Hall効果測定による化合物半導体中の不純物準位の評価に関する研究

Size: px
Start display at page:

Download "Hall効果測定による化合物半導体中の不純物準位の評価に関する研究"

Transcription

1 4 9 M00 Hall

2 4 M00 Hall H.Matsuura, K.ishikawa, K.Morita, M.Segawa, and W.Susaki: etermination of densities and energy levels of impurities and traps in semiconductor by a new method based on Hall-effect measurements, Extended abstracts of the 0th electronic materials symposium (EMS0). pp (F5). Jun.00 H. Matsuura, K. Morita, K. ishikawa, T. Mizukoshi, M. Sagawa and W. Susaki : cceptor ensities and cceptor Levels in Undoped GaSb etermined by Free Carrier Concentration Spectroscopy, Jpn. J. ppl. Phys. to be published at February, 00.

3 Hall 4 M00

4 000 4 Hall Hall GaSbInGaSblGaSb4H-SiC Hall FCCSFree Carrier Concentration Spectroscopy GaSbInGaSblGaSb4H-SiC Hall FCCS 3 Molecular Beam EpitaxyMBE InGaSblGaSb X-Ray iffraction XR FCCS 4 GaSbInGaSblGaSb4H-SiC Hall Hall FCCS Hall 5 4H-SiC 6 GaSb InGaSb l 4H-SiC l 4H-SiC Te lgasb FCCS 4H-SiC M00

5 (). ().GaSb ()..Undoped GaSb..InGaSblGaSb.34H-SiC () () (3).4 (6) Free Carrier Concentration SpectroscopyFCCS (7). S ( T, Eref ) (7). H T, E () ( ref ) E ref.3 (5) X-Ray iffractionxr (6) 3.Bragg (6) 3.Vegard (7) 3.3 (7) 3.4Undoped InGaSbTe doped lgasb (0) Hall (3) 4.van der Pauw (5) 4. Hall (3) 4.3 (36) 4.3. (36) 4.3. (37) 4.4 (39) 4.5ifferential Hall Effect Spectroscopy(HES) (4) 4.6FCCS (44) (48) 5. (48) 5.4H-SiC (49)

6 (5) 6.undoped GaSb (5) 6.. ouble cceptor Model ( 6.. cceptor cceptor (55) 6..3 cceptor cceptor4 cceptor5 6.undopedInGaSb (57) 6.. In,Ga Undoped In0.6Ga0.84Sb, In0.8Ga0.8Sb (6) 6.. Sb/(In+Ga), 3, 5 Undoped In0.Ga0.8Sb (6) 6.34H-SiC (6) 6.3.l implanted 4H-SiC (6) 6.3. l doped 4H-SiC Wafer (68) 6.4Te doped lgasb (7) 7 (76)

7 . CPUCentral Processing Unit RM(ynamic Random ccess Memory) LSILarge Scale Integrated Circuit Si ppm Parts Per Million 00 - GasGaSbGa - SiC p n pn Hall Hall Hall Hall FCCSFree Carrier Concentration Spectroscopy GaSb 6H-SiC4H-SiC FCCS Hall

8 .GaSb pn λ E λ =.4 / E [µm] g g 5 µm COCH4 InP µm GaSb, Ins, InSb, lsb.65 µm ) GaSb GaSb p n..undoped GaSb Undoped GaSb MBEMolecular Beam Epitaxy: p ) GaSb pn Undoped GaSb Undoped GaSb Beam Equivalent Pressure, BEP..InGaSb, lgasb GaSb, InSb, lsb InGaSb, lgasb GaSb.9 m TypeIn0.Ga0.8Sb/l0.4Ga0.6Sb/GaSb Undoped In0.Ga0.8Sb lgasb n Te MBE lgasb Te Kundsen cellk- GaTe3 BEP Te Te lgasb Te Te

9 . 4H-SiC O CC CC Si MOSFETMetal Oxide Semiconductor Field Effect Transistor IGBT Insulated Gate Bipolar Transistor Si SiC(Silicon Carbide) Si. ev 00 SiC 300 Si 00 Si kv 300 Si SiC SiC SiC (C) (Si) B C C B SiC 3

10 B C C B 00 SiC 4H-SiC 4H-SiC SiC 4H-SiC 3.3 ev H-SiC 6H-SiC 4H-SiC 4H Ramsdell C [000] BCB 4 hexagonal xis [000] 4 Layers B C B C Si toms C toms Hexagonal Site Cubic Site 4H-SiC 4

11 SiC SiC pn SiC Lely SiC SiC CVChemical Vapor eposition SiC SiC T E = a 0 exp kt T Si SiC lsic Si Si Si SiC Si SiC 800 m Si SiC l SiC High Temperature cm s - Low iffusion Coefficient Si Low Temperature cm s - High iffusion Coefficient 5

12 .4 Hall p T p T ln ( p ( T )) / T p T FCCSFree Carrier Concentration Spectroscopy Gas MBE GaSb Gas MBE InGaSb n 4H-SiC l 4H-SiC l 4H-SiC Gas MBE Te lgasb 6

13 Free Carrier Concentration SpectroscopyFCCS S (, E ). T ref Hall p T n n T S ( T E ) ( T ) 3)-9) p Eref, ref exp (.) kt kt k :Boltzmann T :: E ref p T p ( T ) = f ( E ) m + i= ( T ) + n n i= k i= l i= i TEi i THi f i ( E ) TEi [ f ( E )] (.) i [ f ( E )] i n i m i k TE i l TH i E i E i E TEi E THi E n ( T ) f ( E Fremi-irac f ( E) = ) (.3) E EF + exp g kt 7

14 Fermi-irac ( E f ) + = kt E E g E f F exp (.4) g 4 (.) Fermi-irac.3.4 (.) E F g g g T, E ref S = = = = = = kt E kt T n kt E kt E F kt E E kt E F kt E E kt E F kt E E kt E F kt E E kt E T S n i i m i i i i l i i i k i i i m i i i n i ref ref TH TH ref TH TH ref TE ref TE TE ref ref exp exp exp exp exp exp, (.5) + = kt E E g kt E E F F F exp exp (.6) + = kt E E g kt E g E F F F exp exp (.7) kt E E kt i i ref exp (.8) 8

15 (.8)T T peak E i E = ref (.9) k S ( T, E ) peak ref ( ) iexp = (.0) kt peak p (.5) S T, E ref S T, E ref 6 n(t ) S j i i ref ( T, E ) = exp F( E ) ref i= kt E E kt m n Eref i + THi exp (.) i= i= kt kt j = k + l + m + n ( S T, E ref ) =05 cm -3 =0. ev =04 cm -3 p T ( ref E ) ). p(t S T, E. peak E S( T, E ref ). S ( T, E ref ) S T, E ) peak E ( ref =05 cm -3 E =0. ev =04 cm -3 i Hole Concentration [ 0 4 cm -3 ] p type Si = 0 5 cm E = 0. ev = 0 4 cm Temperature [K]. p T E F E F -E V [ev] 9

16 S(T,0)[ 0 6 cm -3 ev - ] peak Temperature [K] T, E ref ( =05 cm -3 E =0. ev =04 cm -3 ) Hole Concentration [ cm -3 ]. S p type Si = cm -3 E = 0.64 ev 0. = cm Temperature [K].3 p T E F E F -E V [ev] S(T,0)[ 0 0 cm -3 ev - ].3.. peak Temperature [K].4 S( T, E ref ) ( =6.608 cm -3 E =0.64 ev =.400 cm -3 ) 0

17 = cm -3 E =0.64 ev =.400 cm -3 ( p T ).3 p ( T ) S( T, E ref ).4 peak E S( T, E ref ).4 00 K peak E =6.708 cm -3 E =0.64 ev =9.309 cm -3

18 H (, Eref ). T S T, E ) H ( ref ( kt ) T, E ref p( T ) Eref H ( T, Eref ) exp (.).5 kt.5 πm V = h p h ( T ) = k T k T F ( T ) = ( T ) V0 (.3) E V exp (.4) kt p (.)T (.3) p T (.4) n E E H ref i= kt kt m TEi ETEi Eref + exp I i= kt kt k E E i i ref + exp I i= kt kt l THi ETHi Eref + exp I i= kt kt i i ref ( T, E ) exp I ( E ) m n i + i= i= n( T ) V0 E + exp kt THi ref V0 E exp kt EF kt i ( E ) ( E ) i ( E ) ref E kt TEi THi F (.5) I ( E) = g V0 EF E + exp kt (.6) I ( E) = g V0 E E + exp F kt (.7) m h h Plank p (.5) n( T ) (.5) S( T, E ref )

