Size: px
Start display at page:

Download ""

Transcription

1

2 B-S Granger SARV SV GMM QMLE MCMC Gibbs sampler(single-move sampler ) {h t } T t=1 single-move sampler sampling Gibbs sampler(multi-move sampler ) {h t } T t=1 multi-move sampler sampling

3 Gibbs sampler A-R M-H/A-R SV SV h t

4 1 stochastic volatility;sv SV Clark(1973) information arrival( ( Tauchen and Pitts(1983) information arrival ( ) ( ) Hull and White(1987) information arrival SV Taylor(1986) ARCH(Autoregressive Conditional Heteroskedasticity) SV Taylor SV SV SV ARCH SV ARCH, 1

5 ( Bollerslev, Engle and Nelson(1994) ) Black-Scholes(B-S) ARCH SV 3 SV (Markov-chain Monte Carlo;MCMC) 4 B-S,.1 B-S

6 .1 B-S, Bachelier.Black and Scholes(1973) Merton(1990)..1.1., , ( t) S t. t I t, [t, t + h] S t+h S t I t. I t,, ( ) St+h S t E t = 1 E t S t+h 1 < + S t S t.,e t ( ) E( I t )., I t,, ( ) St+h S t V t = 1 V S t St t S t+h < ( ) h E St+h S t t h +0 µ S (I t ). S t 3 S t

7 E t S t+h S t hµ S (I t )S t, d dτ E t(s τ ) = µ S (I t )S t, a.s. (1) τ=t.(1) E t (ds t )= µ S (I t )S t dt.. 1 ( ) h V St+h S t t h +0 σs (I t). V t S t+h V t S t hσs (I t)st ( V t(s t )=0),, d dτ V t(s τ ) = σs (I t)st, a.s. () τ=t,v t (ds t )=σs (I t)st dt. σ S (I t ) S t [ σ S (I t ) lim h +0 1 h V t ( St+h S t S t )] 1 (3).1., ds t = µ S (I t )S t dt + σ S (I t )S t dw t (4).,W t.(4), 4

8 .µ S (I t ) σ S (I t ) t,. Black and Scholes(1973),., σ S (I t ),. 1,.1.. Merton(1976), ds t S t =(µ λk)dt + σdw t + dq t (5), Y ( ), { Y 1 ( λdt) dq t = 0 ( 1 λdt).λ,dw t dq t,k = E Y [Y 1](E Y Y ). (5).1..,..1. SV. 5., 5

9 .,,,,. B-S., ds t = µ S S t dt + σ S S t dw t (6),µ S σ S. K t + h, { S t+h K, S t+h K [S t+h K] + = (7) 0, S t+h <K Black and Scholes(1973),.,. 0, Black- Scholes.,,,. (7),. B-S 6

10 ..,,, Q.,,. ds t = r t dt + σ S dw Q t (8) S t C t = C(S t,k,h,t)=v(t, t + h)e Q t [S t+h K] + (9). W Q t Q, E Q t Q, v(t, t + h) t + h t, r t. Y (t, t + h) 3 1 r t = lim Y (t, t + h) = lim log v(t, t + h) h 0 h 0 h 1 = lim (log v(t, t + h) log v(t, t)) h 0 h = d dτ v(t, τ) τ=t (10), ( W Q t ) [ t+h ] v(t, t + h) = exp r τ dτ (11) t,r t,(9), C t [S t+h K] +. S t S t+h 7

11 ,(9) t. C t = S t [Φ(d t ) e xt Φ(d t σ S h)] (1) x t d t = + σ S h (13) σ S h S t x t = log (14) Kv(t, t + h) Φ( ), (1) Black- Scholes, C t S t K v(t, t + h).x t moneyness 3 x t =0,. at the money. x t > 0, in the money. x t < 0, out of the money. B-S,,,... Hull and White(1987). W t. ds t = r t dt + σ St dw t S t (15) {σ St } t [0,T ], {W t } t [0,T ], 8

