /ρ 1 ) γ 1) p 1 γ + 1)ρ 1 γ 1)ρ γ + 1) γ 1)ρ /ρ 1 ) ρ = γ + 1)p + γ 1)p 1 = γ + 1)p /p 1 ) + γ 1) ρ 1 γ 1)p + γ + 1)p 1 γ 1)p /p 1 ) + γ + 1) 7.31) 7.3)

68 6 7 p /p ϵ) p p 1 = ρ ρ 1 ) γ ln p p 1 = γ ln ρ ρ ) p p 1 = γ ρ ρ ) p = p p 1 ρ = ρ ρ 1 1 p p 1 = γ + 1 γ 1 V V 1 ) / ) γ + 1 V 1 γ 1 V 1 C shock 7.35) [f] C shock [U] = ) [a] [a] = a 1 a a 1 a f flux) U f = fu)1 U = ρ, ρu, e t ) t, f = ρu, ρu + p, ρuh) t 7.37) u e t H e i e t = ρe i + u /), H = h + u / 7.38) ) 1 ) 1.81) p 1 ρ γ 1 = C exps 1 /C v ), p ρ γ = C exps /C v ) 7.39) p /p 1 ρ /ρ 1 ) γ = exp{s S 1 )/C v } S S 1 C v = ln p /p 1 ρ /ρ 1 ) γ 7.40) 7.11) 7.1) S S 1 C v [ p = ln p 1 ρ1 ρ ) γ ] {[ = ln 1 + γ ] [ ] γ 1)M γ + 1 M 1 γ } 1) 1 + γ + 1)M1 7.41)

69 S S 1 > 1 if M 1 > 1 C v 7.4) S S 1 < 1 if M 1 < 1 C v 7.43) compression shock) rarefaction shock) 7.6))M 1 > S S 1 = C p C v ) ln T /T 1 ) γ/γ 1) S S 1 R C p /R = C p /C p C v ) = γ/γ 1) p /p ) = C p R ln T T 1 ln p p ) S S 1 R = γ γ 1 ln T T 1 ln p p ) 0 S 0 S 01 = C p C v ) ln T 0/T 01 ) γ/γ 1) 7.47) p 0 /p 01 1) ) S 1 = S 01, S = S ) S S 1 = S 0 S ) T 0 = T ) C p C v = R 7.51) 7.47) S S 1 R = S 0 S 01 R = ln p 01 p 0 7.5) p 01 /p 0 > 1

70 p = ρrt p 1 p = ρ 1T 1 ρ T T T 1 = ρ 1 ρ p p ) S S 1 R = lnρ /ρ 1 ) γ/γ 1) + lnp /p 1 ) 1/γ 1) 7.54) 7.4. p p 0.3) p 1 p 01 = p p 0 = p 0 /p 01 p 0 = p 0 p p1 = p 01 p p 1 p γ 1 M 1 + γ 1 ) γ/γ 1) M1 7.55) 1 + γ 1 ) γ/γ 1) M 7.56) ) γ/γ 1) p p γ 1 ) γ/γ 1) M1 7.57) p /p ) p 0 p 01 = 7.16) 1 + γ 1 M ) γ/γ 1) γ 1 + γ 1 M 1 γ + 1 M 1 γ 1 ) γ ) p 0 γ = p 01 γ + 1 M 1 γ 1 ) 1/γ 1) γ 1 γ + 1 γ γ M 1 ) γ/γ 1) 7.59) M 1 1 p 0 /p ) M = 8 1% M 1 ) p 0 /p 01 ) :

71 Prandtl) V /V 1 M ) V 1 V = γ 1 V 1 γ γ + 1 V 1 V = γ 1 γ + 1 V 1 + γ + 1 a 1 = γ 1 γ M ) V1 + ) γ 1 a 1 = γ 1 γ + 1 V max 7.61).1).18 0 h = 0 T = a = 0 V max = V 1 + γ 1 a 1 7.6) V V max.38) 7.61) V = a V 1 V = a V 1 a V a = ) 7.63 V = a V 1 a > ) V a < ) 1 V + a γ 1 = γ + 1 γ 1) a 7.66) V = a V < a 7.66) V < a = γ 1) γ + 1 ) 1 V + a γ 1 V < a 7.67) V < a 7.68) V a V a M M M = V a < 1 M = V a < )

72 66 7 M < 1) T > T a > a 7.70) V a < V a M < M 7.71) M < 1 M < 1 V > a 7.66) V > a = γ 1) γ + 1 ) 1 V + a γ 1 V > a 7.7) V > a 7.73) M M M = V a > 1 M = V a > ) ) M > 1) T < T a < a 7.75) V a > V a M > M 7.76) M > 1 M > 1 M ) M M 7.6 oblique shock wave bow shock)

73 V n V t V n = γ 1 V n1 γ γ + 1 Mn1 7.77) V t = V t1 7.78) 7.13) x β x V 1 V θ x M n1 = V n1 a 1 V n1 = V 1 sin β, V t1 = V 1 cos β 7.79) = V 1 sin β a 1 = M 1 sin β > ) M n = V n a = V sinβ θ) a = M sinβ θ) < ) V 1 cos β = V cosβ θ) 7.8) V cos β = V 1 cosβ θ) 7.83) p /p ) 7.1) ρ 1 V 1 sin β = ρ V sinβ θ) 7.84) p = 1 + γ p 1 γ + 1 M 1 sin β 1) 7.85) ρ = γ + 1)M 1 sin β ρ 1 γ 1)M1 sin β ) ρ ρ 1 = V 1 sin β cosβ θ) = V sinβ θ) cos β sin β sinβ θ) = tan β tanβ θ) 7.87)