19 i Ei Eref exp (.8) kt kt (.8)T T peak H E i E = ref (.9) k ( T, E ) peak ref H T, E ref H ( ) iexp = (.0) kt j peak i i ref ( T, E ) = exp I( E ) ref i= kt m n V0 E THi + i exp i= i= kt j = k + l + m + n ( I ) E E kt i ref E E i ( T, Eref H T, E ref H ) j kt F (.) (.6) (.7) T T peak i E i H T peak i, E ref i ( ref S T, E ) =05 cm -3 E =0. ev =04 cm -3.3 ( p T ) H ( T, E ref ).5 peak E =05 cm -3 E =0. ev =04 cm -3 H ( T, Eref ) S( T, E ref ) H ( T, E ref ) H T, E ) ( ref H(T,0.6)[ 0 40 cm -6 ev -.5 ] 3 0 peak Temperature [K].5 H ( T, E ref ) ( =05 cm -3 E =0. ev =04 cm -3 ) 3

20 = cm -3 E =0.64 ev =.400 cm -3 H(T,0.6)[ 0 40 cm -6 ev -.5 ] peak Temperature [K].6 H ( T, E ref ) ( =6.608 cm -3 E =0.64 ev =.400 cm -3 ) ( ref S T, E ) >> S( T, E ref ) H ( T, Eref ) H ( T, E ref ) 4

21 .3 E ref Hall ( p T ) H T, E ) H (T,0) E ref ( ref.00 7 cm -3 E 0. ev.7 H (T,0) E ref =0 ev =0.06 ev 5 K.007 cm -3 E 0. ev.7 H (T,0) E =0 E ref ev =-0.03 ev 5 K E ref E ref ref H(T,E ref ) [ 0 38 cm -6 ev -.5 ] 3 0 p type = 0 7 cm -3 E = 0. ev E ref =0.06 peak E ref = Temperature T [K].7 E =0 E =0.06 ref ref H(T,E ref ) [ 0 38 cm -6 ev -.5 ] peak E ref =0 p type = 0 7 cm -3 E = 0.03 ev E ref = Temperature T [K].8 E =0 E =-0.03 ref ref 5

22 3 X-Ray iffractionxr X-Ray iffrationxr X 3.Bragg 3.. Bragg d sinθ = nλ (3..) λ d n X X X Cu ) θ X sin 3..Bragg 6

23 3. Vegard 3 3 L.Vegard XR Vegard - Vegard a lxga-xsb lsb GaSb Vegard 4) a = 6.36x ( x) (3..) InxGa-xSb InSb GaSb a = 6.478x ( x) (3..) Vegard 3.3 Vegard E k Γ, Χ, L g InGaSb GaSb 0.7 evinsb 0.8 ev 0.4 g ( x) = 0.7( x) + 0.8x + 0.4x( x ) E (3.3.) InxGa-xSb Γ, Χ, L 3.. Γ, Χ, E g lsb GaSb lxga-xsb lxga-xsb L Γ, Χ, L 3.. x = 0.48 Χ L x 0.48 X x 0.48 E g ( x).05( x). x X E = 6 (3.3.) g + 7

24 InxGa-xSb lxga-xsb Γ, Χ, 3.. In0.6Ga0.84SbIn0.8Ga0.8SbIn0.Ga0.8Sbl0.6Ga0.4Sb E g 3.3. L In x Ga -x Sb Energy Gap, E g [ev].5 X L 0.5 Γ GaSb InSb Mole Fraction InSb, x 3.3.InxGa-xSb Energy Gap, E g [ev].5 l x Ga -x Sb Γ L X GaSb lsb Mole Fraction lsb, x 3.3.lxGa-xSb 8

25 3.3. InxGa-xSb lxga-xsb Γ, Χ, L Γ E g X E g L E g Band Gap [ev] InxGa-xSb lxga-xsb InSb or lsb GaSb BowingParameter InSb or lsb.63.6 GaSb BowingParameter InSb or lsb GaSb BowingParameter InGaSb, lgasb E g In0.6Ga0.84Sb In0.8Ga0.8Sb In0.Ga0.8Sb l0.6ga0.4sb E [ev] g (004) a 3.4. a 9

26 3.4Undoped InGaSbTe doped lgasb MBE Undoped InGaSb Te doped lgasb XR XR Rigaku Rint Ultima + (00) Gas MBE In,Ga Undoped InGaSb µm XR Undoped InGaSb (00) InGaSb (3..) In0.6Ga0.84SbIn0.8Ga0.8Sb X-ray Intensity [a.u.] deg deg. In x Ga -x Sb (004) : In 0.6 Ga 0.84 Sb : In 0.8 Ga 0.8 Sb Gas (004) ngle θ [deg.] 3.4. Undoped InGaSb XR 3.4. Undoped InGaSb BEP Ratio Sb/(In+Ga) = 3 In0.6Ga0.84Sb In0.8Ga0.8Sb BEP [Torr] In Ga Sb

27 (00) Gas MBE Sb (In+Ga) BEP, 3, 5 Undoped InGaSb µm XR Undoped InGaSb (004) 59.8 InGaSb 6.9 (3..) In Ga0.8Sb deg. In 0. Ga 0.8 Sb (004) In 0. Ga 0.8 Sb :Sb/(In+Ga)= :Sb/(In+Ga)=3 :Sb/(In+Ga)=5 X-ray Intensity [a.u.] 0.5 Gas (004) ngle θ [deg.] Undoped InGaSb XR 3.4. Undoped InGaSb Undoped In0.Ga0.8Sb 3 5 Evaporative Temperature [] In Ga Sb Substrate Temperature [] InGaSb or lgasb m Semi-Insulating Gas (00) 3.4.4

28 Te doped lgasb (00) Gas MBE (00) Gas MBE Te Te doped lgasb Undoped lgasb µm XR lgasb (004) 60.5 lgasb 6. Te Te doped lgasb Undoped lgasb (3..) l 0.6Ga0.4Sb deg. l x Ga -x Sb (004) X-ray Intensity [a.u.] ngle θ [deg.] Gas (004) Te doped lgasb XR lgasb l0.6ga0.4sb Te dope Undope Te evaporative Temperature [] Evaporative Temperature [] Ga l Sb Substrate Temperature []

29 4 Hall Hall 879 E.H.Hall 4. p 4. p n Lorentz F q v B ( ) F = q B = qvb F B B v (4.) Lorentz Lorentz FE FE qe = V q d H = (4.) F = (4.),(4.) Hall V B F E V H = vbd (4.3) I I = qpvad (4.4) p (4.3)(4.4) V IB IB = vbd = RH (4.5) qpd d H = Hall R H = n R nq R H H R H + = p (4.6) pq (4.6) Hall n p H VH I FB a d FE B 4.Hall 3

30 (4.5) p n n B p = = (4.7) VH RHq qd I T p ( p T ), n ( n T ) Hall µ (4.7) VH d I R = = = (4.8) qpρ B ρ ρ µ H ρ T Hall µ T Hall van der Pauw van der Pauw 4

31 4.van der Pauw van der Pauw Hall 4.. van der Pauw 4 van der Pauw van der Pauw 4 ρ ) π R R R, , 4, 34 ρ = F, 43 d (4..) ln R 3, 4 ρ,43 R,43, 3, 4ρ R d F R R 3, 4 R 3,4, R 34, ρ34, R34,, R4, 3 ρ 4, 3 R4, 3, R, 43,34 3,4 van der Pauw 4..Hall 5

32 ρ, 34, ρ 3, 4 R,43, R 3, 4 πr exp ρ,34,43 d πr + exp ρ 3,4,43 d = (4..) πr,34d x + y =, ρ,43 πr x y = ρ 3,4,43 d πd x = + ) ρ ( R,43 R3, 4,43 d ( R,43 R3, 4,43 π y = ) ρ (4..3)(4..4) (4..) (4..3) (4..4) πr exp ρ = exp = cosh,34,43 ( ( x + y) ) + exp( ( x y) ) ( x y) πd = cosh ρ d πr + exp ρ.43 ( R + R ),34 ( y) exp x cosh x y = cosh 3,4,43 3,4 d (4..5) πd cosh ρ ( R ) = ( +,34 R3,4 exp R,34 R3, 4 ρ,43,43 πd ) (4..6) R R,34,34 R > R + R,34 R3,4 3,4 3,4 = R F R ln,34 3,4 ln exp R F R arccosh,34 3,4 (4..7) 6

33 R,34 (4..) ρ (4..7) F R3,4 4.. van der Pauw ρ 4.. (Source+)-(Source-) (Measure +)-(Measure-) R R V = (4..8) I V I R,43 R3, 4 R34, R 4, 3,,, R R,43 34, V = I V = I (43) () () (34) V I V I (43) () () (34) R R 3,4 4,3 V = I V = I R 4.. (4) (3) (3) (4) V I V I (4) (3) (3) (4) (4..9) 7

