Size: px
Start display at page:

Download ""

Transcription

1 90

2 UVSOR-II Twiss Ti:Sa i

3 NaI EGS UVSOR-II ii

4 MPPC Multi Pixel Photon Counter (MPPC) MPPC A 161 B 165 C EGS5 169 C.1 NaI C.1.1 C.1.2 C.1.3 NaI.f NaI.data PEGS NaI.inp C C.2.1 C.2.2 C.2.3 IP.f IP.data PEGS IP.inp iii

5

6 1.1 Amsterdam Pulse Stretcher ring MeV 2.8MeV K. J. Kim UVSOR-II UVSOR-II UVSOR-II UVSOR-II UVSOR-II UVSOR-II Ti:Sa v

7 (y e, z e ) (y p, z p ) (y, z) (y, z) (y p, z p ) NaI NaI Cs 60 Co EGS LCS EGS5 NaI ( ) ( ) vi

8 4.19 ( ) ( ) ( ) ( ) ( ) ( ) rms LCS LCS LCS 2 mm EGS Cs 60 Co BaF τ = 200 ps vii

9 EGS5 LCS MPPC C U MPPC MPPC MPPC MPPC LCS LCS MPPC viii

10 UVSOR-II Ti:Sa rms MPPC UVSOR-II ix

11

12 1 1.1 MeV (LCS)[1] LCS LCS γ kev GeV LCS MeV LCS LCS 1/γ LCS 10 8 photons s 1 [2, 3] photons s 1 [4] LCS 100 % 100 LCS 1948 Feenberg [5] GeV

13 1 1.1: ( ) (GeV) (µm) (MeV) (s 1 ) AIST (Ibaraki)[9] (Nd:YLF) BESSY-II (Berlin)[10] (CO 2 ) Duke Univ. (Durham)[2] (FEL) KEK-ATF (Ibaraki)[3] NewSUBARU (Hyogo)[11] (Nd:YVO 4 ) NewSUBARU (Hyogo)[12] (CO 2 ) SAGA-LS (Saga)[13] (CO 2 ) SPring-8 (Hyogo)[14] (CO 2 ) Super-ACO (Orsay)[15] (FEL) UVSOR (Aichi)[16] (FEL) UVSOR-II (Aichi) (Ti:Sa) Arutyunian Milburn [6, 7] Kunikov 1964 Lebedev Physical Institute of the Academy of Science 600 MeV nm LCS ( 8.3 MeV) [8] (FEL) LCS MeV 100 MeV LCS LCS [17, 18] GeV ( 1 %) ( 10 6 photons s 1 ) LCS

14 LCS 1 (SAGA-LS) 1.4 GeV 2 4 [19] MeV 30 MeV 2 1 % 1.4 GeV 30 MeV 1 µm 12 µm mw 10 mw 10 4 photons s photons s 1 7 % 9 % 4 10 ps µm Nd:YAG ( 10 6 photons s 1 ) ( 1 %) 4 4 LCS 3

15 1 1.2 LCS LCS LCS (AIST, ) NewSUBARU LCS [14, 15, 16] 99 % (Nuclear Resonance Fluorescence) 208 Pb [20] NRF NRF 90 NRF NewSUBARU 17.6 MeV LCS 197 Au [11] LCS [21] [22, 23] 17.6 MeV LCS 197 Au 1 2 % Duke LCS 4

16 1.2. LCS Duke LCS 10 8 photons s 1 60 m 0.4 %(FWHM) LCS [2] Duke MeV 88 Sr, 138 Ba, 32 S [2] LCS [4] [24, 25] LCS 1.1 BESSY-II LCS [10] 900 MeV 1700 MeV 1 2 % BESSY-II [13] Amsterdam Pulse Stretcher ring (AmPS) 90 ( 1.1)[26] 5

17 1 1.1: Amsterdam Pulse Stretcher ring [26] MeV 1 β Na 2 MeV [27] 6

18 ps ns S ( ) S S BaF 2 (Li, Na, K, Rb, Cs) 7

19 ps (Fe, Cu, Ag ) ps 170 ps 190 [28] 22 Na 1.27 MeV 10 µm MeV LCS LCS [29] MPa 2 MeV 27 Al(p,γ) 28 Si 1.8 MeV 2.8MeV [30, 31] 1.8 MeV 2.8 MeV 190 ps ( 1.2) 20 MeV 40 ns 8

20 : 1.8 MeV 2.8MeV [30] [32] 1064 nm 7 ns 400 mj Nd:YAG W cm mm 4 Helmholtz-Zentrum Dresden-Rossendorf Electron LINAC with high Brilliance and low Emittance(ELBE) 16 MeV [33] 5 ps 9

21 1 26 MHz BaF 2 LCS LCS LCS LCS GeV 150 m 150 m 150 GeV 2 LCS 10 MeV 1 GeV 1 (KEK-ATF) LCS 10 8 photons s 1 [3] s 1 [34] 10

22 SPring kev NewSUBARU LCS [35] LCS 1 MeV LCS 1 CO 2 LCS 91 % MeV 10 cm 11

23 1 LCS 10 MeV [36] LCS LCS 10 MeV 19 % LCS 130 mm LCS LCS LCS 12

24 LCS 10 MeV 10 kev 1994 K. J. Kim 12 kev 300 fs [37] ( ) 90 ( 1.3) 90 LCS [38, 39] 1.3: K. J. Kim [37] 13

25 LCS LCS LCS 100 ps LCS K. J. Kim 90 LCS LCS [26] 90 LCS LCS LCS 14

26 1.4. LCS 1.1 LCS 90 LCS LCS LCS LCS LCS LCS LCS 5 ps(rms) [4] ( 100 ps) 15

27 UVSOR-II (Ti:Sa) 3 LCS LCS 4 LCS

28 2 2.1 LCS UVSOR-II (Ultra Violet Synchrotron Orbital Radiation) (Ti:Sa) 2.1 UVSOR-II UVSOR-II( 2.1) UVSOR-II Ti:Sa Ti:Sa [40] [41] UVSOR-II 2.5 m 75 kv 15 MeV 26.6 m 750 MeV 17

29 2 2.1: UVSOR-II 750 MeV 53.2 m cm (Touschek ) UVSOR-II 1 1 khz 2.1 UVSOR-II UVSOR-II 20 5 ( 2.2) 18

30 2.1. UVSOR-II 2.1: UVSOR-II E (MeV) 750 I (ma) 50 ɛ (nm-rad) 27.4 C (m) 53.2 RF f RF (MHz) 90.1 ρ (m) m m 4 V 0 (kv) 100 ν x, ν y 3.75, 3.20 Momentum compaction factor α σ E /E (rms) σ ze0 (ps) 108(rms) Electron Beam 2.2: UVSOR-II LCS Beam Transport Septum 19

31 2 2.3: 21 UVSOR-II 6.5 m m ( ) ( ) 7.5 m 20

32 2.1. UVSOR-II 2.4: 22 UVSOR-II 2.5: 23 UVSOR-II 21

33 2 2.2 ( ) [42] [43] ρ ( ) N S

34 ( ) s x y K x d 2 x ds 2 + K xx = 0 (2.1) y K x > 0 sin cos x (s) x(s) = A cos( K x s) + B sin( K x s) (2.2) x (s) = A K x sin( K x s) + B K x cos( K x s) (2.3) s = 0 A B x(0) x (0) x(s) = x(0) cos( K x s) + x (0) sin( K x s) (2.4) Kx x (s) = x(0) K x sin( K x s) + z (0) cos( K x s) (2.5) L ( ) ( ) x(l) x(0) cos( K = M x x = x L) 1 Kx sin( ( ) K x L) (L) x (0) K x sin( K x L) cos( x(0) K x L) x (0) (2.6) K x < 0 sinh cosh ( ) x(l) cosh( K x L) 1 = sinh( ( ) K x L) K x x x(0) (L) K x sinh( K x L) cosh( K x L) x (0) y (2.7) 23

35 2 2.2: M x M y ( ) ( ) 1 L 1 L cos L ρ sin L ( ) ρ ρ 1 sin 1 L L cos L 0 1 ρ ρ ρ cos KL 1 K sin KL ( ) K sin KL cos cosh KL 1 K sinh KL KL K sinh KL cosh KL cosh KL 1 K sinh KL cos KL 1 K sin KL ( ) K sinh KL cosh KL K sin KL cos KL (2.6) (2.7) M x Twiss (2.1) K x x(s) = A βx β x (s) cos{ψ x (s) + ψ x0 } (2.8) s ds ψ x (s) = 0 β x (s) (2.9) A βx ψ x0 β x (s) C β x (s) = β x (s + C) (2.10) (2.8) ψ x (s) 2π 1 UVSOR-II 1 ν x =3.75 ν y =3.20 (2.8) x (s) = A β x β x (s) [α x(s) cos{ψ x (s) + ψ x0 } + sin{ψ x (s) + ψ x0 }] 24

36 2.2. = A βx γ x (s) sin{ψ x (s) + ψ x0} (2.11) α x (s) = 1 dβ x (s) 2 ds γ x (s) = 1 + α2 x(s) β x (s) (2.12) (2.13) α x, β x, γ x Twiss (2.10) (x, x ) Twiss πa 2 β x = π(γ x x 2 + 2α x xx + β x x 2 ) (2.14) (2.8) (2.11) A βx βx < x < A βx βx A βx γx < x < A βx γx πɛ ɛ ɛ x β x < x < ɛ x β x, ɛ x γ x < x < ɛ x γ x (2.15) Twiss (2.8) (2.11) x (s) = x(s) = β x (s){a cos ψ x (s) + B sin ψ x (s)} (2.16) 1 β x (s) [{ α x(s)a + B} cos ψ x (s) {α x (s)b + A} sin ψ x (s)] (2.17) ( ) ( ) x(l) x(0) = M x x (0) = x (L) β x (L) β x (0) (cos ψ x + α x (0) sin ψ x ) 1+αx(0)αx(L) β x(0)β x(l) sin ψ x + αx(0) αx(l) β x(0)β x(l) cos ψ x ( x(0) x (0) ) β x (0)β x (L) sin ψ x β x (L) β x(0) (cos ψ x α x (0) sin ψ x ) (2.18) 25