12 ,, r t.,(s t,σ St ) (S, σ S ), (1).(9). C t = v(t, t + h)e t [S t+h K] + = v(t, t + h)e t {E t [(S t+h K) + {σ Sτ } t τ t+h ]} (16), I t {σ Sτ } t τ t+h S t+h., W t,(1) v(t, t + h)e t [(S t+h K) + {σ Sτ } t τ t+h ] = S t E t [Φ(d 1t ) e xt Φ(d t )] (17), d 1t = x t γ(t, t + h) h d t = d 1t γ(t, t + h) h γ (t, t + h) = 1 h t+h t + γ(t, t + h) h σsτ dτ (18), Hull and White C t = S t E t [Φ(d 1t ) e xt Φ(d t )] (19) γ(t, t + h) ( ). 9

13 Hull and White(H-W) (19).,.(1) ()., P θ,θ Θ.,H-W. C t = S t F [σ St,x t,θ 0 ] (0) θ 0. (19)., (x t,θ), F [,x t,θ] 1 1,F [,x t,θ] (19) σ imp t = G[S t,c t,x t,θ] (1). Bajeux and Rochet 1 1., θ 0,,, (0)., SV,,., 1, Black-Scholes,.B-S 10

14 ω imp (t, t + h) C t = S t [Φ(d 1t ) e xt Φ(d t )] x t d 1t = ω imp (t, t + h) h + ωimp (t, t + h) h d t = d 1t ω imp (t, t + h) h x t = log S t Kv(t, t + h) () C t Hull and White B-S (19) () B-S ω imp (t, t+h) γ(t, t+h) ω imp (t, t+h) ( H-W ) at the money at the money x t =0 d t = d 1t Φ(d 1t ) e xt Φ(d t ) = Φ(d 1t ) 1 (19) () at the money B-S ω imp (t, t + h) ( ω imp (t, t + h) ) ( h γ(t, t + h) ) h Φ = E t Φ 0 h ω imp (t, t + h) E t γ(t, t + h) =E t [ 1 h t+h t ] 1 σ Sτ dτ B-S ω imp (t, t + h) 11

15 .,.,. (a) Thick tails 1960, Mandelbrot Fama. (b) Volatility clustering,.volatility clustering thick tails,..arch ( ) ( ).ARCH, Engle(198), SV volatility clustering. (c) Leverage effects Black(1976) leverage effect. leverage 1

16 ,.,Schwert(1989) leverage. (d) Long memory and persistence persistent..3 SV ARCH Granger I t t {x t }, {z t } I t {z s } t s=0 I t {z s } t s=0.1 ( Granger ) 4 E(x n t I t 1) =E(x n t I t 1 {z s } s=0 t 1 ), n =1, Granger z t x t 13

17 .3.1 ds t = µ t dt + σ t dw t S t du t = γ t dt + δ t dw U t Cov(dW t,dw U t )=ρ tdt (3).3 µ t,σ t,γ t,δ t,ρ t I U t = σ[u s,s t] 5 I t = σ[u τ,s τ ; τ t] (4).3. Granger R t = S t S t 1. S t 1 (3) R t+1 = µ(u t )+σ(u t )z t+1 (5) z t, leverage effects..4 z t i.i.d. Granger U t z t 14

18 .5 Granger z t U t.5.3.,.4 E[z t+1 (U τ,z τ ; τ t)] = E[z t+1 z τ ; τ t] =0, E[R t+1 (R τ ; τ t)] = E[E[R t+1 (U τ,r τ ; τ t)] (R τ ; τ t)] = E[E[R t+1 (U τ,z τ ; τ t)] (R τ ; τ t)] = E[µ(U t ) (R τ ; τ t)] (6),.4 E[z t+1 (U τ,z τ ; τ t)] = E[z t+1 z τ ; τ t] =1, Var[R t+1 (R τ ; τ t)] = E[Rt+1 (R τ; τ t)] (E[R t+1 (R τ ; τ t)]) = E[σ (U t )zt+1 (R τ ; τ t)] = E[σ (U t )E[zt+1 (U τ,r τ ; τ t)] (R τ ; τ t)] = E[σ (U t )E[zt+1 (U τ,z τ ; τ t)] (R τ ; τ t)] = E[σ (U t ) (R τ ; τ t)] (7), I R t (R τ ; τ t) (8) µ(u t ) I R t -. 15

19 (6),(7). E[R t+1 I R t ] = µ(u t) (9) Var[R t+1 I R t ] = E[σ (U t ) I R t ] (30) lagged autoregressive random variance models contemporaneous autoregressive random variance models.4. stochastic autoregressive volatility(sarv), µ(u t )=0 lagged autoregressive random variance models. R t+1 = σ t z t+1 (31) Cov(σ t+1,z t+1 I R t ) 0 (3) (3) leverage effect., contemporaneous autoregressive random variance models. R t = σ t z t (33) Cov(σ t+1,z t I R t ) 0 (34) 16