34 / 43 (Source -) 3 (Measure -) (Source +) 3 (Measure -) I (Source +) 4 (Measure +) (Source -) V I V 4 (Measure +) 3 / 4 I I (Source +) 3 (Source -) (Source -) 3 (Source +) (Measure+) V 4 (Measure -) (Measure+) V 4 (Measure -) 34 / (Measure+) 3 (Source +) (Measure +) 3 (Source -) V I V I (Measure -) 4 (Source -) (Measure -) 4 (Source +) 4 / 3 V V (Measure-) 3 (Measure+) (Measure-) 3 (Measure +) (Source -) 4 (Source +) (Source +) 4 (Source -) I I 4..ρ 8

35 4..3 n Hall µ H 4..3 (4.7) n B n = (4..0) R + 3,4 R4,3 qd (4.8) Hall µ H d R3,4 + R4,3 µ H = (4..) B ρ d B ρ R 3,4 R 4,3 R R 3,4 4,3 V = I V = I (4) (3) (3) (4) V I V I (4) (3) (3) (4) (4..) 4..3 V V (Measure+)-(Measure-) I I 9

36 3 / 4 (Measure +) 3 (Source -) I (Measure +) 3 (Source +) (Source +) 4 (Measure -) (Source -) I 4 (Measure -) 4 / 3 (Source +) 3 (Measure+) (Source -) 3 (Measure +) I (Measure -) 4 (Source -) (Measure -) I 4 (Source +) 3 / 4 (Measure+) 3 (Source -) (Measure +) 3 (Source +) I (Source +) I 4 (Measure -) (Source -) 4 (Measure -) 4 / 3 (Source +) 3 (Measure+) (Source -) I 3 (Measure +) I (Measure -) 4 (Source -) (Measure -) 4 (Source +) 4..3 n Hall µ H 30

37 4. Hall MMR Hall 0 m 50 µ.0 V 0. µv 00 k 00 k lgasb SiC 00 k MMR Hall Power Unit Suppling for Magnetic Coil V V Serial Comunication Magnet Field Controller and Voltage Source Meter H50 K0 Sample Magnetic Coil Suppling for Magnetic Field Measuring Instrument Controlled Computer Temperature Controller 4.. MMR Hall 4..MMR Hall Voltage Controlling and Measure Range Current Measure Range Temperature Controlling and Measure Range Magnetic Field Controlling Range 3 Measuring Range µv V µ m K K T

38 5 kgf/cm Joule-Thomson Pt MMR K-0 Hall MMR H-50 Voltage and Currnet Source Measure Unit 87S SMU38 MU Power Unit Suppling for Magnetic Coil GP-IB Comunication V V Voltage Measure Meter H50 K0 Cable Connecting Box Sample Measuring Instrument Controlled Computer V Switching System Current Measure Meter Magnet Field Controller Temperature Controller Magnetic Coil Suppling for Magnetic Field 4.. Hall 3

39 Keithley egital Multi Meter Keithley SMU 38 HI LO V SwitchingCircuit Keithley egital Multi Meter Keithley Scanner 700 Switching System HI HI LO LO HI LO HI LO 4..3 Hall Sample 33

40 Hall Windows 00 k Hall Windows Hall van der Pauw Keithley Scanner 700 Switching System Keithley Scanner 700 Switching System Keithley 70 Matrix Card 0 V 0.5µV 0.µV Keithley egital Multi Meter 000 n Keithley egital Multi Meter 00 GP-IB Windows Windows Hall Measuring Instrument ame Using Function Control and Measure Range MMR H-50 Magnet Field Controller.4 T MMR K-0 Temperature Controller 80 K 730 K Keithley egital Multi Meter 000 Voltage Measure Meter 0.µV 000 V Keithley egital Multi Meter 00 Current Measure Meter 0 p 3 Keithley SMU 38 Voltage and Current Source 0µV 000 V p Keithley Scanner 700 Switching System Hall Measuring Range Voltage Controlling and Measure Range µv 0 V Current Controlling and Measure Range n Temperature Controlling and Measure Range 80 K 730 K Magnetic Field Controlling Range.4 T Resistance Measuring Range µ Ω G Ω 34

41 Hall 00 k Undoped l0.6ga0.4sb K 0.47 GΩ GΩ Hall 0.47 GΩ 4..4 Windows Hall Undoped l 0.6 Ga 0.4 Sb Resistance [Ω] Over 00kΩ ew System can be measured in measure range 00 kω to GΩ Temperature [K] 4..5 Undoped l0.6ga0.4sb 35

42 4.3 van der Pauw Hall 4.. lgasb SiC Hall l p type 4H-SiC Wafer 400 m 4.3. CREE 4H-SiC Wafer5 mm0 mm l u Ti/l l mm mm Keithley SMU min. 3. 0min. 4. 5min. 5. 5min. 6. HF(50%)0min. 7. HF 8. 0min. 9. 5min. 0.. lu m Ti/l Ti0.m l(0.9 m). Sample Electrode

43 4.3. p-type 4H-SiC Wafer u, l ( 900), l( 700) Ti/l 4H-SiC Wafer R.T H-SiC Wafer Ti/l l 900G l SiC l 700 l 5 k u 0k G Contact u l l Ti/l nealing Temperature, Time 400, min. 900, min. 700, min. 900, min. p type 4H-SiC Wafer Temperature R.T. Current [m] 0 - :Ti/l Contact :l Contact(700 nealed) - :l Contact(900 nealed) :u Contact(400 nealed) Voltage [V]

44 3K l( 700) Ti/l 4H-SiC Wafer H-SiC Wafer Ti/l Ti/l l( 700) Hall Hall l Hall K l 0. mv Ti/l 0 l Ti/l V Hall 0. mv Hall l p type 4H-SiC Hall Ti/l 0.5 p type 4H-SiC Wafer Temperature 3 K Current [m] : Ti/l Contact : l Contact(700 nealed) Voltage [V] K 4H-SiC Wafer 3 K Voltage [mv] l (700 nealed) Ti/l K 38

45 4.4 van der Pauw * x E m * d x m = qe (4.4.) dt (4.3.) t x qe m = t * (4.4.) qe t dt qe t exp = τ (4.4.3) 0 * * m τ τ m τ v E d qτ = E (4.4.4) m v d * µ v d = µe (4.4.5) µ qτ µ = (4.4.6) * m µ i µ = µ µ i (4.4.7) 3) -.5 ( T ) 4 8π qh C.5 =.5.5 dsm ( kt ) µ l = T (4.4.8) 3E C E ds µ T 3).5 i v d 39

46 .5 ( kt ). 5 π ε µ BT (4.4.9) 64 s i T = 3 *.5 I q m I µ ( T ) (4.4.7) µ ( T ) = + = (4.4.0) µ l T µ i T T BT dµ T dt ( T ) dµ dt.5 = BT BT.5.5.5T + T dµ T = 0 T Max = dt 3 B. 5 ( T ) Max Max (4.3.) = µ T (4.3.) µ l ( T ) µ ( T ) ( µ T ) ( µ T ) i CREE l p type 4H-SiC Wafer 4.4. Hall µ T I µ T (4.4.) = 3393 µ T i ( T) µ -T.5 µ i ( T ) = (4.3.3).5 µ ( T ) T 4.4. ( µ T) T. 5 = B 0.00, B i µ i ( T ) =.5.5 (4.3.4) 3393T 0.00T i i I 40

47 4.4. µ T (4.4.9) B = = cm -3 I = 0.00 I i 0 4H-SiC Wafer Hall Mobility [cm V - sec - ] : Experimental data µ(t) : Simulated Result µ S (T) Temperature [K] 4.4. µ T 80 Hall Mobility [cm / V sec] : Experimental data µ(t.5 ) : Simulated Result µ S (T.5 )=0.00T T.5 [K.5 ] µ T T i 4

48 4.5ifferential Hall Effect Spectroscopy(HES) Hall ( p T ) p( T ) ln p T / ( ) T Hoffmann HESifferential Hall Effect Spectroscopy F ( T ) f ( E ) 4) HES kt dp T / d E E dp E EF dkt kt = + (4.5.) de E F F kt def kt ( E ) f EF kt = g + g E exp E exp E kt F E kt F (4.5.) E EF / kt dkt / def << E EF g exp dp( T ) kt kt (4.5.3) def E EF + g exp kt F kt dp T / d E EF E i i 4( kt dp( T )/ d E F ) peak E Ei + F kt peak 4 ( T ) F ln g E g p kt dp T / d E T j+ T j i kt dp ( T )/ d EF dp T kt ( j+, T j ) T j+ + T j p( T j+ ) p( T j ) = k de E ( T ) E ( T ) F F j+ F j (4.5.4) E F 4