74 68 7 p /p 1 M sin β θ) = γ 1)M 1 sin β + γm 1 sin β + 1 γ p p 1 = 1 + γm 1 sin β 1 ρ ) 1 ρ 7.88) 7.89) p 1 /p p 1 p = ρ V n ρ 1 V n1 = ρ 1 V n1 1 ρ Vn ) ρ 1 Vn1 7.90) p 1 = 1 + γm 1 ρ ) sin β θ) 7.91) p ρ 1 p 1 p = ρ V n γm 1 ρ ) sin β θ) = ρ 1 γm 1 ρ ) sin β θ) = ρ 1 M sin β θ) = 1 ρ1 ρ 1 ρ ρ 1 M sin β θ) = ρ 1 ρ 1 ρ 1Vn1 ) ρ Vn γm 1 sin β 7.86) ) 1 ρ1 ρ ) 7.93) ) γm1 sin β 1 ρ1 ρ ) 7.94) 1 + γm1 sin β 1 ρ 1 ρ M1 sin β ) 7.95) 1 + γm1 sin β 1 ρ1 ρ 1 ρ 1 ρ 1 ρ ρ 1 = ρ 1 ρ 7.96) M1 sin β ) 7.97) 1 + γm1 sin β 1 ρ1 ρ wave angle)β deflection angle)θ M1 sin β 1 tan θ = cot β M1 γ + cos β) ) γ + 1)M1 sin β γ 1)M1 sin β + = tan β tanβ θ) 7.99)

75 p P ƒï P M1 ƒà ÕŒ g p ƒï M ƒæ 7.3: tanβ θ) tanβ θ) = tan β tan θ 1 + tan β tan θ 7.100) tan θ = ƒæ ƒæ max œ O ƒê ƒà ƒî/ 7.4: M 1 θ β 7.4 θ 0 0 β sin µ = 1/M 1 β = µ θ β θ > θ max ) detached shock) M 1 =.5 θ = 30 θ = 30 M 1.5 attached shock) 7.5 M 1 θ max

76 70 7 ƒæ M 1= weak solution œ ¹ ˆŸ ¹ œ œ ƒæ max strong solution M 1= O ƒî/6 ƒà œ ƒî/ 7.5: weak solution/strong solution; supersonic/subsonic) θ = 0 θ max 7.5 θ θ = const β β = β 1, β )β 1 > β β 1 ) T /T T = p ρ { 1 = 1 + γ } γ 1)M T 1 p 1 ρ γ + 1 M 1 sin β 1) 1 sin β ) γ + 1)M1 sin β u = 1 M 1 sin β 1) V 1 γ + 1)M1 v = M 1 sin β 1) cot β V 1 γ + 1)M1 7.10) 7.103) V = u, v ) u 7.83 u V 1 = u = V cos θ, v = V sin θ 7.104) u V 1 = V V 1 cos θ 7.105) cos β cosβ θ) cos θ = cosβ θ) cos β cos β + sin β tan θ 7.106) tan θ

77 7.7. Crocco V s p p 1 V s = u 1n p p 1 = γ [ u 1 n) M 1 γ + 1 u 1 n 7.107) 1 1/ρ ] γ ) γ + 1 ρ = p /p 1 + γ 1)/γ + 1) ρ 1 γ 1)/γ + 1)p /p ) p p 1 ) u = u 1 + u 1n n γ + 1)p + γ 1)p ) n n 7.7 Crocco bow shock) total enthalpy) H 0 = h + 1 V = const 7.111) n n H 0 n = h n + V V n 7.11) constant H 0 δq = T δs = δe i + pδv = δh vδp 7.113) e i h = e i +p/ρ = p + pv v v = 1/ρ 7.113) δh = T δs + vδp = T δs + 1 δp 7.114) ρ n 7.115) 7.11) h n = T S n + 1 ρ p n H 0 n V V n = T S n + 1 ρ p n 7.115) 7.116)

78 7 7 s ) ρv V s = p s 7.117) n ) ρv R = p n 7.118) 7.118) 7.116) H 0 n = T S n + V V n + V ) R 7.119) r, θ, z) z ω z ω z = V r + V R ω z ω z = V ) = 1 z r r rv θ) 1 V r r θ = 1 r r rv θ) = V r + V R 7.10) 7.11) V r = 0V = V θ 7.119) H 0 n = T S n + V ω z 7.1) H 0 ) homogeneous 0 H 0 ω z = T S 7.13) V n S/ n 0 ω z entropy layer) wedge; ) cone; 3 )

79 7.9. Taylor-Maccoll 73 β) detach) 57.6 C 1 θ 1 C θ C 1 ÕŒ gž ) ÕŒ g ~) ƒà w ƒàc ƒæ 7.6: 7.9 Taylor-Maccoll conical flow r, θ, ϕ) r θ r, θ, ϕ) V r, V θ, V ϕ ) ϕ = 0, V ϕ = ) ϕ r = )

80 74 7 ρ V = 0 ρ V = 1 r r r ρv r ) + 1 r sin θ θ ρv θ sin θ) + 1 ρv ϕ r sin θ ϕ = ) ρv r + ρv θ cot θ + ρ V θ θ + V ρ θ θ = ) Crocco ω r, ω θ, ω ϕ ) { ω r = V 1 ) r = r sin θ θ rv ϕ sin θ) } ϕ rv θ) = ) { ω θ = V 1 Vr ) θ = r sin θ ϕ } r rv ϕ sin θ) = ) ω ϕ = V ) ϕ = 1 { r r rv θ) V } r = ) θ V θ + r V θ r V r θ = ) V θ = V r θ s 7.13) dp = ρv dv = ρdv )/ 7.133) ds V = Vr + Vθ a dp = ρv r dv r + V θ dv θ ) 7.134) dp dρ = a 7.135) dρ ρ = 1 a V rdv r + V θ dv θ ) 7.136) H 0 = h + 1 V = 1 V max 7.137)