37 2 ψ x = ψ x (L) ψ x (0) 2 Twiss 1 Twiss UVSOR-II Twiss α x (0) = 0, β x (0) = 10 m, γ x (0) = 1/β x (0) (2.19) α y (0) = 0, β y (0) = 1.5 m, γ y (0) = 1/β y (0) (2.20) β y (0) β y (0) = 0.5 m Twiss (2.18) β x (0)β x (s) sin ψ x = s (2.21) β x(s) β x (0) cos ψ x = 1 (2.22) β x (s) = β x (0) + s2 β x (0) Twiss (2.12) (2.13) α x (s) = s β x (0) γ x (s) = 1 β x (0) (2.23) (2.24) (2.25) 3 y E x x(s) = η x (s) E E (2.26) 26

38 2.2. η x (s) UVSOR-II η x (s) = 0.8 m, η y (s) = 0 m η x (s) = 0.9 m, η y (s) = 0 m 2.6 UVSOR-II β x, β y η x [44] C C C = α E E (2.27) α momentum compaction factor momentum compaction factor α = 1 C C 0 η x (s) ds (2.28) ρ(s) UVSOR-II α = : UVSOR-II Position = 0 m 27

39 U 0 U 0 (kev) = 88.5 E4 (GeV) ρ(m) (2.29) UVSOR-II U 0 =12.7 kev V (t) = V 0 sin(2πf RF t) (2.30) U 0 = ev (t s ) = ev 0 sin(2πf RF t s ) (2.31) t s UVSOR-II V 0 =100 kv f RF =90.1 MHz (2.31) (2.31) t s (2.31) (2.31) t s 28

40 2.2. (2.31) (2.27) E 1 t = T rev α E E (2.32) T rev UVSOR-II 177 ns t t T rev d t dt 2 d 2 t dt 2 = t = α E T rev E = α E d E dt (2.33) (2.34) E E = ev (t s + t) U 0 = ev (t s + t) ev (t s ) (2.35) E T rev d E dt (2.34) d 2 t dt 2 = αe T rev E {V (t s + t) V (t s )} = = E T rev = ev (t s + t) ev (t s ) T rev (2.36) αe T rev E dv (t s ) t Ω 2 t (2.37) dt dv (t s )/dt f s = Ω 2π = 1 αe dv (t s ) αfrf = (ev 0 ) 2π T rev E dt 2πT rev E 2 U0 2 (2.38) UVSOR-II f s =17.3 khz 1 ν s = f s f rev = 17.3 khz 5.64 MHz = (2.39) 29

41 UVSOR-II τ β =21 ms τ s = τ β /2 =11 ms 0 ( ) κ ɛ=27.4 nm-rad ɛ x = ɛ 1 + κ, ɛ y = κɛ 1 + κ (2.40) 30

42 (rms) s ( (2.15)) ( (2.26)) ( ) σe 2 σ xe (s) = β x (s)ɛ x + ηx 2 (2.41) E ( ) σ x e(s) = γ x (s)ɛ x + ηx 2 σe 2 (2.42) E σ ye (s) = β y (s)ɛ y (2.43) σ y e(s) = γ y (s)ɛ y (2.44) σ xe (s) σ ye (s) σ x e(s) σ y e(s) σ E /E 2.7 (2.41)-(2.44) UVSOR-II κ 3 % 21 s = 0.7 m 22 s = +0.3 m 23 s = +0.4 m s = 0.7 m σ xe = 0.62 mm, σ ye = mm, σ x e = mrad, σ y e = mrad (2.45) s = +0.3 m σ xe = 0.62 mm, σ ye = mm, σ x e = mrad, σ y e = mrad (2.46) s = +0.4 m σ xe = 0.64 mm, σ ye = mm, σ x e = mrad, σ y e = mrad (2.47) 1 31

43 2 Spatial spread (mm) or divergence (mrad) σ xe /10 σ ye σ x e σ y e Position at straight section (m) 2.7: UVSOR-II σ xe 1/ σ ze0 = α σ E 2πf s E (2.48) f s (2.38) UVSOR-II V kv σ ze0 = 108 ps(rms) = 254 ps(fwhm) V 0 86 kv σ ze0 = 275 ps(fwhm) σ ze0 σ ze Potential well distortion Microwave instability 2 Potential well distortion 32

44 2.2. [45] ( σze σ ze0 ) 3 σ ze σ ze0 = eαi ( ) R 3 (Z/n) eff (2.49) 2πνs E σ ze0 I R (Z/n) eff effective longitudinal coupling impedance Microwave instability [45] σ ze ( ) 1 αi 2+a νs 2 E (2.50) a 1992 UVSOR 500 MeV 750 MeV [45] I = 0 70 ma Potential well distortion MeV C ( 2 ps) ps 400 ps Potential well distortion (2.49) Potential well distortion σ ze0 = 260 ± 5 ps(fwhm) 33

45 2 450 Bunch length σ ze at FWHM (ps) Beam current (ma) 2.8: (2.49) 34

46 2.3. Ti:Sa 2.3 Ti:Sa COHERENT Ti:Sa [46] 90 LCS 90 LCS 100 ps 2.9 Ti:Sa (COHERENT, Mira-900-F) RF 90.1 MHz COHERENT Synchro-Lock AP RF 1 ps RF 1 khz Q (COHERENT, Legend-HE) 800 nm 130 fs 2.5 mj 1 khz 2.3 Thamway Phase shifter Phase shifter 1/16 divider 5.63 MHz RF bucket selector 1/5632 divider Synchro lock 90.1 MHz Feedback 1 khz Q-switch pump laser 1 khz, >20 mj pulse RF cavity -1 pick-up UVSOR-II Electron storage ring Mode-locked Ti:Sapphire laser CW laser Regenerative amplifier Laser 90.1 MHz, < 30 fs, >5 nj pulse -1 1 khz, 130 fs 2.5 mj pulse -1 Electron beam 2.9: Ti:Sa 35

47 2 2.3: Ti:Sa (nm) 800 (W) 2.5 (khz) 1 (mj) 2.5 (fs) 130(FWHM) RF bucket selector 20 ps 20 m f(x) f(x) = A { erf erf(t) ( ) } x µ + 1 2σ (2.51) erf(t) = 2 t e k2 dk (2.52) π 0 A µ σ 2.11 rms σ =3.0 mm z 1/e 2 36

48 2.3. Ti:Sa Power meter Steel plate Laser 2.10: 1 Laser power (W) 0.5 σ = 2.98 mm x (mm) 2.11: (2.51) w(z) = w z2 λ 2 π 2 w 4 0 (2.53) w 0 1/e 2 λ w = 2σ 2.12 w 0 (2.53) 125 mm w(z) = 2σ =6 mm w µm 37

49 w 0 =4.5 µm w 0 =5.0 µm w 0 =5.5 µm w 0 =6.0 µm w(z) (mm) z (mm) 2.12: 38

50 UVSOR-II 750 MeV 53 m 0.6 mm 0.03 mm(rms) 3 % [47] 108 ps(rms) = 254 ps(fwhm) 2 ps ps(fwhm) Potential well distortion cm 39

51 2 90 Ti:Sa COHERENT RF 90.1 MHz RF 1 ps 800 nm 130 fs 2.5 mj 1 khz rms 3.0 mm 125 mm 10 µm 40

52 3 LCS 3.1 LCS LCS LCS 90 LCS 1. [48] 2. [49]

53 3 LCS 3.1 T T s E L E γ α θ φ LCS 3.2 LCS Ts ER E ER α ER γ EL ER θ ER φ ER LCS Laser, E L Electron beam, T α Scattered electron, θ φ Gamma ray, E γ T s 3.1: ER γ Gamma ray, E ER Laser, E L Scattered electron, T ER s ER θ ER φ ER α 3.2: 42

54

55 T + E L = T s + E γ (3.1) P E L c cos α = E γ c cos θ + P s cos φ (3.2) E L c sin α = E γ c sin θ P s sin φ (3.3) P P s m e c 2 (3.2) (3.3) T s (T s + 2m e c 2 ) P s = c T (T + 2m e c 2 ) P = c (3.4) (3.5) c 2 P 2 s = c 2 P 2 + E 2 L cos 2 α + E 2 γ cos 2 θ 2P ce L cos α 2P ce γ cos θ +2E L E γ cos α cos θ + E 2 L sin 2 α + E 2 γ sin 2 θ 2E L E γ sin α sin θ (3.6) (3.1) (3.4) c 2 P 2 s = T 2 + E 2 L + E 2 γ + 2T E L 2E L E γ 2T E γ + 2m e c 2 (T + E L E γ ) (3.7) (3.6) (3.7) E γ = E L (β cos α + 1) 1 β cos θ + E L γm e {1 + cos(α + θ)} c 2 (3.8) β γ β = T (T + 2m e c 2 ) T + m e c 2 (3.9) γ = T + m ec 2 m e c 2 = 1 1 β 2 (3.10) (3.8) [50] 44

56 3.2. UVSOR-II 1 GeV E L /γm e c 2 1 (3.8) β 1 θ E γ = 2γ2 E L (cos α + 1) 1 + γ 2 θ 2 (3.11) (α = 0 ) E γ = 90 E γ = 4γ2 E L 1 + γ 2 θ 2 (3.12) 2γ2 E L 1 + γ 2 θ 2 (3.13) MeV 800 nm(1.55 ev) (θ = 0 rad) 6.6 MeV 3.3 (3.13) mrad 0.1 mrad 2 % 3.4 α (θ = 0 rad) E max γ = 2γ 2 E L (cos α + 1) (3.14) UVSOR-II 13 MeV 45

57 3 7 Gamma ray energy (MeV) Scattering angle of gamma rays (mrad) 3.3: MeV 800 nm Maximum energy of gamma rays (MeV) Collision angle (degree) 3.4: 750 MeV 800 nm 46