49 E ( T T ) F j+ ( T j+ ) ( T ) j kt j+ V kt j V, = + j ln ln (4.5.5) q p T j+ q p T j 4.5. Undoped GaSb Sb/Ga 0 HES spline spline E60 mev.06 cm -3 (4.5.3) 4.5. HES HES kt dp(t)/d E F [ 0 6 cm -3 ] 0 undoped GaSb Flux ratio of Sb/Ga = 0 : Calculation using raw experimental p(t) : Calculation using spline function of p(t) : Simulated result using E, E = 60 mev =. 0 6 cm -3 peak E F [mev] 4.5. HES 43

50 4.6FCCS Undoped GaSb Sb/Ga 0 FCCS 8),9) spline ( p T ) (.) H T, E ref ) Sb/Ga 0 H ( T, 0. 0) K peak 00 K 300K shoulder K 00 K peak 4.6. peak85 K H T peak, cm -6 ev -.5 T H(T,-0.0) [ 0 36 cm -6 ev -.5 ] H(T,-0.0) [ 0 36 cm -6 ev -.5 ] peak undoped GaSb Sb/Ga = 0 shoulder shoulder Temperature [K] 4.6. H ( T, 0.0) peak Experimental data : H(T,-0.0) : Simulated result E = 9 mev = cm -3 : Simulated result E = mev = cm -3 = cm -3 undoped GaSb Sb/Ga = Temperature [K] 4.6. H( T, 0.0) 44

51 (.5) E H T, Eref E Eref H( T, Eref ) = exp I ( E ) (4.6.) kt kt (4.6.) E 9 mev.30 6 cm -3 H ( T, 0. 0) E H( T, Eref ) E Eref V0 Eref EF H T, Eref = exp I ( E) + exp (4.6.) kt kt kt kt (4.6.) peak H T, E mev cm cm -3 = 80 K 4.6. peak E E H ref ref kt kt kt ref V0 ref F T, E H T, E exp I ( E ) exp E E (4.6.3) H ( T,0. 06) 00 K peak 5 T peak H ( T peak, 0.06 ) cm -6 ev -.5 E.406 cm -3 kt 03 K 66 mev H(T,0.06) [ 0 36 cm -6 ev -.5 ] peak Temperature [K] : Experimental data : Simulated result H ( T,0.06) 45

52 peak E H T,0.06 (4.6.4) E H ( T,0.06) = exp I( E ) (4.6.4) kt kt (4.6.4) H ( T,0. 06) peak E Eref H 3( T, Eref ) H ( T, Eref ) exp I ( E ) (4.6.5) kt kt H3 ( T,0. ) 300 K T peak3 309 K H3 T peak3, cm -6 ev -.5 E 3 6 mev cm -3 peak3 E 3 3 H3 T,0. (4.6.6) 3 E3 0. H3( T,0.) = exp I( E3 ) (4.6.6) kt kt (4.6.6) H3( T,0. ) ( p T ) p n i= ( T ) = f ( E ) i i + (4.6.7) H3(T,0.) [ 0 37 cm -6 ev -.5 ] peak3 : Experimental data : Simulated result Temperature [K] H3( T,0.) 46

53 4.6.5 FCCS 350 K Hole Concentration [ 0 6 cm -3 ] 4 3 undoped GaSb Sb/Ga = 0 : Experimental data : Simulated result Temperature [K] E = mev = cm -3 E = 66 mev = cm -3 E 3 = 6 mev 3 = cm -3 = cm

54 5 CV Hall Hall 5. ( ρ x) Poisson p p x Poisson d V dx ( x) ρ( x) = (5..) ε ε 0 s V x x ε ε 0 ρ x + ( x) q( ) = ρ (5..) d 0 ( x) x = 0 V x = (5..3) dv x = d = 0, V ( x) = Vd -V (5..4) dx V V d (5..)(5..4) (5..) V ( x) q = q = + + ( ) q( ) x + ( ) ( x d ) + ( V V ) 0 ε ε 0 ε ε s s + ε ε (5..3)(5..5) d 0 d s dx + ( V V ) d q + s + ( ) ε ε 0 s d (5..5) d ε ε = + q 0 s ( V V ) d (5..6) 48

55 d Q Q = q + + ( ) d = q( ) ε 0 ε ( V V ) s d (5..7) C C = dq dv q = + ( ) ε ( V V ) 0ε s d / (5..8) (5..8) C C q = + ( ) ε 0ε s ( V V ) d = V + V (5..9) q + + d ( ) ε q( ) ε ε ε 0 s 0 S C + + d ( ) ε qs( ) ε ε ε 0 s 0 s = V + V (5..0) qs C V + V d s 5.4H-SiC CREE l 4H-SiC Wafer( 0 mm0 mm400m) 5.. Ti/l 0.5 mm 0.96 mm u l Horiba -500 CVmeter 4.3. Sample Schottky Electrode l Coating GlassPlate

56 5.. l /C V 5..3 /C V cm -3 V d = 6.8 V 4H-SiC 0 Capacitance [pf] H-SiC Wafer 93 K l Electrode Voltage [V] /C [ 0-6 pf - ] : - = cm -3 V dif = 6.8 V 4H-SiC Wafer 93 K l Electrode Voltage [V] 5..3/C V 50

57 u 5..4 /C V 5..5 /C V cm -3 V d = 5.5 V Capacitance [pf] H-SiC Wafer 93 K u Electrode Voltage [V] 5..4 /C [ 0-6 pf - ] : - = cm -3 V dif = 5.5 V 4H-SiC Wafer 93 K u Electrode Voltage [V] 5..3/C V 5

58 6 6.Undoped GaSb (00) Gas MBE Sb Ga Sb/Ga 6 80 Undoped GaSb µm 470 Ga Torr Sb Sb/Ga Torr.70-6 Torr Torr 5000 /hour 77 mm Undoped InGaSb In van der Pauw Hall p T Hall 0. m.4 T 8340 K p(t ) v ( T ) ln p T 6.. ( T ) Sb/Ga Undoped GaSb p T spline p T 6.. spline EF = kt (6..) E F 3 3 πm k v h 4-3 ( T ) = T = T cm h 0.3 mh 3 v 7) E F (6..) Sb/Ga mev mev0 887 mev Hole Concentration [ 0 6 cm -3 ] undoped GaSb : Sb/Ga = 6 : Sb/Ga = 8 : Sb/Ga = 0 : Spline function of p(t) Temperature [K] 6.. 5

59 4.6 Sb/Ga 0 Sb/Ga Undoped GaSb 9 mev 9 mev K cceptor 940 mev cceptor 6694 mev cceptor3 436 mev cceptor4 78 mev cceptor5 Sb/Ga 6 cceptor4 Sb/Ga 8 cceptorcceptor4 Sb/Ga 0 cceptor4 cceptor Sb/Ga Sb/Ga Sb/Ga 680 FCCS Fermi Level [mev] undoped GaSb : Sb/Ga = 6 : Sb/Ga = 8 : Sb/Ga = Temperature [K]

60 6..FCCS undoped GaSb Flux ratio of Sb/Ga Wafer cceptor [cm -3 ] cceptor cceptor 3 cceptor 4 cceptor 5 [mev] [cm [cm -3 [mev] [cm -3 [mev] -3 [mev] [cm -3 ] ] ] ] Hole Concentration [ 0 6 cm -3 ] undoped GaSb Experimental data : Sb/Ga = 6 : Sb/Ga = 8 : Sb/Ga = 0 Temperature [K] : Simulated result

61 6.. ouble cceptor Model PLPhoto LuminescenceHall Undoped GaSb 8) Hall GaSb Sb Ga Ga (ouble cceptor Model) ( p T ) ouble cceptor Model Undoped GaSb Sb Sb Sb GaGaSb Sb vacancy VSb 040 mev 6000 mev 8) FCCS ouble cceptor cceptor cceptor3 Sb/Ga 60 cceptor cceptor3 ouble cceptor 6.. cceptor cceptor 6.. cceptor cceptor Sb/Ga Eltoukhy 40 mev Sb/Ga 40 mev GaSb Sb vacancy VSb 9) mev 40 mev 80 mev cceptor Sb/Ga 8 Sb/Ga VSb cceptor cceptor Sb/Ga 8 Undoped GaSb Sb/Ga cceptor3 Eltoukhy 80 mev Sb/Ga Undoped GaSb Gas 9) Undoped GaSb Wafer 9 mev 9 mev 9 mev cceptor3 Sb/Ga Wafer Undoped GaSb Gas 55