81 7.9. Taylor-Maccoll 75 V max h = 0 0 h h = C p T = 7.137) 7.138) γr γ 1 T = a γ ) a = 1 γ 1)V max V ) 7.139) dρ ρ = γ 1 Vr dv r + V θ dv θ Vmax Vr Vθ ) 7.140) V r V θ θ ρ θ θ ρv r + ρv θ cot θ + ρ dv θ dθ + V dρ θ dθ = ) 1 dρ ρ dθ = γ γ 1 Vmax Vr Vθ ) Vr dv r dθ V r + V θ cot θ + dv θ dθ + V θ dv θ dθ V max V r V θ ) ) V θ V r dv r dθ + V θ 7.13 θ V r θ 7.14) ) dv θ = ) dθ dv θ dθ = d V r dθ 7.144) ) ) γ 1 Vmax Vr dvr V r + dv ) r dθ dθ cot θ + d V r dθ dv r dv r V r dθ dθ + dv r d ) V r dθ dθ = ) γ 1 dvr dθ V max V r ) V r + d V r dθ ) ) dvr V r + dv ) r dθ dθ cot θ + d V r dθ ) = ) V max 7.137) H 0 H 0 V r θ V r 7.13 V θ

82 ) 7.146) θ V θ = ) dvr = ) dθ θ w θ = θ s θ s ) G.I.Taylor and J.D.Maccoll, The Air Pressure on a Cone Moving at High Speeds, Proc. Roy. Soc. London A, 139, 1933, pp

83 B77, B737, B747 transonic flow) V C 1 V C, M = V C 1 8.1) 1 ρv p 8.) 1/)ρV p 1 γv γp/ρ γ ) V = γ C M 8.3) M 1 O1) [] dynamic pressure) static pressure) M = 1.4 1/)ρv 1/)ρ 0 C 0 = ρ v ) ) C = M 1 + γ 1 ρ 0 C C 0 M ) γ/γ 1) 8.4) M = km [] M 1 y ) M 1 ±90 dy dx = ± 1 M 1 8.5) 1 M ) ϕ x + ϕ y = 0 8.6)

84 78 8 M 1 0 M 1 8.6) 1 M ) ϕ x + ϕ y = M γ + 1) 1 ϕ V x ϕ x + M 1 ϕ ϕ V x x y + ϕ x y 8.7) 1 M ) ϕ x + ϕ y = M γ + 1) 1 ϕ V x ϕ x 8.8) throat) inlet) nozzle) Λ θ = sin 1 1/M ) Λ + θ = π/ Λ = 0 M = 1 θ = π/ Λ > 0)θ < π/ M > 1 M =1 ƒ ƒæ M 8.1: M=1 8. Sweptback angle) y Λ 35 A310 Λ = 8 BBomber; M=0.8) Λ = 33 B747B M=0.85) Λ = 37.5

85 M = 1.4 Λ = 45 M = Λ = 60 cruise speed) M=.0) Λ = 75 M n = M cos Λ 1 M n < 1 Λ ) M n > 1 Λ ) X ) forward-sweep wing) washout) transonic aerodynamics) 1970 peaky blunt Pearcey Whitcomb shock-free supercritical wing) ) Richard T. Whitcomb ; NASA) transonic area rule) supercritical wing winglet) 8..1 peaky airfoil) Peaky airfoil) 196 NPLNatiobal Physical Laboratory) Pearcey DC8, DC9, A300B τ = 0.08 M = 0.73 C L = 0.77 Cp -1.6 Cp ) H.H.Pearcey, The Aerodynamic Design of Section Shapes for Swept Wings, Advances in Aeronautical Sciences, Pergamon Press, Oxford, Vol. 3, 196.

86 supercritical region) M DD ; Drag Divergence Mach number) shock stall) M L/D lift divergence) supercritical wing) NASA Langley Richard Whitcomb % NACA % ) M DD 0.7 M DD 0.81 blunt nose; ) τ = 0.11 M = 0.8 C L = 0.61 M = 0.8 C L = 0.61 Cp NASA 1969 NASA Whitcomb Vought F-8 Crusader % DC10, L1011, C5A

87 wave resistance, wave drag) 3% 0% M = 0.8 M = 1.4 p 01 p 0 p 0 p 01 < 1 8.9) 7.5 ) S S 1 exp = p 01 S S 1 = ln p ) R p 0 R p P P = p p 1 p 1 = p p ) 7.11 p = γ p 1 γ + 1 M 1 γ 1 γ ) 8.11) P M 1 ρ ρ 1 = P = γ γ + 1 M 1 1) 8.13) 7.3) ) γ+1 p γ 1 p p p 1 + γ+1 γ 1 s s 1 = C v ln p p 1 + C p ln ρ 1 ρ = C v ln = γ+1 γ P + 1 γ 1 γ P ) p p 1 ) ) γ ρ1 8.15) ρ 8.11) 8.14 s s 1 = ln1 + P ) γ ln C v 1 + γ + 1 γ P ) + γ ln 1 + γ 1 γ P ) 8.16)

88 8 8 1 ) P 1 s s 1 C v = γ 1 1γ P 3 γ 1 8γ P ) 7.54 s s 1 R = γ + 1 1γ P 3 γ + 1 8γ P ) 3 Crocco) M 1 s s 1 R = γ 3 γ + 1) M 1 1) 3 γ γ + 1) M 1 1) ) 8.5 M τ τ 0 τ 0 M von Karman 8.8) 3 1 M ) ϕ x + ϕ y + ϕ z = M γ + 1) V ϕ ϕ x x 8.0) 1 x y z 8.0) 1 M ) ϕ ϕ X x + ϕ Y ϕ y + ϕ ϕ Z z = γ + 1) ϕ M V X 3 ϕ ϕ x x 8.1) x X, y Y, z Z, ϕ ϕ 8.) 1 M ) ϕ X : ϕ Y : ϕ Z : M γ + 1) ϕ V X 3 = const 8.3)