58 LCS ( dσ = r2 0 dω 2 RER2 R ER + 1 ) R 1 + ER cos2 θ (3.15) R ER = EER γ EL ER = EER L m ec (1 cos θ ), 2 dω = 2π sin θ dθ, r 0 = m, θ = π Θ ER, Θ ER = ±α ER + θ ER cos θ = cos Θ ER ( dσ dω = r2 0 ER 2 RER2 R ER + 1 ) R 1 + ER cos2 Θ ER (3.16) R ER = EER γ EL ER = EER L m ec (1 + cos Θ ER ) 2 (3.17) dω ER = 2π sin Θ ER dθ ER (3.18) EL ER, Eγ ER E L, E γ E ER L = γ (3.17) (3.20) { ( E L βc E )} L c cos α = γ(1 + β cos α)e L (3.19) E γ = E ER γ sin θ ER = E γ sin θ (3.20) sin θ ER sin θ EER L 1 + EER L m ec (1 + cos Θ ER ) 2 (3.21) (3.8)=(3.21) Θ = α + θ { } sin θer γ(1 β cos θ) sin θ 1 E L + { } sin θer E 2 (1 + cos Θ) sin θ γ(1 + β cos α)(1 + cos ΘER ) L m e c = 0 (3.22) 2 (3.22) sin θ ER sin θ = 1 γ(1 β cos θ) (3.23) 47

59 3 γ(1 + β cos α)(1 + cos Θ ER sin θer ) = (1 + cos Θ) sin θ (3.23) (3.24) (3.24) cos Θ ER = 1 + cos Θ γ 2 (1 + β cos α)(1 β cos θ) 1 (3.25) (3.25) cos θ d(cos Θ ER ) d(cos θ) = = sin α (cos α + )(1 β cos θ) + β(1 + cos Θ) tan θ γ 2 (1 + β cos α)(1 β cos θ) 2 β(sin θ sin α) + sin(α + θ) γ 2 (1 + β cos α)(1 β cos θ) 2 sin θ (3.26) 1 dω = 1 β(sin θ sin α) + sin(α + θ) dω ER γ 2 (1 + β cos α)(1 β cos θ) 2 sin θ (3.27) (3.27) (3.16) LCS dσ dω β(sin θ sin α) + sin(α + θ) r 2 ( 0 = γ 2 (1 + β cos α)(1 β cos θ) 2 sin θ 2 RER2 R ER + 1 ) R 1 + ER cos2 Θ ER (3.28) R ER = cos Θ ER = γ(1+β cos α)e L m e c 2 (1 + cos Θ ER ) (3.29) 1 + cos(α + θ) γ 2 (1 + β cos α)(1 β cos θ) 1 (3.30) 1 GeV γe L /m e c 2 1 R ER 1 LCS LCS (3.28) (α = 0 ) dσ dω = 1 r 2 ( 0 γ 2 (1 β cos θ) 2 2 RER2 R ER + 1 ) R 1 + ER cos2 Θ ER (3.31) R ER = γ(1+β)e L m ec 2 (1 + cos Θ ER ) cos Θ ER = cos θ β 1 β cos θ (3.32) (3.33) 48

60 3.3. (3.31) [1] 90 (α = 90 ) dσ dω β(sin θ 1) + cos θ r 2 ( 0 = γ 2 (1 β cos θ) 2 sin θ 2 RER2 R ER + 1 ) R 1 + ER cos2 Θ ER R ER 1 = 1 + γe L m e (1 + cos Θ c ER ) 2 cos Θ ER = (β2 1) sin θ β(β cos θ) 1 β cos θ (3.34) (3.35) (3.36) θ c σ(θ c ) (3.28) σ(θ c ) = θc 0 dθ dσ dθ = θc dθ2π sin θ dσ 0 dω (3.37) 3.5 θ c 750 MeV 1/γ = 0.68 mrad 1/γ σ T = m 2 49

61 α = 0 degree α = 90 degree σ(θ c )/σ T Scattering angle of gamma rays (mrad) 3.5: MeV 50

62 LCS LCS 3.6 ψ [51] ( dσ dω ) Por ( = r2 0 2 RER2 R ER + 1 ) R 2 ER sin2 θ cos 2 ψ (3.38) ψ 3.3 LCS ( ) Por dσ = dω β(sin θ sin α) + sin(α + θ) r 2 ( 0 γ 2 (1 + β cos α)(1 β cos θ) 2 sin θ 2 RER2 R ER + 1 ) R 2 ER sin2 Θ ER cos 2 ψ (3.39) LCS (3.39) y Laser θ ψ Gamma ray x Electron beam 3.6: 51

63 3 sin Θ ER 0 (3.30) cos Θ ER 1 ψ α = 0 cos Θ ER = cos θ β 1 β cos θ (3.40) θ θ β 1 cos Θ ER 1 β 1 2 θ2 1 β θ2 1 γ2 θ γ 2 θ 2 (3.41) θ 1/γ = 0.68 mrad θ 1/γ α = 90 cos Θ ER cos Θ ER = (β2 1) sin θ β(β cos θ) 1 β cos θ (3.42) θ cos Θ ER θ(β2 1) β 2 + β 1 2 βθ2 1 β βθ2 2θ + 1 γ2 θ γ 2 θ 2 (3.43) LCS (3.39) ψ (3.28) (3.39) (3.28) 52

64 3.4. Angle y-axis (mrad) Angle x-axis (mrad) 3.7: Angle y-axis (mrad) Angle x-axis (mrad) 3.8: 53

65 3 3.5 N γ σ(θ c ) L [52] N γ = Lσ(θ c ) (3.44) [52] L = 2cfN e N p cos 2 φ ρ e (x, y, z, t)ρ p (x, y, z, t)dxdydzdt (3.45) φ = α c f 2 N e N p ρ e, ρ p z e z p (y, z) 3.9 ρ e, ρ p y y e σ yp σ zp Laser z p φ φ z y p σ ze σ ye z e Electron beam 3.9: (y e, z e ) (y p, z p ) (y, z) z e, z p y e, y p 54

66 3.5. ρ e = 1 [ 1 exp 1 { x 2 e + y2 e + (z e ct) 2 }] (2π) 3 2 σ xe σ ye σ ze 2 σxe 2 σye 2 σze 2 ρ p = 1 (2π) 3 2 [ 1 exp 1 { x 2 p + y2 p + (z p ct) 2 }] σ xp σ yp σ zp 2 σxp 2 σyp 2 σzp 2 (3.46) (3.47) x e = x, x p = x (3.48) y e = z sin φ + y cos φ, y p = z sin φ y cos φ (3.49) z e = z cos φ y sin φ, z p = z cos φ y sin φ (3.50) σ x, σ y, σ z (rms) e, p (3.46) (3.50) (3.45) L L = fn en p cos α/2 2π 1 (σ 2 xe + σxp) 2 (σye 2 + σyp) 2 cos 2 (α/2) + (σze 2 + σzp) 2 sin 2 (α/2) (3.51) (3.51) A σ T N γ = fn en p σ T cos α/2 2π 1 (σ 2 xe + σxp) 2 (σye 2 + σyp) 2 cos 2 (α/2) + (σze 2 + σzp) 2 sin 2 (α/2) (3.52) (3.52) [53] (α = 0 ) N γ = fn en p σ T 2π 1 (σ 2 xe + σ 2 xp)(σ 2 ye + σ 2 yp) (3.53) 90 N γ = fn en p σ T 2π σ 2 xe + σ 2 xp 1 σ 2 ye + σyp 2 + σze 2 + σzp 2 (3.54) 90 N γ = fn en p σ T 2π σ 2 ye + σ 2 yp 1 σ 2 xe + σxp 2 + σze 2 + σzp 2 (3.55) 55

67 3 σ zp σ xp Laser Horizontal 90 σ yp σ zp Laser o collision σ ye σ xe Electron beam Vertical 90 collision o 3.10: photons s photons s 1 1 khz photons pulse photons pulse 1 UVSOR-II

68 3.5. Intensity of gamma rays (photons s -1 ) horizontal collision vertical collision Collision angle (degree) 3.11: 3.1: (MeV) 750 (ma) 50 (mm) 0.6, 0.03(rms) (ps) 400(FWHM) (nm) 800 (W) 10 (Hz) 1000 (mm) 0.01, 0.01(rms) (ps) 0.13(FWHM) 57

69 3 3.6 (3.45) LCS 3.12 (y, z) (y p, z p ) (3.45) ρ e, ρ p ρ e = 1 (2π) 3 2 ρ p = 1 (2π) 3 2 [ 1 exp 1 { x 2 + y2 + σ xe σ ye σ ze 2 σxe 2 σye 2 }] (z ct)2 σze 2 [ 1 exp 1 { x 2 p + y2 p + (z p ct) 2 }] σ xp σ yp σ zp 2 σxp 2 σyp 2 σzp 2 (3.56) (3.57) x p = x (3.58) y p = z sin α y cos α, (3.59) z p = z cos α y sin α (3.60) η = z ct (3.56) (3.60) (3.45) η L dη exp { 1 2 (σye 2 + σyp)(cos 2 α + 1) 2 + (σze 2 + σzp) 2 sin 2 } α σze{(σ 2 ye 2 + σyp)(cos 2 α + 1) 2 + σzp 2 sin 2 α} η2 y σ yp σ zp Laser z p α y p σ ze σ ye z Electron beam 3.12: (y, z) (y p, z p ) 58

70 = dη exp ( η2 2σ 2 t ) 3.6. (3.61) σ t σ t = σ ze (σ 2 ye + σ 2 yp)(cos α + 1) 2 + σ 2 zp sin 2 α (σ 2 ye + σ 2 yp)(cos α + 1) 2 + (σ 2 ze + σ 2 zp) sin 2 α (3.62) (3.61) B (3.62) [54] (α = 0 ) 90 σ t = σ ze σ 2 ye + σ 2 yp + σ 2 zp σ 2 ye + σ 2 yp + σ 2 ze + σ 2 zp (3.63) 90 σ t = σ ze σ 2 xe + σ 2 xp + σ 2 zp σ 2 xe + σ 2 xp + σ 2 ze + σ 2 zp (3.64) (α = 180 ) ps(rms) fs(rms) ps

71 3 Pulse width of gamma rays at rms (ps) horizontal collision vertical collision Collision angle (degree) 3.13: 60

72 3.6. Pulse width of gamma rays at rms (ps) vertical collision horizontal collision Pulse width of laser at FWHM (ps) 3.14:

73 3 3.7 LCS 1. LCS 750 MeV 800 nm MeV MeV LCS % 2. LCS LCS LCS 90 LCS 1/γ LCS 3. LCS photons s photons s 1 62