62 6..4 cceptor4 cceptor5 Sb/Ga 6 78 mev Sb/Ga mev Xu undoped GaSb Ga vacancy Ga vacancyvga - 7 mev3 Ga vacancyvga 3-9 mev 0) VGa - cceptor mev VGa 3- cceptor5 59 mev VGa - VGa 3- Ga vacancy 56

63 6.Undoped InGaSb (00) Gas MBE In,Ga Undoped In0.6Ga0.84Sb, In0.8Ga0.8Sb (Sb) (In+Ga)BEP, 3, 5 Undoped In0.Ga0.8Sb m mm Undoped InGaSb In van der Pauw Hall ( p T ) Hall 0. m.4 T 8540 K mh 3. (3.3.)Vegard In In0.Ga0.8Sb ( T ) In0.6Ga0.84Sb In0.8Ga0.8Sb p 0.6Ga0.84Sb, In0.8Ga0.8Sb K ( ) T ln p T / E 0.6 ev 3.3. In g 0.6Ga0.84Sb In0.8Ga0.8Sb E g 0.57 ev 0.56 ev 350K 350K Undoped In0.8Ga0.8Sb Hole Concentration [cm -3 ] 0 7 Undoped InGaSb : In 0.6 Ga 0.84 Sb : In 0.8 Ga 0.8 Sb Temperature [K] 6.. In0.6Ga0.84Sb, In0.8Ga0.8Sb p T 57

64 p Spline T (.) H T, E ref In0.8Ga0.8Sb H ( T,0. 09) K peak 70 K peak peak K H T peak, cm -6 ev -.5 E T H T, Eref E Eref V0 Eref EF H( T, Eref ) = exp I( E ) + exp (6..) kt kt kt kt (6..) peak H T, E 87 mev cm cm -3 peak E Eref H ( T, Eref ) H ( T, Eref ) exp I( E ) (6..) kt kt 6..3 H ( T, 0) 50 K peak peak 6..3 T 5 K H ( 0) T peak, cm -6 ev -.5 E peak 87 mev H T, E ref E Eref V0 Eref EF H ( T, Eref ) = exp I( E ) + exp (6..3) kt kt kt kt H(T,0.009) [ 0 37 cm -6 ev -.5 ] undoped In 0.8 Ga 0.8 Sb Peak Experimental data :H(T,0.009) :Simulated result E = 87 mev = cm -3 = cm Temperature [K] 6.. H( T,0.09) 58

65 (6..3) peak H T, E 45 mev.806 cm cm FCCS (Sb) (In+Ga)BEP, 3, 5 Undoped In0.Ga0.8Sb H(T,0) [ 0 37 cm -6 ev -.5 ] Peak Experimental data :H(T,0) :Simulated result E = 45 mev = cm -3 =. 0 6 cm -3 undoped In 0.8 Ga 0.8 Sb Temperature [K] 6..3 H ( T,0) Undoped InGaSb Hole Concentration [cm -3 ] Experimental data :In 0.6 Ga 0.84 Sb :In 0.8 Ga 0.8 Sb Temperature [K] :Simulated results

66 6.. Undoped In0.6Ga0.84Sb, In0.8Ga0.8Sb In0.6Ga0.84Sb In0.8Ga0.8Sb cceptor -3 [cm ] cceptor E [mev] [cm ] cceptor 3 E [mev] [cm ] Hole Concentration [cm -3 ] In 0. Ga 0.8 Sb :Sb/(In+Ga)= :Sb/(In+Ga)=3 :Sb/(In+Ga)=5 :Simulated results /T [K - ] (Sb) (In+Ga)BEP, 3, 5 Undoped In0.Ga0.8Sb In0.Ga0.8Sb Sb/(In+Ga) BEP Ratio 3 5 cceptor -3 [cm ] cceptor E [mev] [cm ] cceptor 3 E [mev] [cm ]

67 K cceptor 4046 mev cceptor 8700 mev cceptor3 6.. In,Ga Undoped In0.6Ga0.84Sb, In0.8Ga0.8Sb 6.. Ga cceptor 3 Undoped In0.6Ga0.84Sb cceptor In cceptor cceptor In cceptor 3 Ga 6.. Sb/(In+Ga), 3, 5 Undoped In0.Ga0.8Sb 6.. Sb/(In+Ga) cceptor Sb/(In+Ga) cceptor 3 InGaSb Sb Sb Sb VacancyVSb cceptor In cceptor 3 Ga Ga Sb Vacancy In Sb Vacancy XR Sb/(In+Ga) X Sb Vacancy X Sb Vacancy InSb GaSb In Sb Ga Sb Ga Sb In Sb Vacancy Sb/(In+Ga) In Sb Vacancy Sb Vacancy cceptor 4045 mev In Sb Vacancy 8700 mev Ga Sb Vacancy 6

68 6.34H-SiC 6.3.l implanted 4H-SiC n-4h-sic n doped 4H-SiC 5 m,.50 5 cm -3 n 4H-SiC 0.97 MeV 7 l 30 4 cm -3 SIMS(Secondary Ion Mass Spectrometry) n 4H-SiC l m cm -3 l ) SiC r SIMS.0 m l.3 m RIE (Reactive Ion Etching) p 4H-SiC m p 4H-SiC Ti/l van der Pauw Hall ( p T ) Hall.4 T 0040 K p T l implanted 4H-SiC 443 Spline p ( T ) (.) H ( T, E ref ) H ( T,0.35) K peak 380 K peak T peak 386 K H ( T,0. 35) cm -6 ev -.5 l Concentration [cm -3 ] Eched layer p-type layer formed by l implantation epth from Surface [µm] 6.3..SIMS n 4H-SiC l 6

69 0 8 l Implanted 4H-SiC at R.T. Hole Concentraton [cm -3 ] 0 7 Experimental data nealing Temperature : 443 : Temperature [K] p T H(T,0.35) [ 0 4 cm -6 ev -.5 ] 3 l Implanted 4H-SiC at R.T. nealing Temperature 443 peak Experimental data Simulation results : f( E ) E = 89 mev = cm -3 = cm -3 : f F ( E ) E = 67 mev = cm -3 = cm Temperature [K] H( T,0.35) 63

70 E (.5) H T, Eref E Eref V0 Eref EF H( T, Eref ) = exp I ( E ) + exp (6.3.) kt kt kt kt (.7) V0 E EF I ( E) = = V 0 exp f F ( E) (6.3.) EF E kt g + exp kt (6.3.) peak H T, E 67 mev.809 cm cm -3 ( T ) p T p SIMS l 508 cm cm -3 SiC iamondga Fermi-irace )(6.3.) (.4) Fermi-irac f F E f F ( E ) E F ( = E + 4exp E kt f ) F f E E (6.3.3) f ( E ) = (6.3.4) E ex E EF Er EF + 4exp - gexp + g rexp kt kt r= kt E r g r r =, g =, E = 0 ex f ( E) = f F ( E) Fermi-irac E E ( E E ) g E exp E r r r r= kt ex =, g r = r (6.3.5) E Er g r + g r r= kt E r E r * m = 3.6 ( r ) m ε r 0 s ex (6.3.6) 64

71 ε s = r 7 E = 36 mev, E = 34 mev, E 3 = 5 mev, E4 = 8.5 mev, E5 = 5.4 mev, E6 = 3.8 mev, E7 =.8 mev mev cm cm -3 ε s 0 H( T,0. 35) p(t ) Fermi-irac Fermi-irac SIMS l 50 8 cm -3 l implanted 4H-SiC575 r = 7 E = 36 mev, E = 34 mev, E3 = 5 mev, E4 = 8.5 mev, E 5 = 5.4 mev, = 3.8 mev, E =.8 mev E FCCS l implanted 4H-SiC l l implanted 4H-SiC 85 mev89 mev 4H-SiC l PLPhoto Luminescence 559 mev 3) l 65

72 ( E ) f F ( E ) Fermi-irac f E F E f 67 mev.80 9 cm cm -3 f 89 mev cm cm -3 E 0 8 l Implanted 4H-SiC at R.T. nealing Temperature 443 Hole Concentraton [cm -3 ] Experimental data Simulation results : f( E ) E = 89 mev = cm -3 = cm -3 : f F ( E ) E = 67 mev = cm -3 = cm Temperature [K] f FCCS l implanted 4H-SiC nealing Temperature E [cm -3 ] E [mev] [cm -3 ]

73 0 8 l Implanted 4H-SiC at R.T. Hole Concentraton [cm -3 ] 0 7 Experimental data nealing Temperature : 443 : 575 Simulated results Temperature [K] f E 67