89 w x = τ V x/l) f l, y ) b τ ) 8.4) l X, ϕ V Z w V = ) ϕ z z=0 ϕ z 8.4) z=0 V 8.5) x = τ x/l) f l, y ) b 8.6) b Y 8.6) ϕ V Z τ = const 8.7) 8.3) x z 3 1 M )Z 1 M ) ϕ ϕ X : = const 8.8) Z X = const = C Z = C 8.9) 8.7) 8.3) 1 CX 1 M ) 1/ 8.9) ϕ 1 1 M ) 1/ = const 8.30) V τ X 1 M ) ϕ X : M γ + 1) ϕ V X 3 = const ϕ V X M γ + 1) 1 M = const 8.31) 8.30) 8.31) /3 constant χ 1 M ) 3/ M γ + 1)τ = const 8.3) 1 M = const 8.33) [M γ + 1)τ] /3 χ = χ 1 M [M γ + 1)τ] /3 8.34) τ 1, τ M 1, M 1 M 1 [M 1 γ + 1)τ 1] /3 = 1 M [M γ + 1)τ ] /3 8.35) χ

90 χ 5.17 C p = u = ϕ V V x = ϕ ϕ V X x 8.36) 8.31) C p ϕ V X = const 8.37) C p γ + 1)M 1 M = const 8.38) M 1 1 M ) 8.33) C p C p γ + 1)M = const 8.39) [γ + 1)M τ] /3 C p [γ + 1)M ] 1/3 τ /3 = const 8.40) C p = C p [γ + 1)M ] 1/3 τ /3 8.41) 1 3 C p = C p [γ + 1)M ] 1/3 τ /3 = f p χ, AR) 8.4) C [γ + 1)M L = C ] 1/3 L = f τ /3 L χ, AR) 8.43) C [γ + 1)M M = C ] 1/3 M = f τ /3 M χ, AR) 8.44) C [γ + 1)M D = C ] 1/3 D = f τ 5/3 D χ, AR) 8.45) χ AR τ

91 l t p D C D C D = θ D pθl 8.46) D 1/)bρ U l pθl 1/)bρ U l C pθ = C p τ 8.47) tan θ = t l = τ θ τ 8.48) 8.40) τ C p τ [γ + 1)M ] 1/3 τ 5/3 = const 8.49) 8.47 C D [γ + 1)M ] 1/3 = const = τ C 5/3 D 8.50) AR AR = [γ + 1)M ] 1/3 AR 8.51) 8.3) 1 1 M )Y 1 M X = const Y X = const 8.5) Y = const = AR X 8.53) 1 M AR = const 8.54) M ) ) 1 M = const 8.55) [γ + 1)M τ] 1/3 8.54) 8.55) [γ + 1)M τ] 1/3 AR = const = AR 8.56) AR C Di C Di = 8.57) πar L/D dc L /dα) M DD 8.1 AR = 7 9 C L

92 86 8 AR) B B A DC : 8.6 ) NACA Richard Whitcomb 1953 Richard Witcomb NASA 1956 NACA Distinguished Service Medal winglet) YF10 M=0.98 F-10 Delta Dagger source) sink) wave drag) D w = ρ U 4π l l f Sx) 0 0 f x)f ξ) ln x ξ dxdξ 8.58) fx) = dsx) dx 8.59) x θ x = l 1 + cos θ) 8.60)

93 x l π θ ) f θ f = l A n sin nθ 8.6) n= D w = πρ U l 8 na n 8.63) 8.6 Sθ) = l 4 Sx) = x {A 1 π θ + 0 fx)dx = ) sin θ + 0 θ n= n=1 fθ) l/) sin θdθ 8.64) A n sinn + 1)θ n + 1 ) } sinn 1)θ 8.65) n 1 V V = l 0 Sx)dx = πl3 8 A 1 1 ) A 8.66) Area or Radius area=sx)/sl) radius=rx)/rl) x/l 8.: Karman ogive von Karman ogive body x = l θ = Sl) = Sθ = 0) = πl 4 A 1 A 1 = 4Sl) πl 8.67)

94 A n = 0 n 8.68) D w D w = ρ U π Sθ) = Sl) π C Dw = 4 π [Sl)] l 8.69) Sl) l 8.70) π θ + 1 sin θ ) 8.71) von Karman ogive body 8.) ogive Sears-Haack body θ = 0 S = ) A 1 = 0 V 8.66 A = 16V πl 3 8.7) D w = 64V πl 4 ρ U 8.73) x = l/ C Dw = 4V l ) C Dw = 4V l ) Sθ) = 4V πl sin θ 13 sin 3θ ) 8.76) Sears-Haack body 8.3 ) 8.71) 8.76) GA ) 8.4 C D 0.4 M = 1.5 C D 1.0 mach independence )

95 Area or Radius x/l area=sx)/sl/) radius=rx)/rl/) 8.3: Sears Haack CD M 8.4: 8.8 laminar flow) adverse pressure gradient) wake) heat flux) 11

96 90 8 ƒ ƒ ƒ_õœ g ¹ ˆŸ ¹ M > M cr 8.5:

97 91 9 supersonic flow) 9.1 M = thermal barrier) X-1 M= SR71 M=3 9. characteristic) ) rotational flow) hyperbolic equation) ±µ µ

98 9 9 u A 1 x + B u 1 y + C v 1 x + D v 1 y + E 1 = 0 9.1) u A x + B u y + C v x + D v y + E = 0 9.) A, B, C, D x, y, u, v u/ x quasi-linear) x, y) ξ, η) ξ, η) y Á«Èü ƒå ƒå ƒì x ƒì 9.1: ξ η ) chain rule) 9.3) 9.6) 9.1) u x = u ξ ξ x + u η η x u = u ξ y ξ y + u η η y v x = v ξ ξ x + v η η x v = v ξ y ξ y + v η η y 9.3) 9.4) 9.5) 9.6) A 1 ξ x u ξ + η x u η ) + B 1 ξ y u ξ + η y u η ) + C 1 ξ x v ξ + η x v η ) + D 1 ξ x v ξ + η y v η ) + E 1 = 0 9.7) x, y, ξ, η x, y, ξ, η u xi, v ξ, u η, v η A 1 ξ x + B 1 ξ y )u ξ + C 1 ξ x + D 1 ξ y )v ξ + A 1 η x + B 1 η y )u η + C 1 η x + D 1 η y )v η + E 1 = 0 9.8) 9.) A ξ x + B ξ y )u ξ + C ξ x + D ξ y )v ξ + A η x + B η y )u η + C η x + D η y )v η + E = 0 9.9) 9.8) 9.9) ) ) A 1 ξ x + B 1 ξ y, C 1 ξ x + D 1 ξ y u ξ = A ξ x + B ξ y, C ξ x + D ξ y v ξ X Y ) 9.10) X = A 1 η x + B 1 η y )u η C 1 η x + D 1 η y )v η E 1 Y = A η x + B η y )u η C η x + D η y )v η E 9.11) 9.10) ξ