74 LCS 90 LCS ps(rms) 120 fs(rms) 63

75

76 4 90 LCS LCS LCS LCS LCS UVSOR-II

77 4 70 ~ 110 degree Electron beam Femtosecond laser Quadruple magnet Bending magnet Gamma ray NaI 1.25 m 6.5 m 4.1: 4.1: (MeV) 750 (ma) (mm) 0.62, 0.038(rms) (ps) 270(FWHM) (nm) 800 (W) 1.5 (Hz) 1000 (mm) 2.5, 1.5(rms) (ps) 1.4(FWHM) (90 ) (MeV) 6.6 (photons s 1 ma 1 ) ma (0 ) 1.8 W 85 % 1.5 W 66

78 LCS UVSOR-II RF RF 2.2 RF 4 mm m NaI 35 mm NaI LCS UVSOR-II 90 LCS LCS ns ps 67

79 4 Intensity (counts 600 s -1 ma -1 ) degree 80 degree 90 degree 95 degree 107 degree Energy (MeV) 4.2: UVSOR-II LCS m

80 (555 mm) 2 (1.85 ns) 2.9 RF bucket selector( ) Phase Shifter( ) NaI Laser 555 mm Pick-up Gamma ray Electron Beam 4.3: 69

81 4 4.4: ( ) ( ) Phase Shifter 100 ps 4.5 Phase Shifter NaI 6. NaI 70

82 4.1. Intensity of gamma rays (counts 60 s -1 ) Time shift (ns) 4.5: 71

83 NaI NaI NaI 22.4 mm NaI 4.7 NaI Photomultiplier Gamma ray NaI scintillator 4.6: NaI Gamma ray NaI scintillator Photomultiplier 500 V High voltage Preamplifier RF bucket selector 1/5632 divider Shaper amplifier Shaping time: 2 μs Gain: 650 Gate signal 1kHz, 20 μs Multi channel analyzer 4.7: NaI 72

84 4.1. NaI (Photomultiplier) NaI (Shaper amplifier) (Multi channel analyzer) 137 Cs 60 Co 137 Cs 137m Ba MeV 60 Co 60 Ni 1.17 MeV 1.33 MeV Cs 60 Co 137 Cs MeV 60 Co 1.17 MeV 1.33 MeV 2.50 MeV Cs 60 Co Intensity (a.u.) Channel 4.8: 137 Cs 60 Co 73

85 4 2.5 Energy (MeV) f(x)= *x Channel 4.9: LCS 2.9 RF 20µs 1 khz 1/ EGS5 EGS5[55] EGS5 kev PeV Prof. Bielajew Prof. Wilderman Prof. Nelson 2006 NaI EGS [56] 74

86 4.1. Lead block Gamma ray NaI scintillator 4.10: EGS5 LCS 4.10 NaI LCS C.1 NaI EGS EGS NaI EGS5 LCS NaI LCS 75

87 4 (3.8) (3.28) Co 1 2 MeV NaI %(FWHM) EGS5 7 %(FWHM) EGS5 NaI NaI NaI Intensity (counts 600 s -1 ma -1 ) Energy (MeV) 4.11: 90 LCS EGS5 NaI 1/5 76

88 Intensity (a.u.) φ=381 mm φ=254 mm φ=127 mm φ=64 mm Energy (MeV) 4.12: EGS5 NaI EGS5 NaI 127 mm NaI MeV EGS5 NaI NaI 6.6 MeV EGS5 77

89 4 EGS5 (2.5 MeV ) (3.8) (3.52) MeV (3.8) BESSY-II SAGA-LS [10, 13, 50] 737 ± 3 MeV LCS NaI 9.0 Maximum energy (MeV) Collision angle (degree) 4.13: (3.8) (3.8) 78

90 Intensity (photons s -1 ) Collision angle (degree) 4.14: (3.52) (3.62) 4 7 ps 79

91 LCS 100 % 90 Duke LCS [57] LCS ( ) 1.7 W 97 % 1.6 W 125 mm 10 µm LCS Wave plate Polarized laser Convex lens (f =125 mm) Bending Quadruple magnet magnet Electron beam 5.4 m Gamma ray Imaging plate 4.15: 80

92 : (MeV) 750 (ma) 0.8 (mm) 0.62, 0.035(rms) (ps) 270(FWHM) (nm) 800 (W) 1.6 (Hz) 1000 (mm) 0.01(rms) (ps) 1.0(FWHM) (MeV) 6.6 (photons s 1 ) NaI LCS (λ/2 λ/4 ) ( ) 5.4 m (BAS-IP MS) ( ) 1.0 mm 10 [58] 200 µm 150µm 633 nm He-Ne 81

93 第4章 ガンマ線のエネルギー可変 偏極 単色性の評価 光を発する これは 光輝尽発光現象と呼ばれ 蛍光体に記録された線量に比例し た 390 nm の輝尽蛍光を発する この輝尽蛍光強度を光電子増倍管で計測すること で イメージングプレートに記録された放射線の強度を知ることができる また 強度分布を読み取った後は イメージングプレート全面に可視光を照射することで 残像を消去することができ 繰り返し使用することが可能である 本研究では イメージングプレートの読み取りのために 自然科学研究機構基礎 生物学研究所生物機能情報分析室の Typhoon FLA9000(図 4.16) を利用した Ty- phoonfla9000 は 画素サイズ 10 µm から 200 µm で読み取ることができ 200 µm の場合 読み取り時間は約 5 分/ mm2 である 直線偏極ガンマ線の空間分布を図 4.17 に示す レーザーが直線偏光の場合 式 (3.39) に示したように レーザーの偏光面に対して 90 度方向にガンマ線が強く散乱 される 測定データにおいても偏極面に対して 90 度方向に強く散乱される空間分布 を測定することができた 円偏極ガンマ線の空間分布を図 4.18 に示す レーザーが 円偏光の場合 式 (3.34) に示したように ガンマ線は等方的に散乱されるので 空 間分布に異方性は生じない 測定データにおいても 円に近い形状となっている また 図 4.17 と図 4.18 における x 軸と y 軸それぞれの中心軸の強度分布を図 4.19 と図 4.20 に示す 図 4.16: イメージングプレート読み取り装置 (GE ヘルスケアジャパン TyphoonFLA9000) 82

94 4.2. Angle along y-axis (mrad) Angle along x-axis (mrad) 4.17: ( ) Angle along y-axis (mrad) Angle along x-axis (mrad) 4.18: ( ) 83

95 4 1 x y Intensity (a.u.) Angle along x(y)-axis (mrad) 4.19: ( ) 1 x y Intensity (a.u.) Angle along x(y)-axis (mrad) 4.20: ( ) 84

96 EGS5 1.0 mm C.2 LCS (3.39) (3.28) EGS x y σ(σ ) rms rms 3σ rms rms 3σ 100 % 4.3: rms (mrad) (mrad) x ± ± y ± ± x ± ± y ± ±

97 4 Angle along y-axis (mrad) Angle along x-axis (mrad) 4.21: ( ) Angle along y-axis (mrad) Angle along x-axis (mrad) 4.22: ( ) 86

98 x y Intensity (a.u.) Angle along x(y)-axis (mrad) 4.23: ( ) 1 x y Intensity (a.u.) Angle along x(y)-axis (mrad) 4.24: ( ) 87

99 4 EGS5 LCS LCS EGS5 P P = σ hor σ ver σ hor + σ ver (σ hor + σ ver = 1) (4.1) σ hor σ ver P = 1 1:1 P = rms 4.25 (4.1) 1.0 mm rms LCS 88 % 88 % 88

100 Ratio y/x Degree of polarization 4.25: rms 89

101 LCS Duke LCS 60 m 1 % [2] 5 mm LCS LCS m 0.5 m NaI 5 mm 100 mm LCS 2 mm 4.27 LCS Convex lens Laser Bending Quadruple magnet magnet Collimator NaI Electron beam Gamma ray 7.5 m 4.26: 90

102 : (MeV) 750 (ma) (mm) 0.64, 0.026(rms) (ps) 270(FWHM) (nm) 800 (W) 2.0 (Hz) 1000 (mm) 0.01(rms) (ps) 1.0(FWHM) (MeV) 6.6 (photons s 1 ma 1 ) Intensity (counts 1200 s -1 ma -1 ) x=0 mm x=2 mm Energy (MeV) 4.27: LCS 2 mm 91

103 EGS5 5 mm LCS NaI EGS5 LCS LCS 2 mm E γ /E γ 17 %(FWHM) 2 mm 12 %(FWHM) Intensity (counts 1200 s -1 ma -1 ) Response Initial/2 Measurement (x=0 mm) Energy (MeV) 4.28: LCS EGS5 NaI ( ) EGS5 LCS 92

104 4.3. Intensity (counts 1200 s -1 ma -1 ) Response Initial/2 Measurement (x=2 mm) Energy (MeV) 4.29: LCS 2 mm EGS5 NaI ( ) EGS5 LCS LCS 4.28 LCS 10 photons s 1 ma photons s 1 ma 1 10 cm d L N N = N 0 exp( λld) (4.2) N 0 λ LCS EGS (4.2) exp mm MeV 93

105 4 Intensity of gamma rays (photons s -1 ma -1 ) EGS5 N(L)=17235exp(-0.024L) Thickness of iron (mm) 4.30: EGS5 (4.2) λ = cm 2 g 1 d = 7.9 g cm 3 λd = mm LCS 310 mm 10 photons s 1 ma 1 LCS 58 mm 4 43 mm LCS 330 mm UVSOR-II EGS5 LCS LCS 10 m 4.31 LCS UVSOR-II 1 mm 1 %(FWHM) LCS 94

106 % 10 7 photons s photons s 1 Energy spread at FWHM (%) 10 1 φ=5 mm φ=3 mm φ=2 mm φ=1 mm φ=0.5 mm 1 10 Efficiency (%) 4.31: 95

107 LCS 100 ps NaI NaI LCS LCS EGS5 2. LCS 90 LCS LCS LCS EGS5 90 LCS 96

108 4.4. LCS EGS5 rms 88 % 3. LCS 7 m 5 mm LCS LCS EGS5 EGS5 LCS %(FWHM) UVSOR-II LCS EGS5 LCS 10 m 1 mm 1 %(FWHM) 10 5 photons s 1 97