20 σ t,(3) (3) (33) (34). (3) (33) leverage effect.4. SARV ɛ t = σ t z t contemporaneous autoregressive random variance models R t = µ t + ɛ t (35).6 µ t I R t 1-,t 1,,ɛ t t 1., E(R t I R t 1 ) = µ t (36) Var(R t I R t 1 ) = E(σ t IR t 1 ) (37). R t (37). (1) (37). (). (a) z t. (b)z t, σt,ɛ t 3 ( 5.1 ). 1 17

21 σ t AR(1) Andersen(1994) σ q t = g(k t ), q {1, } K t = w + βk t 1 +[γ + αk t 1 ]u t (38) ũ t = u t GARCH(1,1),(38) K t = σ t,γ =0,u t = z t 1, σ t = w + βσ t 1 + ασ t 1z t 1.(35) (38) u t = zt 1,GARCH. ARCH.,SV,(38) K t = log σt,α=0,γũ t+1 = η t+1,w+γ = ω, β = φ, log σ t+1 = ω + φ log σ t + η t+1 (39)., η t.cov(η t+1,ɛ t ) 0 leverage effects. 18

22 .4.3 SARV. ɛ t = σ t z t σ q t = g(k t ), q {1, } (40) K t = w + βk t 1 +[γ + αk t 1 ]u t, 0 ũ t = u t 1, K t =(w + γ)+(α + β)k t 1 +[γ + αk t 1 ]ũ t (41).,w γ. α β..,andersen(1994) (,α = 0). K = w + γ 1 α β ρ = α + β (4) δ = γ α (41). K t = K + ρ(k t 1 K)+(δ + K t 1 )Ūt,Ūt = αũ t., K t 3 E(K t ),E(K t ),E(K tk t 1 ),3 K, ρ, δ 19

23 .,. (1) Y t σ t. () σ t K t. (1) z t.,z t, E( y t )= π E(σ t) E( y t y t j )= π E(σ tσ t j ) (43) E( yt y t j ) = π E(σ t σ t j).() g ũ t.,(39) SV,σ t = e Kt, ũ t, [ ] n E(σt n ) = exp E(K t)+ n Var(k t ) 8 E(σ m t σn t j )=E(σm t )E(σn t j ) exp [ mncov(kt,k t j ) 4 Cov(K t,k t j )=φ j Var(K t ) (44) ]. 0

24 3 SV.4.3 SV ɛ t = σ t z t, z t i.i.d.n(0, 1) (45) log σ t = ω + φ log σ t 1 + η t, η t i.i.d.n(0,σ η ) (46), z t η t,,leverage effects. 6 SV ARCH 3.1 (generalized method of moments;gmm) (quasi-maximum likelihood estimation;qmle) 3. MCMC.3.3 MCMC. 3.1 GMM QMLE Jacquier,Polson and Rossi(1994) GMM.(45),(46) SV θ =(ω, φ, ση ). T,m E ɛ c t ɛd t p m 1 g T (θ), W T, ˆθ T = arg max g T (θ) W T g T (θ) θ 1

25 ., GMM.Anderson,Chung and Sorensen(1999),. SV QMLE,Nelson(1988),.(45),, log ɛ t = log σ t + log z t (47),(47) (46),,(47) log zt, 3. MCMC MCMC h t log σt ω 1 φ ( ) ω σ r exp (1 φ)

26 (45),(46) ɛ t = ( ) ht σ r exp z t, z t i.i.d.n(0, 1) (48) h t = φh t 1 + η t, η t i.i.d.n(0,ση ) (49) (φ, σ η,σ r ) noninformative 7 f(φ) I[ 1, 1], f(σr) 1, f(σ σ η) 1 r ση (50) I[ 1, 1] [ 1, 1] Gibbs sampler(single-move sampler ) (φ, σ r,σ η ) f(φ, σ r,σ η {ɛ t} T t=1 ) Gibbs sampler( 5. ) f(φ σ r,σ η, {ɛ t} T t=1 ) f(σ r φ, σ η, {ɛ t } T t=1) f(σ η φ, σ r, {ɛ t} T t=1 ) 3