99 ξ A B ξ indefinite) 9.10) 0 ƒå ̈æA ̈æB ƒì 9.: A B ξ ) A 1 ξ x + B 1 ξ y, A ξ x + B ξ y, C 1 ξ x + D 1 ξ y C ξ x + D ξ y = 0 9.1), aξ x + bξ x ξ y + cξ y = ) a = A 1 C A C 1, b = A 1 D A D 1 + B 1 C B C 1, c = B 1 D B D ) η ξ ) ̈æB ƒå ƒì ̈æA 9.3: A B η ) u, v η A 1 η x + B 1 η y, C 1 η x + D 1 η y A η x + B η y, C η x + D η y = ) aη x + bη x η y + cη y = )

100 94 9 ξ, η) x, y) x, y) ξ η ξ = ξx, y), η = ηx, y) 9.17) ξ = const η y = fx) η = const ξ y = gx) σ σ ξ η x = xσ), y = yσ) 9.18) y xƒð), yƒð) ) ƒð 9.4: σ x, y) x 9.17) σ = σx, y) σ σx, y) = ) 9.19) y σ x x ) ) ) σ σ y 0 = 0 9.0) x y x y x σ σ/ y) x σ ) x y σ y ) x = ) y x σ 9.1) σ = ξ σ = η ) dy ) y dη = x dx ξ dη ξ ) dy ) y dξ = x dx η dξ η 9.) 9.3) 9.1)

101 η y η A x η 1 η y + B 1, C x 1 η y + D 1 η A x η η y + B, C x η y + D 9.1) ) A 1 dy dξ dx + B 1, C 1 dξ ) A dy dξ dx + B, C dξ dy dξ dx dξ dy dξ dx dξ = 0 9.4) ) + D 1 ) + D = 0 9.5) dx/dξ) dy A 1 dξ B 1 dx dξ, dy A dξ B dx dξ, C 1 dy dξ D 1 dx dξ C dy dξ D dx dξ = 0 9.6) ξ η = const) ay ξ by ξ x ξ + cx ξ = 0 9.7) a = A 1 C A C 1, b = A 1 D A D 1 + B 1 C B C 1, c = B 1 D B D 1 9.8) η ξ = const) ay η by η x η + cx η = 0 9.9) σ a ) dy b dy ) dx dx dσ dσ dσ + c = ) dσ σ ξ η x, y) η = const η = const 9.. x = xσ), y = yσ) λ λ = dy dσ dx dσ 9.31) 9.30) aλ bλ + c = 0 9.3) discriminant)

102 96 9 b 4ac > 0 b 4ac = 0 b 4ac < 0 9.3) λ + = b b 4ac a λ +, λ dy dσ λ dx + dξ = 0 λ = b + b 4ac a 9.33) dy dσ λ dx dη = ) ξ η C +, C 9.3 x, y) u v σ ux, y), vx, y) x = xσ), y = yσ) u σ v σ = u x x σ + u y y σ = v x x σ + v y y σ 9.35) 9.36) 9.1) Λ 1 9.) Λ ) u Λ 1 A 1 x + B u 1 y + C v 1 x + D v 1 y + E 1 ) u +Λ A x + B u y + C v x + D v y + E = ) Λ 1 A 1 + Λ A ) u x + Λ 1B 1 + Λ B ) u y +Λ 1 C 1 + Λ C ) v x + Λ 1D 1 + Λ D ) v y + Λ 1E 1 + Λ E = ) u/ x u/ y 9.35) u σ Λ 1 A 1 + Λ A Λ 1 B 1 + Λ B = x σ y σ x, y) 9.6) = x σ y σ Λ 1 C 1 + Λ C Λ 1 D 1 + Λ D = x σ y σ 9.39) A 1 y σ B 1 x σ A y σ B x σ = C 1y σ D 1 x σ C y σ D x σ = R R )

103 x σ, y σ A 1 y σ B 1 x σ )R 1 + A y σ B x σ )R = ) C 1 y σ D 1 x σ )R 1 + C y σ D x σ )R = 0 9.4) A 1 R 1 + A R )y σ B 1 R 1 + B R )x σ = ) C 1 R 1 + C R )y σ D 1 R 1 + D R )x σ = ) A 1 R 1 + A R B 1 R 1 + B R = C 1R 1 + C R D 1 R 1 + D R = x σ y σ 9.45) 9.38) u, v σ 9.39) 9.45) Λ 1, Λ Λ 1 Λ = R 1 R 9.46) 9.38) { u Λ 1 A 1 + Λ A ) x + Λ } { 1B 1 + Λ B u v + Λ 1 C 1 + Λ C ) Λ 1 A 1 + Λ A y x + Λ } 1D 1 + Λ D v Λ 1 C 1 + Λ C y +Λ 1 E 1 + Λ E = ) 9.45) Λ 1 A 1 + Λ A ) u x + y σ x σ u y ) + Λ 1C 1 + Λ C ) v x + y σ x σ v y ) + Λ 1E 1 + Λ E ) = ) x σ 9.39) Λ 1 A 1 + Λ A )u σ + Λ 1 C 1 + Λ C )v σ + Λ 1 E 1 + Λ E )x σ = ) 9.38) Λ 1 B 1 + Λ B ){ } + Λ1 A 1 + Λ A u Λ 1 B 1 + Λ B ) Λ 1 B 1 + Λ B x + u ) Λ1 C 1 + Λ C v + Λ 1 D 1 + Λ D ) y Λ 1 D 1 + Λ D x + v ) y +Λ 1 E 1 + Λ E = ) 9.39 Λ 1 B 1 + Λ B )u σ + Λ 1 D 1 + Λ D )v σ + Λ 1 E 1 + Λ E )y σ = ) 9.49) 9.51) Λ 1, Λ A 1 u σ + C 1 v σ + E 1 x σ )Λ 1 + A u σ + C v σ + E x σ )Λ = 0 9.5) B 1 u σ + D 1 v σ + E 1 y σ )Λ 1 + B u σ + D v σ + E y σ )Λ = )