109

110 5 90 LCS ps MPPC LCS 100 ps LCS 90 LCS ps LCS 2 LCS

111 5 RF cavity pick-up Phase shifter Synchro lock 90.1 MHz Feedback 1/16 divider Mode-locked Ti:Sapphire laser 5.63 MHz RF bucket selector 90.1 MHz 1/5632 divider CW laser 1 khz Q-switch pump laser UVSOR-II Electron storage ring Electron beam Laser 1 khz Gamma ray pulse Trigger Delay 1 khz Digital Oscilloscope Lead Regenerative amplifier Trigger CFD Photomultiplier 1 khz BaF 2 Trigger 5.1: RF cavity pick-up Phase shifter Synchro lock 90.1 MHz Feedback 1/16 divider Mode-locked Ti:Sapphire laser 5.63 MHz RF bucket selector 90.1 MHz 1/5632 divider CW laser 1 khz Q-switch pump laser 1 khz Regenerative amplifier UVSOR-II Electron storage ring Electron beam Laser 1 khz Gamma ray pulse Pre-trigger Digital Oscilloscope Lead Trigger Photomultiplier 1 khz BaF 2 5.2:

112 : (MeV) 750 (ma) 50 ( ) (mm) 0.64, 0.026(rms) (ps) 400(FWHM) (nm) 800 (W) 2.0 (Hz) 1000 (mm) 0.01(rms) (ps) 1.0(FWHM) (MeV) 6.6 (photons s 1 ) (ps) 5(FWHM) 4.3 LCS 50 ma (3.64) 5 ps(fwhm) photons s photons s LCS 300 mm mm 50 mm LCS MeV BaF 2 BaF 2 50 mm 50 mm 30 mm BaF 2 50 mm 101

113 5 Lead target Annihilation gamma ray Photomultiplier Electron, Positron BaF 2 Gamma ray 5.3: BaF 2 1 Photon Cross Section Database[59] MeV 5 MeV LCS 6.6 MeV 60 % ns 137 Cs 60 Co 5.6 BaF 2 NaI 60 Co Cs 0.66 MeV 60 Co 1.33 MeV MeV 0.25 V 102

114 5.1. Attenuation coefficient (cm 2 g -1 ) Compton scattering Photoelectric effect Pair production Total attenuation Photon energy (MeV) 5.4: 0 Voltage (V) Time (ns) 5.5: 1 GHz 10 GS/s (2ch 3ch 5 GS/s) (LeCroy, WaveRunner 104MXi) 22 Na 103

115 Cs 60 Co Intensity (a.u.) Peak value (V) 5.6: 137 Cs 60 Co 1.5 Energy (MeV) f(x)= 2.03x Peak value (V) 5.7: BaF 2 (LeCroy, WavePro 960, 2 GHz, 4 GS/s) 120 ps [60] RF 90 MHz

116 khz Constant Fraction Discriminator(CFD, ORTEC583) 3 CFD MeV MeV Phistogram Delay (Canberra2058) ( 5.5) 100 ± 20 mv 5.2 RF 90 MHz 1 khz RF 90 MHz 1 khz 90 MHz BaF ps τ I(t) ( I(t) = I 0 exp t ) τ for t 0 (5.1) = 0 for t < 0 (5.2) I 0 F (t) P (t) I(t) [61] F (t) = 0 I(k)P (t k)dk (5.3) P (t) P (t) = 1 { exp (t T 0) 2 } (5.4) 2πσ 2σ 2 105

117 5 T 0 σ (FWHM) 2.35σ (5.3) [61] F (t) = I { 0 2 exp 1 τ ( t T 0 σ2 2τ )} { 1 erf ( σ t T )} 0 2τ 2σ (5.5) erf(t) (2.52) 5.8 τ = 200 ps (5.5) σ 200 ps [28] 2 10 σ= 800 ps σ= 600 ps σ= 400 ps σ= 200 ps σ= 100 ps Count (a.u.) time (ns) 5.8: τ = 200 ps σ (FWHM) 106

118 ps CFD BaF MeV 5.6 CFD LCS CFD σ=900+/-16 ps (FWHM) Intensity (a.u.) Time (ns) 5.9: (5.5) 107

119 ± 0.2 MeV 1. BaF ± 5 % ± 9 ps 190 ps[28] 40 Intensity (a.u.) Energy (MeV) 5.10: 108

120 Intensity (a.u.) 10 τ=183+/-9ps 1 σ=251+/-13ps (FWHM) Time (ns) 5.11: (5.5) 251 ± 13 ps(fwhm) ps (x 0, y 0 ), (x 1, y 1 ),, (x N, y N ) S j (x) = a j (x x j ) 3 + b j (x x j ) 2 + c j (x x j ) + d j (j = 0, 1,, N 1) (5.6) 109

121 5 y j=0,1,,n S j-2 S j-1 Sj S j+1 S j-3 S j+2 x j-3 x j-2 x j-1 x j x j+1 x j+2 x j+3 x 5.12: x j a j, b j, c j, d j 4N 4N 1. S j (x) x 0, x N S j 1(x j ) = S j (x j ) = u j (5.7) S j (x j ) = u j j (x j ) = 2b j S b j = u j 2 (5.8) S j (x j+1 ) = 6a j (x j+1 x j ) a j = u j+1 u j 6(x j+1 x j ) (5.9) 110

122 S j (x j+1 ) = y j+1 d j = S j (x j ) = y j (5.10) c j = y j+1 a j (x j+1 x j ) 3 b j (x j+1 x j ) 2 d j x j+1 x j = y j (u j+1 u j )(x j+1 x j ) u j(x j+1 x j ) 2 y j x j+1 x j = y j+1 y j x j+1 x j 1 6 (x j+1 x j )(2u j + u j+1 ) (5.11) a j, b j, c j, d j u j u j 4 u 0 = u N = 0 u j (j = 1, 2,, N 1) 2 S (x j+1 ) = S j+1(x j+1 ) 3a j (x j+1 x j ) 2 + 2b j (x j+1 x j ) + c j = c j+1 (5.12) (5.8),(5.9),(5.11) (x j+1 x j )u j + 2(x j+2 x j )u j+1 + (x j+2 x j+1 )u j+2 = 6 ( yj+2 y j+1 y ) j+1 y j x j+2 x j+1 x j+1 x j (5.13) j = 0, 1,, N 2 x j 0.2 ns x j+1 x j = 0.2 ns, x j+2 x j = 0.4 ns (5.13) u j + 4u j+1 + u j+2 = 150(y j+2 2y j+1 + y j ) (5.14) h j = 150(y j+1 2y j + y j 1 ) (5.14) u 1 h 1 u 2 h 2.. = u j h j u N 1 h N 1 (5.15) y j (5.15) u j S j 111

123 5 0 Spline interpolation Voltage (V) Time (ns) 5.13: ± 9 ps 205 ± 11 ps(fwhm) 112

124 Intensity (a.u.) 10 τ=192+/-9 ps 1 σ=205+/-11 ps (FWHM) Time (ns) 5.14: 3 (5.5) 113

125 5 5.2 T s =205 ± 11 ps(fwhm) T s T 2 s = T 2 p + T 2 tts + T 2 edge + T 2 L + T 2 B + T 2 oscillo + T 2 trig (5.16) T p T tts (H3378) transit time spread T edge ( ) T L T B BaF 2 T oscillo T trig 1 T tts 370 ps(fwhm) [62] BaF photons MeV 1 [63] 900. [62] 100 T tts = 50 ps T oscillo T trig RF ps(fwhm) 77 ps T L LCS BaF mm (5.18) 1 ps 50 mm LCS EGS5 LCS 114

126 5.2. Gamma rays Electron, Positron Lead 50 mm Annihilation gamma rays 50 mm Scintillation light BaF : Intensity (a.u.) Energy (MeV) 5.16: EGS5 LCS EGS5 LCS 5.16 (4.2) 5.4 (4.2) LCS 14 mm 115

127 5 T L 47 ps LCS 28 mm 93 ps 90 mm 300 ps BaF 2 BaF 2 T B Photon Cross Section Database[59] (0.511 MeV) BaF 2 λ = cm 2 g 1 BaF g cm 3 (4.2) l = 1.56 cm 2 T B 104 ps (5.16) T tts, T oscillo, T trig, T L, T B T p = = 143 ps [60] 22 Na BsF ps ( ) T edge 116

128 ps 143 ps 400 ps 90 LCS 117

129 5 5.3 MPPC Multi Pixel Photon Counter (MPPC) MPPC APD( ) APD ( ) APD MPPC APD MPPC ( C U) 5.17 MPPC 1 mm 2 MPPC I-V nm 45 %( 5.17: MPPC C U 118

130 5.3. MPPC 100 Voltage (mv) Time (ns) 5.18: 1 MPPC 440 nm) USB MPPC I-V MPPC mv 1 5 ns 150 Ti:Sa 1 MPPC 5.21 MPPC 1 khz Phistogram MPPC 50 ± 0.5 mv ± 7 ps(fwhm) 2 MPPC 119

131 5 60 single photon Counts per 10 ps bin two photons Time (ns) 5.19: MPPC mv 50 mv 1 2 MPPC MPPC MPPC MPPC 477 ps MPPC T m 120 T 2 m = T 2 r + T 2 p + T 2 j (5.17)

132 5.3. MPPC T r T p T j 477 ps MPPC MPPC ps MPPC 477 ± 7 ps MPPC 82 ps MPPC MPPC 25 ps MicroChannel Plate Width of timing distribution, T m (ps) Error range of time resolution Pulse width of gamma rays, T p (ps) 5.20: MPPC ( ) MPPC 477 ± 7 ps MPPC 121

133 5 PhotoMultiplier Tube ( R3809U-50) ps(fwhm) MPPC MPPC 0.5 mm MPPC 0.35 mm UV MPPC 5.5 m MPPC MPPC RF cavity pick-up Phase shifter Synchro lock 90.1 MHz Feedback 1/16 divider Mode-locked Ti:Sapphire laser 5.63 MHz RF bucket selector 1/5632 divider CW laser 90.1 MHz Photodiode 1 khz Q-switch pump laser 1 khz Regenerative amplifier UVSOR-II Electron storage ring Electron beam Laser 1 khz 1 khz Gamma ray pulse Tungsten plate Pre-trigger Digital Oscilloscope MPPC Trigger 5.21: MPPC PC 122