27 {h t } T t=1 8 f(φ σr,σ η, {h t} T t=1, {ɛ t} T t=1 ) (51) f(σr φ, ση, {h t } T t=1, {ɛ t } T t=1) (5) f(ση φ, σ r, {h t} T t=1, {ɛ t} T t=1 ) (53) f(h t φ, σr,σ η, {h s } s t, {ɛ t } T t=1), (t =1,,T) (54) (51),(5),(53) ( 5.5 ) ( T ) t= φ N h th t 1 ση T, T I[ 1, 1] (55) t= h t 1 t= h t 1 σr Gamma σ η Gamma ( ( ) T, T t=1 ɛ t exp( h t ) T 1, ) T t=1 (h t φh t 1 ) (54) h t Gibbs sampler (56) (57) σ (0) r,σ (0) η, {h (0) t } T t=1 4

28 1 f(φ σr (0),ση (0), {h (0) t } T t=1, {ɛ t} T t=1 ) sampling φ(1) f(σr φ (1),ση (0), {h (0) t } T t=1, {ɛ t } T t=1) sampling σr (1) f(ση φ(1),σr (1), {h (0) t } T t=1, {ɛ t} T t=1 ) sampling σ(1) η f(h 1 φ (1),σr (1),ση (1), {h (0) t } T t=, {ɛ t } T t=1) sampling h (1) 1 f(h φ (1),σr (1),ση (1),h (1) 1, {h (0) t. f(h T φ (1),σr (1),ση (1), {h (1) t } T 1 } T t=3, {ɛ t} T t=1 t=1, {ɛ t} T t=1 ) sampling h(1) ) sampling h(1) T. n f(φ σ (n 1) r,ση (n 1) f(σ r φ(n),σ (n 1) η f(σ η φ (n),σ (n) r f(h 1 φ (n),σ (n) r f(h φ (n),σ (n) r. f(h T φ (n),σ (n) r, {h (n 1) } T t=1, {ɛ t } T t=1) sampling φ (n) t, {h (n 1) t } T t=1, {ɛ t} T t=1 ) sampling σ(n) r, {h (n 1) } T t=1, {ɛ t } T t=1) sampling σ (n) t,ση (n),ση (n),h (n),ση (n) n, (φ (n),σ (n) r, {h (n 1) t } T t=, {ɛ t} T t=1 ) sampling h(n) 1 1, {h (n 1) t } T t=3, {ɛ t } T t=1) sampling h (n), {h (n) t,ση (n) } T 1 t=1, {ɛ t } T t=1) sampling h (n), {h (n) } T t=1) f(φ, σ r,σ η, {h t} T t=1 {ɛ t} T t=1 ) 5 t η T

29 n (φ (n),σ (n) r,ση (n), {h (n) t } T t=1) f(φ, σ r,σ η, {h t} T t=1 {ɛ t} T t=1 ) (M ) N (φ (M+1),σ (M+1) r (φ (M+N),σ (M+N) r,σ (M+1) η.,σ (M+N) η, {h (M+1) t } T t=1), {h (M+N) t } T t=1) f(φ, σ r,σ η, {h t } T t=1 {ɛ t } T t=1) ˆφ = 1 N ˆσ r = 1 N ˆσ η = 1 N M+N i=m+1 M+N i=m+1 M+N i=m+1 φ (i) σ (i) r σ (i) η 3.. {h t } T t=1 single-move sampler sampling (54) ( 5.6 ) f(h t θ, {h s } s t, {ɛ t } T t=1) ( exp h ) ( t exp ɛ t σr ) exp( h t ) exp ( (h ) t µ t ) σ t (58) 6

30 µ t = h φ, t =1 φ(h t+1 h t 1 ), t T 1 1+φ φh T 1, t = T (59) σ t = σ η φ, t =1 σ η 1+φ, t T 1 ση, t = T (60) c h t f(h t ) cg(h t ) g( ) A-R ( 5.3 ) f( ) C, C exp( h t ) h t log f(h t ) = log C h t (h t µ t ) ɛ t exp( h σ t σr t ) log C h t (h t µ t ) ɛ t exp( h t σ )(1 (h t h t )) t = log C + log C + log σ r 1 π σt (h t µ t ) σ t (61) 7