104 ) 9.5) Λ 1, Λ 9.41) 9.46) R 1, R Λ 1, Λ A 1 y σ B 1 x σ )Λ 1 + A y σ B x σ )Λ = ) A 1 y σ B 1 x σ, A 1 u σ + C 1 v σ + E 1 x σ, A y σ B x σ A u σ + C v σ + E x σ = ) A 1 y σ B 1 x σ )A u σ + C v σ + E x σ ) A y σ B x σ )A 1 u σ + C 1 v σ + E 1 x σ ) = ) u σ, v σ, x σ {A A 1 y σ B 1 x σ ) A 1 A y σ B x σ )} u σ + {C A 1 y σ B 1 x σ ) C 1 A y σ B x σ )} v σ + {E A 1 y σ B 1 x σ ) E 1 A y σ B x σ )} x σ = ) x σ A 1 B A B 1 )u σ + {A 1 C A C 1 )y σ C B 1 C 1 B )x σ } v σ + {A 1 E A E 1 )y σ B 1 E B E 1 )x σ } x σ = ) x σ A 1 B A B 1 )u σ + {A 1 C A C 1 )λ C B 1 C 1 B )} v σ + {A 1 E E 1 A )λ B 1 E B E 1 )} x σ = ) compatibility equation) T = A 1 B A B 1, a = A 1 C A C 1 S = C B 1 C 1 B L = A 1 E A E 1 M = B 1 E B E ) ξ C + ) u, v) y ξ λ x + ξ = ) T u ξ + aλ + S) v ξ + Lλ + M) x ξ = 0 9.6) u, v) Γ + η y η λ x η = )

105 x, y) C C u, v) Γ T u η + aλ S) v η + Lλ M) x η = ) λ +, λ 9.33 λ + = b b 4ac, λ = b + b 4ac a a 9.65) u, v) 9.4 1) 6.1) ) =0) a u ) u u v uv uv x y x + a v ) v y = ) u y v x = ) 9.1) 9.) A 1 = a u, B 1 = uv, C 1 = uv, D 1 = a v, E 1 = ) A = 0, B = 1, C = 1, D = 0, E = ) 9.14) 9.60) a = a u ), T = a u, S = uv, L = M = ) b = uv, c = a v ) 9.71) a a c λ ± 9.65 λ ± = uv a V a a u ) = V uv av V a V a u ) = v V a ua)u V a va) u V a ± va)u V a va) 9.7) 9.73) ±

106 100 9 v V a ua)u V a va) = uvv a ) v a V a u a V a + uva = u + v )a V a + uvv = V a V a + uvv 9.74) u V a ± va)u V a va) = u V a ) v a = u u + v ) u a v a = u + v )u a ) = V u a ) 9.75) λ ± = v V a ua u V a ± va 9.76) λ ± = θ µ = v u a V a a 1 ± v 9.77) u V a v u 1 M 1 1 ± v 1 u M ) = tan θ tan µ 1 ± tan θ tan µ 9.79) = tanθ µ) 9.80) v u = tan θ, tan µ = 1 M ) λ + = tanθ µ), λ = tanθ + µ) 9.8) V x θ u = V cos θ, v = V sin θ 9.83) x, y) ξ, η V µ µ ξ ) +µ η )

107 Á«ÈüƒÅ) xƒxƒnƒgƒ V +ƒê -ƒê Á«Èü ƒì) ƒæ 9.5: ξ η ) 9.4. u, v) Γ + x, y) ξ 9.70) 9.70) 9.7) aλ + S T T u ξ + aλ + S) v ξ + Lλ + M) x ξ = ) L = M = ) u ξ + aλ + S v T ξ = ) = a u )λ + uv a u = uv + a V a a u = λ 9.87) ) u, v) Γ ) u ξ + λ v ξ = ) Γ - η v Γ + ξ u 9.6: u, v) Γ x, y) η 9.64 u η + λ v + η = )

108 10 9 x, y) ξ, η) ξ y ξ λ x + ξ = 0 on C+ ) 9.90) u ξ + λ v ξ = 0 on Γ+ ) 9.91) η y η λ x η = 0 on C ) 9.9) u η + λ v + η = 0 on Γ ) 9.93) 9.83 u ξ v ξ = = V cos θ ξ V sin θ ξ = V ξ = V ξ cos θ + V sin θ) θ ξ sin θ + V cos θ θ ξ 9.94) 9.95) 9.88) 9.8) u ξ + λ v ξ = V ξ = V ξ θ cos θ V sin θ + tanθ + µ) ξ V ξ ) θ sin θ + V cos θ ξ 9.96) θ cos θ + tanθ + µ) sin θ) + V sin θ + tanθ + µ) cos θ) = ) ξ cos µ cos θ + tanθ + µ) sin θ = cosθ + µ) sin µ sin θ + tanθ + µ) cos θ = cosθ + µ) 9.98) 9.99) 9.97) Γ V ξ V η sin µ σ = ξ η cos µ + V θ ξ sin µ = 0 on Γ+ ) 9.100) cos µ V θ η sin µ = 0 on Γ ) 9.101) V 1 σ tan µ ± V θ σ = V M 1 ± V θ σ σ = ) double sign in the same order) + Γ + Γ