74 6.3. l doped 4H-SiC Wafer CREE l doped 4H-SiC Wafer0 mm0 mm, 400m FCCS Ti/l van der Pauw Hall p T Hall.4 T p T (.) H T, E ref H T,0.9 K Spline K peak peak T 537 K H T,0.36 peak cm -6 ev -.5 peak Fermi-irac p T Fermi-irac r = 0 E = 36 mev, E = 34 mev, E 3 = 5 mev, E 4 = 8.5 mev, E5 = 5.4 mev, E6 = 3.8 mev, E7 =.8 mev E 8 =. mev E 9 =.7 mev E 0 =.4 mev Hole Concentraton [cm -3 ] l-doped 4H-SiC Experimental ata Spline function of p(t) Temperature [K] l doped 4H-SiC Wafer p T 68

75 H(T,0.9) [ 0 40 cm -6 ev -.5 ] l-doped 4H-SiC Temperature [K] peak Experimental data Simulated results : f( E ) E = 89 mev = cm -3 = cm -3 : f F ( E ) E = 74 mev = cm -3 = cm H( T,0.9) Hole Concentraton [cm -3 ] l-doped 4H-SiC Experimental data Simulated results : f( E ) E = 89 mev = cm -3 = cm -3 : f F ( E ) E = 74 mev = cm -3 = cm Temperature [K]

76 Fermi-irac Fermi-irac l implanted 4H-SiC Fermi-irac l doped 4H-SiC Wafer l 89 mev 4H-SiC l 70 mev 3) l F ( E ) f Fermi-irac f E F E E f 74 mev.70 8 cm cm cm -3 f 89 mev cm cm cm -3 E f E Fermi-irac f F E Fermi-irac istribution Function F ( E ) Proposed istribution Function f.30 8 cm -3 f cm -3 E C-V Measurement Results cm -3 Hall Mobility from Ionized impurity cm -3 70

77 6.4Te doped lgasb (00) Gas MBE Te Te doped l0.6ga0.4sb m mm undoped InGaSb In van der Pauw Hall n T Hall.4 T 4540 K 3. (3..)Vegard Te Te doped l n T Te m e 0.6Ga0.HSb Electron Concentraton [cm -3 ] Te doped l 0.6 Ga 0.4 Sb Experimental data Evaporate Temperature : 330 : Temperature [K] 6.4. Te doped l0.6ga0.4sb n T 7

78 Te 40 H T, K peak 350 K peak Zhu Te doped lgasb Te X-center-like traps Te doped lxga-xsb x > 0. Te doped l0.5ga0.5sb Hall ( n T ) ( ln( n T )) / T 4) 0 mev Te 6.4. peak374 K H T peak, cm -6 ev -.5 F ( T E n f E f ( E ) ( f ) ) = + E ex E EF exp - gexp kt kt + r= Er E g rexp kt F (6.4.) E r r g E ex 3. (3..) Vegard 4.9 = r 7 E = 7.4 mev, E =.8 mev, E3 = 0.8 mev, E4 = 0.46 mev, E 5 = 0.9 mev, E 6 = 0.0 mev, E 7 = 0.5 mev 66 mev cm. 4 0 cm H ( T,0. 7) 6.4. Fermi-irac mev.8 0 cm. 8 0 cm 6.4. n T Fermi-irac Undoped l0.6ga0.4sb p T lgasb ( ) T ln p T / E.33 g ev 3.3. l0.6ga0.4sb.39ev 45 K400 K cm -3 E g 7

79 Te doped l0.6ga0.4sb Fermi-irac cm cm -3 Undoped l0.6ga0.4sb cm cm H(T,0.7) [ 0 4 cm -6 ev -.5 ] Te doped l 0.6 Ga 0.4 Sb Te Evaporate Temperature 40 Temperature [K] peak Experimental data Simulated results : f( E ) E = 66 mev = cm -3 = cm -3 : f F ( E ) E = 9 mev = cm -3 = cm H ( T,0.7) Electron Concentraton [cm -3 ] Te doped l 0.6 Ga 0.4 Sb Te Evaporate Temperature 40 Experimental data Simulated results : f( E ) E = 66 mev = cm -3 = cm -3 : f F ( E ) E = 9 mev = cm -3 = cm Temperature [K]

80 Te 330 Te doped l0.6ga0.4sb Te 36meV 66meV Te Hole Concentration [cm -3 ] Undoped l 0.6 Ga 0.4 Sb :Experimental data : E g =.33 [ev] Saturation Range /T [K - ] Undoped l0.6ga0.4sb p T 6.4. FCCS Te doped l Te evaporative Temperature Ga0.4Sb ensity[cm-3] onor Energy Level[meV] ensity[cm-3]

81 Electron Concentraton [cm -3 ] Te doped l 0.6 Ga 0.4 Sb Experimental data Evaporate Temperature : 330 : 40 :Simulated results Temperature [K]

82 7 Hall FCCS Gas MBE Sb Ga 680 undoped GaSb 5 undoped GaSb Sb/Ga 8 Undoped InGaSb 40meV 90meV 4045 mev In Sb Vacancy 8700 mev Ga Sb Vacancy 4H-SiC l implanted 4H-SiC l 85 mev89 mev l doped 4H-SiC Wafer l 89 mev Te doped l0.6ga0.4sb Te 36meV66meV Te 76

83 GaSb l 4H-SiC 77

84 ),,, : (H) G79. )M. Lee,. J. icholas, K. E. Singer, and B. Hamilton: J. ppl. Phys. 59 (985) )H. Matsuura, M. Yoshimoto and H. Matsunami: Jpn. J. ppl. Phys. 34 (995) L37. 4)H. Matsuura, K. Sonoi: Jpn.J.ppl.Phys. 35 (996) L555. 5)H. Matsuura: Jpn. J. ppl. Phys. 36 (997) )H. Matsuura, Y. Uchida, T. Hisamatsu and S. Matsuda: Jpn. J. ppl. Phys. 37 (998) )H. Matsuura, T. Kimoto and H. Matsunami: Jpn. J. ppl. Phys. 38 (999) )H. Matsuura, Y. Masuda, Y. Chen, and S. ishino: Jpn. J.ppl. Phys. 39 (000) )H. Matsuura, Y. Uchida,. agai, T. Hisamatsu, T. buraya and S. Matsuda: ppl. Phys. Lett. 76 (000) 09. 0) :, (989) ),, :-, )van der Pauw : Philips Res. Repts 3 (958). 3)S.M.Sze: Physics of Semiconductor evice, nd ed.,wiley,y(98) 4)H. J. Hoffmann: ppl. Phys 9 (979) )H. Matsuura, K. Morita, K. ishikawa, T. Mizukoshi, M. Sagawa and W. Susaki: Jpn. J. ppl. Phys. to be published at February, 00. 6)H. Matsuura, K. ishikawa, K. Morita, M. Segawa and W. Susaki: Extended abstracts of the 0th electronic materials symposium (EMS0). pp (F5).Jun.00. 7)C.Kittel: Introduction to Solid State Physics, 5th edition, Wiley, ew York, )K. akashima: Jpn. J. ppl. Phys. 0 (98) ). H. Eltoukhy, J. E. Greene: J. ppl. Phys. 50 (979) )H. Xu: J. ppl. Phys.: 68 (990) ) : (999). )H.Matsuura : International Conference on Silicon Carbide and Related Materials, pp.749, (00) 3) Gary L Harris : Properties Of Silicon Carbide, ISPEC. (995). 4)Yu Zhu, Yoshikazu Tekeda, and kio Sasaki: J.ppl. Phys. 64 (988)

スライド 1

スライド 1 Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC

More information

untitled

untitled Tokyo Institute of Technology high-k/ In.53 Ga.47 As MOS - Defect Analysis of high-k/in.53 G a.47 As MOS Capacitor using capacitance voltage method,,, Darius Zade,,, Parhat Ahmet,,,,,, ~InGaAs high-k ~

More information

untitled

untitled 213 74 AlGaN/GaN Influence of metal material on capacitance for Schottky-gated AlGaN/GaN 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1 1 AlGaN/GaN デバイス ① GaNの優れた物性値 ② AlGaN/GaN HEMT構造 ワイドバンドギャップ半導体 (3.4eV) 絶縁破壊電界が大きい

More information

MOSFET HiSIM HiSIM2 1

MOSFET HiSIM HiSIM2 1 MOSFET 2007 11 19 HiSIM HiSIM2 1 p/n Junction Shockley - - on-quasi-static - - - Y- HiSIM2 2 Wilson E f E c E g E v Bandgap: E g Fermi Level: E f HiSIM2 3 a Si 1s 2s 2p 3s 3p HiSIM2 4 Fermi-Dirac Distribution