31 ., ( µ ɛ t = µ t + σ t t ( f (h t ) = exp h t ( g (h t ) = exp h t = g(h t ) = c = CC σ r ) exp( h t ) 1 ) ( exp ɛ t σr (h t µ t ) σ ( t C exp (h t µ t ) π σt σ t ( 1 exp (h t µ t ) π σt σ t ) exp( h t ) exp ( (h ) t µ t ) σ t ) ɛ t exp( h σr t )(1 (h t h t )) ) ).A-R f(h t ) cg(h t ) = f (h t ) g (h t )., µ t, σ t f (h t ) g (h t ), 1 f (h t ) g (h t ), f(h t ) h t., h t,,g(h t ) f (h t ) g (h t )., f (h t ) h t, g(h t ) h t., ĥ t arg max h t f (h t ) (6) 8

32 ĥt = µ t. h t = log σ r ɛ t (ĥt µ t σ t + 1 ) (63) 3..3 Gibbs sampler(multi-move sampler ) Shephard and Pitt(1997) {h t } T t=1 singlemove sampler φ 1 Gibbs sampler persistent φ 1 Shephard and Pitt(1997) Gibbs sampler {h t } T t=1 L Gibbs sampler 1 f(φ σr (0),ση (0), {h (0) s }T s=1, {ɛ s} T s=1 ) sampling φ(1) f(σr φ(1),ση (0), {h (0) s }T s=1, {ɛ s} T s=1 ) sampling σ(1) r f(ση φ(1),σr (1), {h (0) s }T s=1, {ɛ s} T s=1 ) sampling σ(1) η f({h s } k 1 s=1 θ(1), {h (0) s }T s=k 1 +1, {ɛ s} T s=1 ) sampling {h(1) s }k 1 s=1 f({h s } k s=k 1 +1 θ(1), {h (1) s }k 1. s=1, {h (0) s }T s=k +1, {ɛ s} T s=1 ) sampling {h (1) s }k s=k 1 +1 f({h s } T s=k L +1 θ(1), {h (1) s }k L s=1, {ɛ s } T s=1 ) sampling {h(1) s }T s=k L +1. 9

33 n f(φ σ (n 1) r,ση (n 1) f(σ r φ (n),σ (n 1) η f(σ η φ(n),σ (n) r, {h s (n 1) } T s=1, {ɛ s} T s=1 ) sampling φ(n), {h (n 1) } T s=1, {ɛ s } T s=1) sampling σ (n) s, {h s (n 1) } T s=1, {ɛ s} T s=1 ) sampling σ(n) η f({h s } k 1 s=1 θ(n), {h s (n 1) } T s=k 1 +1, {ɛ s} T s=1 ) sampling {h(n) s } k 1 s=1 f({h s } k s=k 1 +1 θ(n), {h (n) s } k 1. s=1, {h s (n 1) } T s=k +1, {ɛ s} T s=1 ) sampling r {h (n) s } k s=k 1 +1 f({h s } T s=k L +1 θ(n), {h (n) s } k L s=1, {ɛ s } T s=1 ) sampling {h(n) s } T s=k L +1. θ (i) =(φ (i),σ (i) r,3..1.,ση (i) ) {h t } T t=1 multi-move sampler sampling {h s } t+k s=t 1 f({h s } t+k s=t {h s } t 1 s=1, {h s } T s=t+k+1, {ɛ s } T s=1,θ) sampling {h s } t+k s=t Shephard and Pitt(1997) {h s } t+k s=t {η s } t+k s=t f({η s } t+k s=t {h s } t 1 s=1, {h s } T s=t+k+1, {ɛ s } T s=1,θ) (64) h t 1 {η s } t+k s=t (49) {h s } t+k s=t 30

34 (64) ( [ ]) hs,l(h s ) + ɛ s exp( h σr s ) log f({η s } t+k s=t {h s } t 1 s=1, {h s } T s=t+k+1, {ɛ s } T s=1,θ) = + log f({η s } s=t t+k ) + log f({ɛ s} s=t t+k h s t+k t+k t+k = + log f(η s )+ log f(ɛ s h s,σr) s=t = 1 σ η = 1 σ η s=t t+k t+k ηs s=t s=t [ hs + ɛ s σ r s=t,θ) ] exp( h s ) t+k t+k ηs + l(h s ) (65) s=t (65) {ĥs} s=t t+k ({ĥs} t+k s=t ) g 1 σ η = 1 σ η log g t+k t+k ηs + s=t t+k s=t s=t t+k ηs + s=t s=t [ l(ĥs)+(h s ĥs)l (ĥs)+ 1 ] (h s ĥs) l (ĥs) [ ] 1 l (ĥs) ĥ s l (ĥs) l (ĥs) h s l (ĥs) = 1 ( ɛ s σ r ) exp( ĥs) 1 l (ĥs) = ɛ s σ r exp( ĥs) y s = ĥs l (ĥs), s = t,,t+ k (66) l (ĥs) 31