109 Γ +, Γ dθ = M 1 dv M V = 1 dm 1 + γ 1 M M 9.103) V θ M ) 9.103) M = V/a H 0.18 dm = dv a V da a 9.104) H 0 = 1 V + a = const 9.105) γ 1 V dv + ada 1)V dv = 0 da = γ γ 1 a 9.106) 9.104) dm = dv a + V γ 1)V dv a a dm M = 1 + γ 1 ) dv M V 9.107) ) M V = a M ) M = M γ+1 γ 1 M 9.108).18 a a 9.108) V + a γ 1 = γ + 1 γ 1) a 9.109) M + 1 γ 1 = γ + 1 γ 1) a a = γ + 1 a γ 1) V V a = γ + 1 γ 1) M M 9.110) 9.108) M M ) M Γ +, Γ dθ M dθ = 1 dm 1 γ 1 γ+1 M 9.111) M

110 104 9 ƒ - v M*=1 M* ƒæa O ƒæ ƒ + u 9.7: dθ = M 1 dv V = M 1 dv/a V/a = M 1 dm M 9.11) 9.108) 9.111) [ γ 1 M θ θ a = 1 γ + 1 tan 1 γ 1 M 1) tan 1 ωm ) [ γ 1 M ωm ) = 1 γ + 1 tan 1 γ 1 M 1) tan 1 γ 1 γ + 1 γ 1 γ + 1 M 1 γ 1 M 1) M 1 γ 1 M 1) ] ] 9.113) 9.114) θ θ a = ωm ) 9.115) ωm ) M Γ + + Γ θ a M = V/a = 1 θ a u, v) u, v) u v M = 1 r = a γ 1 γ+1 1 r = a 9.116) θ = θ r = a

111 V max.1) γ + 1 V max = γ 1 a 9.117) M M M max = γ + 1 γ ) M M = 9.108) ξ η θ + ω = θ a = const 9.119) θ ω = θ a = const 9.10) ω M M γ 1 γ 1 ωm) = γ + 1 tan 1 γ + 1 M 1) tan 1 M ) x, y) u, v) P P 1 Γ + Γ 1 θ M θ + ωm ) = θ 1 + ωm 1 ) on Γ + ) 9.1) θ ωm ) = θ + ωm ) on Γ ) 9.13) P θ, M ) M 9.108) M µ tan µ = 1 M 1 µ x, y) x, y) 9.14) λ + = tanθ µ), λ = tanθ + µ) 9.15) x, y) u, v) x, y) 9.90) 9.93) λ + x ξ u η + y ξ v x η = ξ, y ) u ξ η, v ) = r η ξ V η = )

112 106 9 x, y) ξ u, v) η C + Γ 9.91) 9.9) λ x η u ξ + y η v x ξ = η, y ) u η ξ, v ) = r ξ η V ξ = ) x, y) η u, v) ξ C Γ ξ η simple wave ξ η θ 0 = V 0 V 0 η ξ ξ η Γ + θ, V 0 Γ + θ V V Γ V η η ÕŒ g ˆ³k g V 4 V 0 9.8: )

113 θ 0 = V 0 η ξ ξ η Γ + θ, V 0 Γ + θ V V Γ V η η η ξ η Γ Prandtl-Meyer s expansion) V 0 h h h h 7 h h V 7 9.9:

114 108 9 u V 0 v r = a * * M =1 V 7 ξ 9.10: ) M ω = ) γ + 1 π γ ) γ = 1.4 ω = Laval nozzle) 9.11: Laval nozzle slope) 0 1 simple wave)

115 v M = V / a = 1 0 u 9.1: Laval nozzle u, v) u, v) 16 A η 9.13: ) ) β ϕ x ϕ y = 0 β = M ) ϕ = f 1 x βy) + f x + βy) 9.130)

116 : M ξ η ) ξ = x βy η = x + βy 9.131) ξ η η ξ = x βy = ξ η = x + βy = δ C p 5.17 v = 1 ϕ V V y = dy dx ) ϕ dy u = V y y=+0 dx ) ϕ dy l = V y y= 0 dx C p = u = ϕ V V x 9.13) 9.133) 9.134) 9.135)

117 ) ϕ = f 1 x βy) + f x + βy) = f 1 ξ) + f η) 9.136) ξ = x βy, η = x + βy 9.137) x, y) x µ ξ = x βy = x µ η = x + βy = tan µ = 1/ M 1 P ϕ p ϕ p = f 1 ξ P ) + f η P ) = f 1 ξ Q ) + f η R ) 9.138) η ξ ) Q P η P η Q R P ξ η η A η M 0 f η R ) = ) ϕ f 1 ϕ P = f 1 ξ Q ) 9.140) Q η P P ϕ f ϕ P = f η Q ) 9.141) Q P ξ ) Q ξ P η ξ simple wave) ϕ f 1 ϕ = f 1 ξ) ϕ f ϕ = f η) ϕ y = df 1 dξ dξ dy = β df 1 dξ 9.14)

118 11 9 ξ = x βy ) ϕ = β df 1 y dξ = V dy u 9.143) dx y=0 df 1 dξ = V dy u β dx ξ ϕ u = f ) ϕ u = f 1 ξ) = V β ξ 0 V dy u dx ξ)dξ = M 1 ξ 0 dy u ξ)dξ 9.145) dx ϕ = f x + βy) ϕ y = β df dη ) ϕ = β df y dη = V dy l dx y= ) 9.147) η f ϕ l ϕ l = f η) = V β η 0 dy l dx η)dη = V M 1 x η 0 dy l η)dη 9.148) dx ux, +0) = ϕ x = ϕ ξ ξ x = V β dy u dx ξ) 1 = V dy u β dx 9.149) x 9.148) 9.137) ux, 0) = ϕ x = ϕ η η x = V β dy l dx η) 1 = V dy l β dx 9.150) 5.17 C pu C pl ux, +0) C pu = = V ) y u = V V β dx β ux, 0) C pl = = ) V y u = V V β dx β y u dx = dy u M 1 dx y l dx = dy l M 1 dx 9.151) 9.15)