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

untitled

untitled /Si FET /Si FET Improvement of tunnel FET performance using narrow bandgap semiconductor silicide Improvement /Si hetero-structure of tunnel FET performance source electrode using narrow bandgap semiconductor

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション Drain Voltage (mv) 4 2 0-2 -4 0.0 0.2 0.4 0.6 0.8 1.0 Gate Voltage (V) Vds [V] 0.2 0.1 0.0-0.1-0.2-10 -8-6 -4-2 0 Vgs [V] 10 1000 1000 1000 1000 (LSI) Fe Catalyst Fe Catalyst Carbon nanotube 1~2 nm

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

untitled

untitled 2013 74 Tokyo Institute of Technology AlGaN/GaN C Annealing me Dependent Contact Resistance of C Electrodes on AlGaN/GaN, Tokyo Tech.FRC, Tokyo Tech. IGSSE, Toshiba, Y. Matsukawa, M. Okamoto, K. Kakushima,

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

ELECTRONIC IMAGING IN ASTRONOMY  Detectors and Instrumentation   5 Instrumentation and detectors ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10 Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

untitled

untitled 20101221JST (SiC - Buried Gate Static Induction Transistor: SiC-BGSIT) SOURCE GATE N source layer p + n p + n p + n p+ n drift layer n + substrate DRAIN SiC-BGSIT (mωcm 2 ) 200 100 40 10 4 1 Si limit

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

( ) : 1997

( ) : 1997 ( ) 2008 2 17 : 1997 CMOS FET AD-DA All Rights Reserved (c) Yoichi OKABE 2000-present. [ HTML ] [ PDF ] [ ] [ Web ] [ ] [ HTML ] [ PDF ] 1 1 4 1.1..................................... 4 1.2..................................

More information

,,., (,, SiO 2, Si-N, ),,,,,.,.,,, (Schottky). [ ].,..,.,., 1 m µm 10., 10 5, [ ] (6N-103)..,.,. [ ] 1. (,, ) :,.,,.., (HF),.

,,., (,, SiO 2, Si-N, ),,,,,.,.,,, (Schottky). [ ].,..,.,., 1 m µm 10., 10 5, [ ] (6N-103)..,.,. [ ] 1. (,, ) :,.,,.., (HF),. 17 2 2.1,,., (,, SiO 2, Si-N, ),,,,,.,.,,, (Schottky). [ ].,..,.,., 1 m 3 0.1 µm 10., 10 5, 10 7. [ ] (6N-103)..,.,. [ ] 1. (,, ) :,.,,.., (HF),. 18 2,,.,,. 2.,,,.,,. 2.1. 19 2.1.1 1. 1, (Schottky),,,.

More information

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity atom interstitial impurity atom line defect dislocation planar defect surface grain boundary interface

More information

untitled

untitled MOSFET 17 1 MOSFET.1 MOS.1.1 MOS.1. MOS.1.3 MOS 4.1.4 8.1.5 9. MOSFET..1 1.. 13..3 18..4 18..5 0..6 1.3 MOSFET.3.1.3. Poon & Yau 3.3.3 LDD MOSFET 5 3.1 3.1.1 6 3.1. 6 3. p MOSFET 3..1 8 3.. 31 3..3 36

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

Canvas-tr01(title).cv3

Canvas-tr01(title).cv3 Working Group DaiMaJin DaiRittaikaku Multiparticle Jiki-Bunnsekiki Samurai7 Superconducting Analyser for Multi particles from RadioIsotope Beams with 7Tm of bending power (γ,n) softgdr, GDR non resonant

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

jse2000.dvi

jse2000.dvi pn 1 2 1 1947 1 (800MHz) (12GHz) (CPUDSP ) 1: MOS (MOSFET) CCD MOSFET MES (MESFET) (HBT) (HEMT) GTO MOSFET (IGBT) (SIT) pn { 3 3 3 pn 2 pn pn 1 2 sirafuji@dj.kit.ac.jp yoshimot@dj.kit.ac.jp 1 3 3.1 III

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi 4 4 9............................................... 3.3......................... 4.4................. 5.5............................ 7 9..................... 9.............................3................................4..........................5.............................6...........................

More information

藤村氏(論文1).indd

藤村氏(論文1).indd Nano-pattern profile control technology using reactive ion etching Megumi Fujimura, Yasuo Hosoda, Masahiro Katsumura, Masaki Kobayashi, Hiroaki Kitahara Kazunobu Hashimoto, Osamu Kasono, Tetsuya Iida,

More information

fma20.PDF

fma20.PDF PZT TSC Measurement for Degraded and Damaged PZT Thin Films Capacitors Prepared by Sputtering. FeRAM MFIS : XRD, TEM : XRF, EDS, EPMA, SIMS : SPM, NDM? DLTS DLTS (TSC) (TSC) fatigue,, ( ) (1) (2) J T TSC

More information

15

15 15 1...1 1-1...1 1-1-1...1 1-1-2...3 1-1-3...4 1-1-4...5 1-2...5 1-2-1...5 1-2-2...6 1-3...6 1-3-1...6 1-3-2...7 1-3-3...8 1-3-4...8 1.4 Co-Pt...9 1.5...9 2...10 2-1...10 2-1-1...10 2-1-2...10 2-2...11

More information

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c 10. : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck constant J: Ĵ 2 = J(J +1),Ĵz = J J: (J = 1 2 for 1 H) I m A 173/197 10.1

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

JIS Z803: (substitution method) 3 LCR LCR GPIB

JIS Z803: (substitution method) 3 LCR LCR GPIB LCR NMIJ 003 Agilent 8A 500 ppm JIS Z803:000 50 (substitution method) 3 LCR LCR GPIB Taylor 5 LCR LCR meter (Agilent 8A: Basic accuracy 500 ppm) V D z o I V DUT Z 3 V 3 I A Z V = I V = 0 3 6 V, A LCR meter

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

PowerPoint Presentation

PowerPoint Presentation / 2008/04/04 Ferran Salleras 1 2 40Gb/s 40Gb/s PC QD PC: QD: e.g. PCQD PC/QD 3 CP-ON SP T CP-OFF PC/QD-SMZ T ~ps, 40Gb/s ~100fJ T CP-ON CP-OFF 500µm500µm Photonic Crystal SMZ K. Tajima, JJAP, 1993. Control

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be Gogny hard core spin-isospin property @ RCNP (Mar. 22 24, 2004) Collaborator: M. Sato (Chiba U, ) ( ) global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, 014316

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® email: takahash@sci.u-hyogo.ac.jp Spring semester, 2012 Outline 1. 2 / 26 Introduction : (d ) : 4f 1970 ZrZn 2, MnSi, Ni 3 Al, Sc 3 In Stoner-Wohlfarth Moriya-Kawabata (1973) 3 / 26 Properties of Weak

More information

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ rjtenmy@ipc.shizuoka.ac.jp ZnO RPE-MOCVD UV- ZnO MQW LED/PD & Energy harvesting LED ( ) PV & ZnO... 1970 1980 1990 2000 2010 SAW NTT ZnO LN, LT IC PbInAu/PbBi Nb PIN/FET LD/HBT 0.98-1.06m InGaAs QW-LD

More information

PowerPoint Presentation

PowerPoint Presentation 2010 KEK (Japan) (Japan) (Japan) Cheoun, Myun -ki Soongsil (Korea) Ryu,, Chung-Yoe Soongsil (Korea) 1. S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998) Magnetar : ~ 10 15 G ~ 10 17 19 G (?)

More information

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G 8 ( ) 8. 1 ( ) F F = F I (N I, T, V I ) + F II (N II, T, V II ) (8.1) F δf = δn I [ ( FI (N I ) N I 8. 1 111 ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0

More information

devicemondai

devicemondai c 2019 i 3 (1) q V I T ε 0 k h c n p (2) T 300 K (3) A ii c 2019 i 1 1 2 13 3 30 4 53 5 78 6 89 7 101 8 112 9 116 A 131 B 132 c 2019 1 1 300 K 1.1 1.5 V 1.1 qv = 1.60 10 19 C 1.5 V = 2.4 10 19 J (1.1)

More information

微粒子合成化学・講義

微粒子合成化学・講義 http://www.tagen.tohoku.ac.jp/labo/muramatsu/mura/main.html E-mail: mura@tagen.tohoku.ac.jp 1 Derjaguin Landau Verway Overbeek B.V.Derjaguin and L.Landau;Acta Physicochim.,URSS, 14, 633 1941. E.J.W.Verwey

More information

微粒子合成化学・講義

微粒子合成化学・講義 http://www.tagen.tohoku.ac.jp/labo/muramatsu/mura/main.html E-mail: mura@tagen.tohoku.ac.jp 1 2 1 mol/l KCl 3 4 Derjaguin Landau Verway Overbeek B.V.Derjaguin and L.Landau;Acta Physicochim.,URSS, 14, 633

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

2

2 Rb Rb Rb :10256010 2 3 1 5 1.1....................................... 5 1.2............................................. 5 1.3........................................ 6 2 7 2.1.........................................