134 5.3. MPPC 5.2: MPPC (MeV) 750 (ma) 15 (mm) 0.62, 0.035(rms) (ps) 320(FWHM) (nm) 800 (W) 2.4 (Hz) 1000 (mm) 0.01(rms) (ps) 0.7(FWHM) (MeV) 6.6 (photons s 1 ) (ps) 5(FWHM) MPPC EGS5 EGS5 LCS 1 mrad % 0.15 % photons pulse ( ) 123

135 5 1 electrons Intensity (a.u.) 0.5 positrons Kinetic energy (MeV) 5.22: LCS t t ( ) 1 l t = 1 β e c = E e + m e c 2 E 2 e + 2E e m e c 1 l (5.18) 2 c β e = ν e /c(ν e ) l E e m e c MeV t 36 fs UV n λ dn c dλ = 2π ( 1 1 ) (5.19) 137λ 2 n 2 βe 2 1 nβ e = cos θ c (5.20) 124

136 5.3. MPPC θ c UV (n =1.48) (5.20) 21 MeV 0.18 MeV UV EGS5 MPPC UV EGS5 C MPPC nm MPPC (1 mm 2 ) photon pulse LCS MPPC ± 30 ps(fwhm) (5.17) Tp 2 + Tj 2 = 540 ± 40 ps ps 30 m 60 mv 2 ns 100 ps 320 ps 77 ps ps 125

137 5 40 Counts/(10 ps bin) 20 two photons single photon Time (ns) 5.23: LCS MPPC MPPC 82 ps 126

138 ps 90 LCS ps 82 ps 540 ps LCS 5.24 Tungsten plate Electron, Positron CS 2 Gamma ray Laser Cherenkov radiation 5.24: 127

139 5 CS 2 ( 1.63) δn δn = n 2 I (5.21) n 2 I CS 2 n 2 = cm 2 MW 1 Hidra-100 ( 0.13 ps(fwhm) 100 mj) CS 2 1 % 2 ps [64, 65] CS LCS ( ) 128

140 LCS LCS 90 5 ps(fwhm) BaF 2 BaF MeV BaF MeV 183 ± 9 ps 200 ps ± 9 ps 250 ps 205 ps LCS ps LCS 400 ps 129

141 5 143 ps 2 MPPC LCS MPPC ps MPPC 82 ps 540 ps 320 ps LCS CS 2 130

142 6 1 LCS LCS 100 ps LCS ( 3 ) 100 ps( 10 mm) 10 µm 100 µm LCS 100 ps

143 fs(rms) [37] 2. ( 4 ) LCS 4 LCS [19] LCS LCS UVSOR-II LCS NaI UVSOR-II 90

144 100 ps NaI EGS5 LCS LCS LCS [10, 13, 50] NaI 3. ( 4 ) LCS 100 % LCS LCS [57]

145 EGS5 88 % LCS 1 % LCS LCS 7 m 5 mm NaI EGS5 LCS EGS % 1 mm UVSOR-II 1 %(FWHM) 1.4 % 10 7 photons s photons s 1 4. ( 5 ) 1 LCS LCS

146 10 µm cm 90 5 ps(fwhm) BaF 2 BaF ± 9 ps 190 ps LCS 5. ( 5 ) LCS

147 6 205±11 ps(fwhm) 400 ps(fwhm) LCS BaF 2 BaF 2 22 Na BaF ps(fwhm) [60] 40 % ps MPPC MPPC 82 ps MPPC MPPC UV MPPC MPPC ± 30 ps 540 ps 320 ps 90 LCS 136

148 LCS 1 % LCS LCS LCS 90 LCS LCS UVSOR-II 4 9 MeV 6.1 LCS LCS 300 mm LCS 10 7 photons s 1 137

149 6 6.1: UVSOR-II [66] 13 C 17 O 18 O 25 Mg 29 Si 33 S 40 K 43 Ca 47 Ti 49 Ti 53 Cr 57 Fe 61 Ni 67 Zn 73 Ge 87 Sr 90 Sr 91 Zr 92 Zr 93 Zr 94 Zr 96 Zr 93 Nb 94 Nb 95 Mo 97 Mo 98 Mo 100 Mo 105 Pd 107 Pd 110 Pd 108 Ag (γ,n) 111 Cd 113 Cd 116 Cd 115 Sn 117 Sn 119 Sn 122 Sn 124 Sn 123 Sb 123 Te 125 Te 128 Te 130 Te 129 I 133 Cs 135 Cs 137 Cs 147 Sm 148 Sm 149 Sm 150 Sm 151 Sm 152 Sm 154 Sm 158 Tb 159 Tb 165 Ho 181 Ta 180 W 182 W 183 W 184 W 186 W 197 Au 206 Pb 207 Pb 208 Pb 209 Bi 232 Th 233 U 234 U 235 U 236 U 238 U 238 Pu 239 Pu 241 Pu 14 N 23 Na 27 Al 27 Si 32 S 35 Cl 37 Cl 36 Ar 39 K 40 K 41 K 40 Ca 51 V 55 Mn 54 Fe 59 Co 58 Ni 63 Cu 65 Cu 64 Zn 66 Zn 67 Zn 70 Ge 84 Sr 90 Zr 91 Zr 93 Nb 94 Nb 92 Mo 94 Mo 95 Mo 102 Pd (γ,p) 104 Pd 105 Pd 107 Ag 108 Ag 109 Ag 106 Cd 108 Cd 110 Cd 112 Sn 114 Sn 115 Sn 121 Sb 123 Sb 120 Te 122 Te 123 Te 124 Te 125 Te 127 I 129 I 133 Cs 135 Cs 137 Cs 141 Pr 144 Sm 147 Sm 148 Sm 149 Sm 150 Sm 151 Sm 152 Sm 158 Tb 159 Tb 165 Ho 181 Ta 180 W 182 W 183 W 184 W 186 W 197 Au 206 Pb 207 Pb 208 Pb 232 Th 233 U 234 U 235 U 236 U 238 U 238 Pu 239 Pu 241 Pu 12 C 16 O 17 O 18 O 32 S 33 S 34 S 35 Cl 37 Cl 36 Ar 38 Ar 40 Ar 39 K 40 K 41 K 40 Ca 42 Ca 43 Ca 44 Ca 46 Ti 47 Ti 50 Cr 54 Cr 55 Mn (γ,α) 54 Fe 56 Fe 57 Fe 58 Fe 59 Co 58 Ni 60 Ni 61 Ni 62 Ni 64 Ni 63 Cu 65 Cu 66 Zn 67 Zn 68 Zn 70 Zn 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge 84 Sr 86 Sr 87 Sr 88 Sr 90 Sr 90 Zr 91 Zr 96 Zr 92 Mo 110 Pd 114 Cd 116 Cd 118 Sn 119 Sn 120 Sn 122 Sn 124 Sn 200 ps(fwhm) 100 ps 120 ps 138

150 [60] 139

151

152 2 2 3 (DC2) UVSOR-II ( : ) LCS 141

153 ( : ) NaI EGS5 EGS5 LCS NewSUBARU 142

154 LCS LCS

155

156 1. Y. Taira, M. Adachi, H. Zen, T. Tanikawa, M. Hosaka, Y. Takashima, N. Yamamoto, K. Soda, M. Katoh, Feasibility study of ultra-short gamma ray pulse generation by laser Compton scattering in an electron storage ring, Nuclear Instruments and Methods in Physics Research Section A, 637, pp.s116-s119, (2011). 2. Y. Taira, M. Adachi, H. Zen, T. Tanikawa, N. Yamamoto, M. Hosaka, Y. Takashima, K. Soda, M. Katoh, Generation of energy-tunable and ultrashort-pulse gamma ray via inverse Compton scattering in an electron storage ring, Nuclear Instruments and Methods in Physics Research Section A, 652, pp , (2011). 3. Y. Taira, M. Adachi, H. Zen, N. Yamamoto, M. Hosaka, K. Soda, M. Katoh, Pulse width measurement of laser Compton scattered gamma rays in picosecond range, Nuclear Instruments and Methods in Physics Research Section A, in press Yoshitaka Taira, Msahiro Adachi, Heishun Zen, Takanori Tanikawa, Masahito Hosaka, Yoshifumi Takashima, Naoto Yamamoto, Kazuo Soda, Masahiro Katoh, Feasibility Study of Ultra-short Gamma ray Pulse Generation by Laser 145

157 Compton Scattering in an Electron Storage Ring, International Workshop on Ultrashort Electron & Photon Beams: Techniques & Applications, Xi an, China, Y. Taira, M. Hosaka, K. Soda, Y. Takashima, N. Yamamoto, M. Adachi, M. Katoh, H. Zen, T. Tanikawa, Generation of Ultra-Short Gamma ray Pulses by Laser Compton Scattering in UVSOR-II Electron Storage Ring, The 1st International Particle Accelerator Conference, Kyoto, Japan, Yoshitaka Taira, Masahiro Adachi, Heishun Zen, Takanori Tanikawa, Naoto Yamamoto, Masahito Hosaka, Yoshifumi Takashima, Kazuo Soda, Masahiro Katoh, Generation of tunable ultra-short gamma-ray pulses via laser Compton scattering in an electron storage ring, Symposium on Radiation Measurement and Applications, Ann Arbor, USA, Yoshitaka Taira, Masahiro Adachi, Heishun Zen, Takanori Tanikawa, Naoto Yamamoto, Masahito Hosaka, Yoshifumi Takashima, Kazuo Soda, Masahiro Katoh, Generation of ultra-short gamma ray pulses via laser Compton scattering in UVSOR-II electron storage ring, 17th International Conference on Ultrafast Phenomena, Snowmass Village, USA, Y. Taira, N. Yamamoto, M. Hosaka, K. Soda, M. Adachi, H. Zen, M. Katoh, T. Tanikawa, Development of pulse width measurement techniques of ultrashort gamma ray pulses, 6th International Conference on New Development In Photodetection, Lyon, France, Y. Taira, M. Hosaka, K. Soda, N. Yamamoto, M. Adachi, M. Katoh, H. Zen, T. Tanikawa, Development of Pulse Width Measurement Techniques in a Picosecond Range of Ultra-short Gamma Ray Pulses, 2nd International Particle Accelerator Conference, San Sebastian, Spain,