119 L D M 9.151) 9.15) L = 1 ρ V D = 1 ρ V = β l 0 l 1 ρ V M = 1 ρ V = β C pl C pu )dx = 1 ρ V β [C pl dy l dx 0 l l ρ V [ dy ) l + dx ) dyu + C pu dx ) ] dyu dx l 0 [ dyl dx + dy ] u dx 9.153) dx )] dx 9.154) dx 9.155) C pl C pu )xdx 9.156) l 0 [ dyl dx + dy ] u xdx 9.157) dx y u x) y l x) C L, C D, C M C L = βl C D = βl l 0 l C M = βl [ dyl dx + dy ] u dx dx l [ dy ) ) ] l dyu + dx dx [ dyl dx + dy ] u x dx dx l l 0 l 0 dx l 9.158) 9.159) 9.160) 3 dy u dx dy l dx = α + θ + dh dx = α + θ dh dx 9.161) 9.16) camber) gx) θ θ = dgx)/dx hx) x gx) y u = αx + gx) + hx) 9.163) y l = αx + gx) hx) 9.164) θ = dg, gx = 0) = gx = l) = ) dx l 0 θdx = l 0 dg dx = ) dx

120 C L = 4 β α = 4α M ) C D = 4 β = 1 l l 0 { 4 M 1 ) } dh dx 9.168) dx ) ) dh α + θ ) dx α + θ) + ) θ = 1 l l 0 θ dξ 9.170) C Dtot = C Dwave + C Dth + C Df 9.171) C Dwave C Dwave = 4α M ) C L = 4α M ) α C Dth = θ + M 1 ) ) dh dx 9.174) C Df C Df l C M = 1 4α β 1 β l x[dg + h) + dg h)] 9.175) 0 = 1 4α M 1 + S 1 S M 1 l = 1 C S L + 1 S M 1 l 9.176)

121 l dyl dx + dy ) l u xdx = xdy l + dy u ) dx 0 0 l = αxdx + x[dg h) + dg + h)] 0 ) l = α + x[dg h) + dg + h)] l = α ) S 1 S ) 9.177) S 1 f = g + hf0)=fl)=0) x S f = g hf0)=fl)=0) x x ac aerodynamic center) x ac l = S 1 S α l = 1 [ 1 + S ] 1 S S 9.178) chord) 5% 1/ 50% detached shock wave) M δ 1 δ L/D B747 L/D = 17 L/D = 7 M DIV M = C pu = β α ) C pl = α ) 9.179) β

122 116 9 c L = 4α M ) c D = 4α M ) ) c M = ) L/D L D = C L = ) C D α 9.18) x = l/) =0) x = l/) x = l/ x = x f y = f x = x f y = f 0 C L C D C M C L = ) C D = 4 M 1 ω = 4 f/l) M 1 x f /l)1 x f /l) 9.185) C M1/ = ) ω = 1 l l hx) f = hx f ) 0 ) dh dx 9.187) dx x f = l/ C D ) 16 f 4 C D = = M 1 l M 1 τ 9.188) 4α C L = M 1 C D = C M1/ = 4α [ M 1 + M 1 f 1 f M 1 l f 1 /l) x 1 /l)1 x 1 /l) + f /l) x /l)1 x /l) ] 9.189) 9.190) 9.191) α f 1 = hx 1 ) f = hx )

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 高速流体力学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067361 このサンプルページの内容は, 第 1 版発行時のものです. i 20 1999 3 2 2010 5 ii 1 1 1.1 1 1.2 4 9 2 10 2.1 10 2.2 12 2.3 13 2.4 13 2.5

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1 September 25, 2017 1 1.1 1.2 p = nr = 273.15 + t : : K : 1.3 1.3.1 : e.g. 1.3.2 : 1 intensive variable e.g. extensive variable e.g. 1.3.3 Equation of State e.g. p = nr X = A 2 2.1 2.1.1 Quantity of Heat

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

KENZOU

KENZOU KENZOU 2008 8 9 5 1 2 3 4 2 5 6 2 6.1......................................... 2 6.2......................................... 2 6.3......................................... 4 7 5 8 6 8.1.................................................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

untitled

untitled 1 Physical Chemistry I (Basic Chemical Thermodynamics) [I] [II] [III] [IV] Introduction Energy(The First Law of Thermodynamics) Work Heat Capacity C p and C v Adiabatic Change Exact(=Perfect) Differential

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

2 (Preface) (potential flow) viscosty ( 0 (vorticity) (boundary layer) (shearing stress) (frictional stress) (frictional drag)) (laminar flow) (turbul

2 (Preface) (potential flow) viscosty ( 0 (vorticity) (boundary layer) (shearing stress) (frictional stress) (frictional drag)) (laminar flow) (turbul Viscous Fluid Dynamics Yoshiaki NAKAMURA Professor of Chubu University Emeritus Professor of Nagoya University 2014 9 September 1, 2014 2 (Preface) (potential flow) viscosty ( 0 (vorticity) (boundary layer)

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

ii (Preface) Mach number: M; : M = V/a 0.3 5% km/h( M=0.4) (thermodynamics) ( SST: supersonic transport (trade-off) ( ) (fluid dynamics) (compr

ii (Preface) Mach number: M; : M = V/a 0.3 5% km/h( M=0.4) (thermodynamics) ( SST: supersonic transport (trade-off) ( ) (fluid dynamics) (compr Incompressible Fluid Dynamics Yoshiaki NAKAMURA Professor of Chubu University Emeritus Professor of Nagoya University 2014 4 April, 2014 ii (Preface) Mach number: M; : M = V/a 0.3 5% 0.3 500km/h( M=0.4)

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

現代物理化学 2-1(9)16.ppt

現代物理化学 2-1(9)16.ppt --- S A, G U S S ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r S -- ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r d Q r e = P e = P ΔS d 'Q / e (d'q / e ) --3,e Q W Q (> 0),e e ΔU = Q + W = (Q + Q ) + W = 0

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information