More information

Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M

Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student Member, Tamiya Fujiwara, Member (Iwate University),

More information

橡実験IIINMR.PDF

橡実験IIINMR.PDF (NMR) 0 (NMR) 2µH hω ω 1 h 2 1 1-1 NMR NMR h I µ = γµ N 1-2 1 H 19 F Ne µ = Neh 2mc ( 1) N 2 ( ) I =1/2 I =3/2 I z =+1/2 I z = 1/2 γh H>0 2µH H=0 µh I z =+3/2 I z =+1/2 I z = 1/2 I z = 3/2 γh H>0 2µH H=0

More information

Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harm

Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harm ZrCr 2 Laves 5633 2009 2 Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harmonic Energy-Volume Phonon-DOS

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

untitled

untitled SPring-83 22(2010)730 MBE PLD MBE 0.002% PLD p Π n p n PF PF = S 2 S =V/ΔT V: [V] ΔT: [K] S[V/K], T[K], σ[s/m] TeBi 2 Te 3 (Bi,Se) 2 Te 3 (n-type) Ar KrF Ar gas 2. A. 3. c-si a-si InP GaAs 1g (μm) PV(W/g

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4) 3 * 35 (3), 7 Analysis of Local Magnetic Properties and Acoustic Noise in Three-Phase Stacked Transformer Core Model Masayoshi Ishida Kenichi Sadahiro Seiji Okabe 3.7 T 5 Hz..4 3 Synopsis: Methods of local

More information

1).1-5) - 9 -

1).1-5) - 9 - - 8 - 1).1-5) - 9 - ε = ε xx 0 0 0 ε xx 0 0 0 ε xx (.1 ) z z 1 z ε = ε xx ε x y 0 - ε x y ε xx 0 0 0 ε zz (. ) 3 xy ) ε xx, ε zz» ε x y (.3 ) ε ij = ε ij ^ (.4 ) 6) xx, xy ε xx = ε xx + i ε xx ε xy = ε

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

(Jackson model) Ziman) (fluidity) (viscosity) (Free v

(Jackson model) Ziman) (fluidity) (viscosity) (Free v 1) 16 6 10 1) e-mail: nishitani@ksc.kwansei.ac.jp 0. 1 2 0. 1. 1 2 0. 1. 2 3 0. 1. 3 4 0. 1. 4 5 0. 1. 5 6 0. 1. 6 (Jackson model) 8 0. 1. 7 10. 1 10 0. 1 0. 1. 1 Ziman) (fluidity) (viscosity) (Free volume)(

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

研究室ガイダンス(H29)福山研v2.pdf

研究室ガイダンス(H29)福山研v2.pdf J.M. Kosterlitz and D.J. Thouless, Phys. 5, L124 (1972); ibid. 6, 1181 (1973) David J. Thouless J. Michael Kosterlitz + ρ T s KT D.J. Bishop and J.D. Reppy, PRL 40, 1727 (1978) ( ) = 2k B m2 T KT π 2 T

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

OHO.dvi

OHO.dvi 1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v

More information

untitled

untitled 27.2.9 TOF-SIMS SIMS TOF-SIMS SIMS Mass Spectrometer ABCDE + ABC+ DE + Primary Ions: 1 12 ions/cm 2 Molecular Fragmentation Region ABCDE ABCDE 1 15 atoms/cm 2 Molecular Desorption Region Why TOF-SIMS?

More information

B1 Ver ( ), SPICE.,,,,. * : student : jikken. [ ] ( TarouOsaka). (, ) 1 SPICE ( SPICE. *1 OrCAD

B1 Ver ( ), SPICE.,,,,. * : student : jikken. [ ] ( TarouOsaka). (, ) 1 SPICE ( SPICE. *1 OrCAD B1 er. 3.05 (2019.03.27), SPICE.,,,,. * 1 1. 1. 1 1.. 2. : student : jikken. [ ] ( TarouOsaka). (, ) 1 SPICE ( SPICE. *1 OrCAD https://www.orcad.com/jp/resources/orcad-downloads.. 1 2. SPICE 1. SPICE Windows

More information

COE

COE COE COOL05 MD @ @ @ @ n ν x, y 2 2 International Workshop on Beam Cooling and Related Topics ( COOL05) General Topics Overview. S-LSR Report from Lab Report from Lab Electron Cooling Muon Cooling

More information

untitled

untitled --- = ---- 16 Z 8 0 8 8 0 Big Bang 8 8 s-process 50 r-process 8 50 N r-process s-process Hydrogen 71% Helium 8% Others 1.9% Heay 4-4% lements(>ni p-process (γ process? r-process s-process Big Bang H,He

More information

pc725v0nszxf_j

pc725v0nszxf_j PC725NSZXF PC725NSZXF PC725NSZXF PC725 DE file PC725 Date Jun. 3. 25 SHARP Corporation PC725NSZXF 2 6 5 2 3 4 Anode Cathode NC Emitter 3 4 5 Collector 6 Base PC725NSZXF PC725YSZXF.6 ±.2.2 ±.3 SHARP "S"

More information

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI 65 8. K 8 8 7 8 K 6 7 8 K 6 M Q σ (6.4) M O ρ dθ D N d N 1 P Q B C (1 + ε)d M N N h 2 h 1 ( ) B (+) M 8.1: σ = E ρ (E, 1/ρ ) (8.1) 66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3)

More information

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量 33 Non-destructive Measurement of Retained Austenite Content in Austempered Ductile Iron Yoshio Kato, Sen-ichi Yamada, Takayuki Kato, Takeshi Uno Austempered Ductile Iron (ADI) 100kg/mm 2 10 ADI 10 X ADI

More information

研究室ガイダンス(H28)福山研.pdf

研究室ガイダンス(H28)福山研.pdf 1 2 3 4 5 4 He M. Roger et al., JLTP 112, 45 (1998) A.F. Andreev and I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969) Born in 2004 (hcp 4 He) E. Kim and M.H.W. Chan, Nature 427, 225 (2004); Science 305,

More information

untitled

untitled D nucleation 3 3D nucleation Glucose isomerase 10 V / nm s -1 5 0 0 5 10 C - C e / mg ml -1 kinetics µ R K kt kinetics kinetics kinetics r β π µ π r a r s + a s : β: µ πβ µ β s c s c a a r, & exp exp

More information

ρ(= kg m 3 ), g h P 0 C () [1] 1.3 SI Pa hpa h 100 ( : 100 ) 1m 2 1N 1Pa 1N 1kg 1m s 2 Pa hpa mb hpa 1mm 1mmHg hpa 1mmHg =

ρ(= kg m 3 ), g h P 0 C () [1] 1.3 SI Pa hpa h 100 ( : 100 ) 1m 2 1N 1Pa 1N 1kg 1m s 2 Pa hpa mb hpa 1mm 1mmHg hpa 1mmHg = I. 2006.6.10 () 1 (Fortan mercury barometer) 1.1 (Evangelista orricelli) 1643 760mm 760mm ( 1) (P=0) P 760mm 1: 1.2 P, h, ρ g P 0 = P S P S h M M = ρhs Mg = ρghs P S = ρghs, P = ρgh (1) 1 ρ(= 13.5951 10

More information

物性物理学I_2.pptx

物性物理学I_2.pptx phonon U r U = nαi U ( r nαi + u nαi ) = U ( r nαi ) + () nαi,β j := nαi β j U r nαi r β j > U r nαi r u nαiuβ j + β j β j u β j n α i () nαi,β juβj 調和振動子近似の復習 極 小 値近傍で Tylor展開すると U ( x) = U ( x ) + (

More information

卒 業 研 究 報 告

卒 業 研 究 報 告 16 2 17 ...1 1.1.1 1.2.3...4 2.1. 4 2.2. 4 2.3. 5 2.3.1.. 5 2.3.2. 10 2.3.3.. 11 2.4.....11 2.4.1 LCD.....12 2.4.2 EL.. 13 2.4.3. 14 2.4.4. 15 2.4.5 SAW... 15 2.4.6.. 16 2.5.....16 2.5.1 CVD.....16 2.5.2..

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe) 1001 µµ 1.... 2 2.... 7 3.... 9 4. InGaAs/GaAs PIN... 10 5. InGaAs... 17 6. PbS/PbSe... 18 7. InSb... 22 8. InAs/InSb... 23 9. MCT (HgCdTe)... 25 10.... 28 11.... 29 12. (Si)... 30 13.... 33 14.... 37

More information