158 UVSOR-II 16 FEL High-Power Radiation Spring UVSOR-II UVSOR-II UVSOR-II 17 FEL High-Power Radiation

159 8. ( 25 ) FEL High-Power Radiation UVSOR-II UVSOR-II UVSOR-II

160 Y. Taira, M. Adachi, H. Zen, M. Katoh, N. Yamamoto, M. Hosaka, Y. Takashima, K. Soda, T. Tanikawa, Generation of ultra-short gamma ray pulses by laser Compton scattering in an electron storage ring, Proceedings of IPAC 10, pp , Y. Taira, M. Adachi, H. Zen, M. Katoh, N. Yamamoto, M. Hosaka, Y. Takashima, K. Soda, T. Tanikawa, Development of pulse width measurement techniques in a picosecond range of ultra-short gamma ray pulses, Proceedings of IPAC 11, pp , Yoshitaka Taira, Masahiro Adachi, Heisyun Zen, Takanori Tanikawa, Naoto Yamamoto, Masahito Hosaka, Yoshifumi Takashima, Kazuo Soda, Masahiro Katoh, Generation of Ultra-Short Gamma Ray Pulses via Laser Compton Scattering in UVSOR-II Electron Storage Ring, Proceedings of the 17th International Conference on Ultrafast Phenomena, pp , Y. Taira, M. Adachi, H. Zen, T. Tanikawa, M. Hosaka, Y. Takashima, N. Yamamoto, K. Soda, M. Katoh, Feasibility Study of Ultra-Short Gamma Ray Pulse Generation by Laser Compton Scattering in an Electron Storage Ring, UVSOR Activity report 2009, p.38, Y. Taira, M. Adachi, H. Zen, T. Tanikawa, N. Yamamoto, M. Hosaka, Y. Takashima, K. Soda, M. Katoh, Generation of Energy-Tunable Gamma Rays via Inverse Compton Scattering in an Electron Storage Ring, UVSOR Activity report 2010, p.38, UVSOR-II 23 2 pp

161 7. Yoshitaka Taira, Masahiro Adachi, Heishun Zen, Takanori Tanikawa, Masahito Hosaka, Yoshifumi Takashima, Naoto Yamamoto, Kazuo Soda, Masahiro Katoh, Generation of ultra-short pulse gamma-rays by laser Compton scattering in UVSOR-II, Proceedings of Particle Accelerator Society Meeting 2009, pp , Yoshitaka Taira, Masahiro Adachi, Heishun Zen, Takanori Tanikawa, Naoto Yamamoto, Masahito Hosaka, Kazuo Soda, Masahiro Katoh, Development of ultra-short gamma ray pulse source via laser Compton scattering in UVSOR- II, Proceedings of the 7th Annual Meeting of Particle Accelerator Society of Japan, pp , JSR

162 [1] J. Stepanek: Parametric study of laser Compton-backscattering from free relativistic electrons, Nuclear Instruments and Methods in Physics Research A, 412, pp (1998). [2] V. N. Litvinenko: Recent result with the high intensity γ-ray facility, Nuclear Instruments and Methods in Physics Research A, 507, pp (2003). [3] S. Miyoshi, T. Akagi, S. Araki, Y. Funabashi, T. Hirose, Y. Honda, M. Kuriki, X. Li, T. Okugi, T. Omori, G. Pei, K. Sakaue, H. Shimizu, T. Takasahi, N. Terunuma, J. Urakawa, Y. Ushio and M. Washio: Photon generation by laser-compton scattering at the KEK-ATF, Nuclear Instruments and Methods in Physics Research A, 623, pp (2010). [4] R. Hajima, T. Hayakawa, N. Kikuzawa and E. Minehara: Proposal of Nondestructive Radionuclide Assay Using a High-Flux Gamma-Ray Source and Nuclear Resonance Fluorescence, Journal of Nuclear Science and Technology, 45, 5, pp (2008). [5] E. Feenberg and H. Primakoff: Interaction of Cosmic-Ray Primaries with Sunlight and Starlight, Physical Review, 73, 5, pp (1948). [6] F. R. Arutyunian and V. A. Tumanian: The Compton effect on relativistic electrons and the possibility of obtaining high energy beams, Physics Letters, 4, 3, pp (1963). [7] R. H.Milburn: Electron scattering by an intense polarized photon field, Physical Review Letters, 10, 3, pp (1963). 151

163 [8] O. F. Kulikov, Y. Y. Telnov, E. I. Filippov and M. N. Yakimenko: Compton effect on moving electrons, Physics Letters, 13, 4, pp (1964). [9] H. Ohgaki, H. Toyokawa, K. Kudo, N. Takeda and T. Yamazaki: Generation and application of Laser-Compton gamma-ray at ETL, Nuclear Instruments and Methods in Physics Research A, 455, pp (2000). [10] R. Klein, P. Kuske, R. Thornagel, G. Brandt, R. Gorgen and G. Ulm: Measurement of the BESSY II electron beam energy by Compton-backscattering of laser photons, Nuclear Instruments and Methods in Physics Research A, 486, pp (2002). [11] K. Aoki, K. Hosono, T. Hadame, H. Munenaga, K. Kinoshita, M. Toda, S. Amano, S. Miyamoto, T. Mochizuki, M. Aoki and D. Li: High-energy photon beam production with laser-compton backscattering, Nuclear Instruments and Methods in Physics Research A, 516, pp (2004). [12] S. Amano, K. Horikawa, K. Ishihara, S. Miyamoto, T. Hayakawa, T. Shizuma and T. Mochizuki: Several-MeV γ-ray generation at NewSUBARU by laser Compton backscattering, Nuclear Instruments and Methods in Physics Research A, 602, pp (2009). [13] T. Kaneyasu, Y. Takabayashi, Y. Iwasaki and S. Koda: Generation of laser Compton gamma-rays in the SAGA light source, Nuclear Instruments and Methods in Physics Research A, 659, pp (2011). [14] K. Kawase, Y. Arimoto, M. Fujiwara, S. Okajima, M. Shoji, S. Suzuki, K. Tamura, T. Yorita and H. Ohkuma: MeV γ-ray generation from backward Compton scattering at SPring-8, Nuclear Instruments and Methods in Physics Research A, 592, pp (2008). [15] D. Nutarelli, M. E. Couprie, L. Nahon, R. Bakker, A. Delboulbe, R. Roux, B. Visentin and M. Billardon: Gamma rays production by intra-cavity Compton Back Scattering with Super-ACO Storage Ring Free Electron Laser, Nuclear Instruments and Methods in Physics Research A, 407, pp (1998). 152

164 [16] M. Hosaka, H. Hama, K. Kimura, J. Yamazaki and T. Kinoshita: Observation of intracavity Compton backscattering of the UVSOR free electron laser, Nuclear Instruments and Methods in Physics Research A, 393, pp (1997). [17] W. Guo, W. Xu, J. G. Chen, Y. G. Ma, X. Z. Cai, H. W. Wang, Y. Xu, C. B. Wang, G. C. Lu, W. D. Tian, R. Y. Yuan, J. Q. Xu, Z. Y. Wei, Z. Yan and W. Q. Shen: A high intensity beam line of γ-rays up to 22 MeV energy based on Compton backscattering, Nuclear Instruments and Methods in Physics Research A, 578, pp (2007). [18] J. K. Ahn and E. S. Kim: Design study of the Compton backscattering photon beam facility at the Pohang light source, Nuclear Instruments and Methods in Physics Research A, 528, pp (2004). [19] H. Ohgaki, S. Koda, Y. Iwasaki, Y. Takabayashi, K. Yoshida, T. Tomimasu, Y. Uozumi and K. Ishibashi: Study on Energy Variable Laser-Compton Gamma ray with a Fixed Energy Electron Beam, Journal of Nuclear Science and Technology, 44, 5, pp (2007). [20] H. Ohgaki, T. Noguchi, S. Sugiyama, T. Yamazaki, T. Mikado, M. Chiwaki, K. Yamada, R. Suzuki and N. Sei: Linearly polarized photons from Compton backscattering of laser light for nuclear resonance fluorescence experiments, Nuclear Instruments and Methods in Physics Research A, 353, pp (1994). [21] K. Imasaki, D. Li, S. Miyamoto, S. Amano, T. Motizuki and Y. Asano: Gamma-ray beam transmutation, Energy Conversion & Management, 49, pp (2008). [22] D. Li, K. Imasaki, M. Aoki, S. Miyamoto, S. Amano, K. Aoki, K. Hosono and T. Mochizuki: Experiment on gamma-ray generation and application, Nuclear Instruments and Methods in Physics Research A, 528, pp (2004). 153

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

Microsoft PowerPoint - 島田美帆.ppt

Microsoft PowerPoint - 島田美帆.ppt コンパクト ERL におけるバンチ圧縮の可能性に関して 分子科学研究所,UVSOR 島田美帆日本原子力研究開発機構,JAEA 羽島良一 Outline Beam dynamics studies for the 5 GeV ERL 規格化エミッタンス 0.1 mm mrad を維持する周回部の設計 Towards user experiment at the compact ERL Short bunch

More information

X線散乱と放射光科学

X線散乱と放射光科学 8 X II 305 8.1..................................... 305 8.1.1................. 305 8.1.2.................................... 307................................... 307............................ 308.........................

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

Undulator.dvi

Undulator.dvi X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

1-x x µ (+) +z µ ( ) Co 2p 3d µ = µ (+) µ ( ) W. Grange et al., PRB 58, 6298 (1998). 1.0 0.5 0.0 2 1 XMCD 0-1 -2-3x10-3 7.1 7.2 7.7 7.8 8.3 8.4 up E down ρ + (E) ρ (E) H, M µ f + f E F f + f f + f X L

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

元素分析

元素分析 : このマークが付してある著作物は 第三者が有する著作物ですので 同著作物の再使用 同著作物の二次的著作物の創作等については 著作権者より直接使用許諾を得る必要があります (PET) 1 18 1 18 H 2 13 14 15 16 17 He 1 2 Li Be B C N O F Ne 3 4 5 6 7 8 9 10 Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P

More information

X X 50keV X X (I) 15 2 (I) K keV X 5.4 X X X X (SR) 33keV X 33keV X KEK-AR 33keV, photons/s X 10x10cm 2 33 shots/s 33keV X GeV X X X Compt

X X 50keV X X (I) 15 2 (I) K keV X 5.4 X X X X (SR) 33keV X 33keV X KEK-AR 33keV, photons/s X 10x10cm 2 33 shots/s 33keV X GeV X X X Compt Development of Compact Laser Super-Cavity for High Flux X-ray X Abstract We are developing Pulsed Laser Super-Cavity for compact high brightness X-ray generator based on Inverse Compton Scattering with

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

OHO.dvi

OHO.dvi 1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v

More information

吸収分光.PDF

吸収分光.PDF 3 Rb 1 1 4 1.1 4 1. 4 5.1 5. 5 3 8 3.1 8 4 1 4.1 External Cavity Laser Diode: ECLD 1 4. 1 4.3 Polarization Beam Splitter: PBS 13 4.4 Photo Diode: PD 13 4.5 13 4.6 13 5 Rb 14 6 15 6.1 ECLD 15 6. 15 6.3

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A IS(A3)- 284 - No.e1 核種核種半減期エネルギー放出割合核種通番数値単位 (kev) (%) 1 1 1 MG-28 20.915 H 29.08 27.0000 β-/ce K Al-28 2 1 2 MG-28 20.915 H 30.64 2.6000 β-/ce L Al-28 3 2 1 SC-44M 58.6 H 270.84 0.0828 EC/CE CA-44 4 2

More information

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad SuperKEKB EMITTANCE GROWTH BY MISALIGNMENTS AND JITTERS IN SUPERKEKB INJECTOR LINAC Y. Seimiya, M. Satoh, T. Suwada, T. Higo, Y. Enomoto, F. Miyahara, K. Furukawa High Energy Accelerator Research Organization

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

Conceptual design in 2005 Snowmass ILC 偏極陽電子源 ~10 12 photons with 6.16ns spacing x ~3000 bunches x 5Hz = ~10 16 photons/sec γ-ray Laser electron beam

Conceptual design in 2005 Snowmass ILC 偏極陽電子源 ~10 12 photons with 6.16ns spacing x ~3000 bunches x 5Hz = ~10 16 photons/sec γ-ray Laser electron beam Conceptual design in 2005 Snowmass ILC 偏極陽電子源 ~10 12 photons with 6.16ns spacing x ~3000 bunches x 5Hz = ~10 16 photons/sec γ-ray Laser electron beam x 30 Multi-Compton chamber system Laser x 5 at present

More information

untitled

untitled - i - - i - Application of All-Optical Switching by Optical Fiber Grating Coupler Yasuhiko Maeda Abstract All-optical switching devices are strongly required for fast signal processing in future optical

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

XFEL/SPring-8

XFEL/SPring-8 DEVELOPMENT STATUS OF RF SYSTEM OF INJECTOR SECTION FOR XFEL/SPRING-8 Takao Asaka 1,A), Takahiro Inagaki B), Hiroyasu Ego A), Toshiaki Kobayashi A), Kazuaki Togawa B), Shinsuke Suzuki A), Yuji Otake B),

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

2 1 7 - TALK ABOUT 21 μ TALK ABOUT 21 Ag As Se 2. 2. 2. Ag As Se 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 Sb Ga Te 2. Sb 2. Ga 2. Te 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

ELECTRONIC IMAGING IN ASTRONOMY  Detectors and Instrumentation   5 Instrumentation and detectors ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10 Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

放射線化学, 92, 39 (2011)

放射線化学, 92, 39 (2011) V. M. S. V. 1 Contents of the lecture note by Prof. V. M. Byakov and Dr. S. V. Stepanov (Institute of Theoretical and Experimental Physics, Russia) are described in a series of articles. The first article

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

H1-H4

H1-H4 42 S H He Li H He Li Be B C N O F Ne Be B C N O F Ne H He Li Be B H H e L i Na Mg Al Si S Cl Ar Na Mg Al Si S Cl Ar C N O F Ne Na Be B C N O F Ne Na K Sc T i V C r K Sc Ti V Cr M n F e C o N i Mn Fe Mg

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

1 Visible spectroscopy for student Spectrometer and optical spectrum   phys/ishikawa/class/index.html 1 Visible spectroscopy for student Spectrometer and optical spectrum http://www.sci.u-hyogo.ac.jp/material/photo phys/ishikawa/class/index.html 1 2 2 2 2.1................................................

More information

2_R_新技術説明会(佐々木)

2_R_新技術説明会(佐々木) % U: 6.58%, Np, Am:.5%, Pu:.% 5.8% Cs 6.5% Sr %.9%Mo 8.74% Tc.9% TODA C 8 H 7 C 8 H 7 N CH C CH N CH O C C 8 H 7 O N MIDOA C 8 H 7 DOODA NTA + HN(C 8 H 7 ) + H O DCC + SOCl + HN(C 8 H 7 ) + Cl TODA (TODA)

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

2

2 Rb Rb Rb :10256010 2 3 1 5 1.1....................................... 5 1.2............................................. 5 1.3........................................ 6 2 7 2.1.........................................

More information

Canvas-tr01(title).cv3

Canvas-tr01(title).cv3 Working Group DaiMaJin DaiRittaikaku Multiparticle Jiki-Bunnsekiki Samurai7 Superconducting Analyser for Multi particles from RadioIsotope Beams with 7Tm of bending power (γ,n) softgdr, GDR non resonant

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L 19 P6 γ 2 3 27 NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter LaBr 3 (Ce) PMT 662keV 2.9% CsI(Tl) 7.1%

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

untitled

untitled --- = ---- 16 Z 8 0 8 8 0 Big Bang 8 8 s-process 50 r-process 8 50 N r-process s-process Hydrogen 71% Helium 8% Others 1.9% Heay 4-4% lements(>ni p-process (γ process? r-process s-process Big Bang H,He

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合 1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合の実効線 務従事者 区域外の 区域外の 量係数 量係数 の呼吸す 空気中の 水中の濃 る空気中 濃度限度

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

untitled

untitled MPPC 18 2 16 MPPC(Multi Pixel Photon Counter), MPPC T2K MPPC T2K (HPK) CPTA, MPPC T2K p,π T2K > 5 10 5 < 1MHz > 15% 200p.e. MIP 5p.e. p/π MPPC HPK MPPC 2 1 MPPC 5 1.1...................................

More information

RAA-05(201604)MRA対応製品ver6

RAA-05(201604)MRA対応製品ver6 M R A 対 応 製 品 ISO/IEC 17025 ISO/IEC 17025は 試験所及び校正機関が特定の試験又は 校正を実施する能力があるものとして認定を 受けようとする場合の一般要求事項を規定した国際規格 国際相互承認 MRA Mutual Recognition Arrangement 相互承認協定 とは 試験 検査を実施する試験所 検査機関を認定する国際組織として ILAC 国際試験所認定協力機構

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

橡実験IIINMR.PDF

橡実験IIINMR.PDF (NMR) 0 (NMR) 2µH hω ω 1 h 2 1 1-1 NMR NMR h I µ = γµ N 1-2 1 H 19 F Ne µ = Neh 2mc ( 1) N 2 ( ) I =1/2 I =3/2 I z =+1/2 I z = 1/2 γh H>0 2µH H=0 µh I z =+3/2 I z =+1/2 I z = 1/2 I z = 3/2 γh H>0 2µH H=0

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

陽電子科学 第4号 (2015) 3-8

陽電子科学 第4号 (2015) 3-8 4 (2015) 3 8 Japanese Positron Science Society Positron annihilation age momentum correlation (AMOC) measurement Abstract: Positron annihilation Age-MOmentum Correlation (AMOC) measurement is the coincidence

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

RN201602_cs5_0122.indd

RN201602_cs5_0122.indd ISSN 1349-1229 No.416 February 2016 2 SPECIAL TOPIC113 SPECIAL TOPIC 113 FACE Mykinso 113 SPECIAL TOPIC IUPAC 11320151231 RI RIBFRILAC 20039Zn30 Bi83 20047113 20054201283 113 1133 Bh107 20082009 113 113

More information

untitled

untitled (a) (b) (c) (d) (e) (f) (g) (f) (a), (b) 1 He Gleiter 1) 5-25 nm 1/2 Hall-Petch 10 nm Hall-Petch 2) 3) 4) 2 mm 5000% 5) 1(e) 20 µm Pd, Zr 1(f) Fe 6) 10 nm 2 8) Al-- 1,500 MPa 9) 2 Fe 73.5 Si 13.5 B 9 Nb

More information

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

Microsoft PowerPoint - 山形大高野send ppt [互換モード] , 2012 10 SCOPE, 2012 10 2 CDMA OFDMA OFDM SCOPE, 2012 10 OFDM 0-20 Relative Optical Power [db] -40-60 10 Gbps NRZ BPSK-SSB 36dB -80-20 -10 0 10 20 Relative Frequency [GHz] SSB SSB OFDM SSB SSB OFDM OFDM

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

加速器の基本概念 V : 高周波加速の基礎

加速器の基本概念  V : 高周波加速の基礎 .... V : KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html 2015 2015 4 16 1 2 (1) 3 (2) 4 5 6 ERL: Energy Recovery Linac LCLS: Linac Coherent Light Source LC : µ-µ Koji Takata (KEK)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

CdTe γ 02cb059e :

CdTe γ 02cb059e : CdTe γ 02cb059e : 2006 5 2 i 1 1 1.1............................................ 1 1.2............................................. 2 1.3............................................. 2 2 3 2.1....................................

More information

untitled

untitled MRR Physical Basis( 1.8.4) METEK MRR 1 MRR 1.1 MRR 24GHz FM-CW(frequency module continuous wave) 30 r+ r f+ f 1.2 1 4 MRR 24GHz 1.3 50mW 1 rf- (waveguide) (horn) 60cm ( monostatic radar) (continuous wave)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

X線分析の進歩36 別刷

X線分析の進歩36 別刷 X X X-Ray Fluorescence Analysis on Environmental Standard Reference Materials with a Dry Battery X-Ray Generator Hideshi ISHII, Hiroya MIYAUCHI, Tadashi HIOKI and Jun KAWAI Copyright The Discussion Group

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 14 m) ( 10 10 m) 2., 3 1 =reaction-text20181101b.tex

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information