35 y s h s ( ) y s = h s + ξ s, ξ s N 0, 1 (67) l (ĥs) h s = φh s 1 + η s, η s N(0,ση ) (68) de Jong and Shephard(1995) simulation smoother {η s } t+k s=t g a t = φh t 1,P t = σ η i = 0,,k e t+i,d t+i,k t+i, (i =0,,k) e t+i = y t+i a t+i (69) D t+i = P t+i 1 l (ĥt+i) (70) K t+i = φp t+i (71) D t+i L t+i = φ K t+i (7) a t+i+1 = φa t+i + K t+i e t+i (73) P t+i+1 = φp t+i + σ η (74) U t+k =0,r t+k =0 e t+i,d t+i,k t+i, (i =0,,k) 3

36 i = k,, 0 {η s } t+k s=t C t+i = 1 U t+i (75) ξ t+i N(0,C t+i ) (76) η t+i = r t+i + ξ t+i (77) V t+i = U t+i L t+i (78) r t+i 1 = e t+i D t+i + L t+i r t+i V t+iξ t+i C t+i (79) U t+i 1 = 1 + L D t+iu t+i + V t+i (80) t+i C t+i (76) ξ t+i 0, C t+i g {η s } t+k s=t M-R/A-R f (1) {ηs 0}t+k s=t [ f({η ()g {η s } t+k 0 s=t min s } s=t) t+k ] g({ηs 0}t+k s=t), 1 [ f({η 0 1 min s } s=t) t+k ] g({ηs} 0 s=t), 1 t+k (3) (3) α({ηs 0 }t+k s=t, {η s} s=t t+k )= 1, { f({ηs 0}t+k s=t) g({ηs 0}t+k s=t) g({ηs 0}t+k s=t) f({ηs 0}t+k s=t), f({ηs} 0 t+k s=t) >g({ηs} 0 s=t) t+k f({η s } t+k s=t) g({η s } s=t) t+k [ f({ηs } t+k ] { min s=t)g({ηs 0}t+k s=t) f({ηs} 0 s=t)g({η t+k s } s=t), 1 f({ηs 0, }t+k s=t) >g({ηs 0}t+k s=t) t+k f({η s } t+k s=t) <g({η s } s=t) t+k 33

37 (4)() {η s } s=t t+k α({ηs 0}t+k s=t, {η s } s=t) t+k 1 α({η 0 s} t+k s=t, {η s } t+k s=t) {ĥs} t+k s=t {ĥs} t+k s=t (76) {y s } t+k s=t (67) (68) {h s } t+k s=t h t t 1 = φh t 1,P t t 1 = ση i =0,,k h t+i t+i 1,P t+i t+i 1,h t+i t+i,p t+i t+i, (i = 0,,k) h t+i t+i 1 = φh t+i 1 t+i 1 (81) P t+i t+i 1 = φ P t+i 1 t+i 1 + σ η (8) h t+i t+i = h t+i t+i 1 + P t+i t+i 1 F t+i ν t+i (83) P t+i t+i = P t+i t+i 1 P t+i t+i 1 F t+i (84) ν t+i = y t+i h t+i t+i 1 (85) F t+i = Pt+i t+i 1 1 l (ĥt+i) (86) h t+i t+i 1,P t+i t+i 1,h t+i t+i,p t+i t+i, (i = 0,,k) i = k,, 0 h t+i t+k, (i =0,,k) 34

38 h t+i t+k = h t+i t+i + P t+i(h t+i+1 t+k h t+i+1 t+i ) (87) P t+i t+k = P t+i t+i + P t+i (P t+i+1 t+k P t+i+1 t+i ) (88) P t+i = φ P t+i t+i P t+i+1 t+i (89) h t+i t+k, (i =0,,k) (76) {y s } t+k s=t (67) (68) {h s } t+k s=t {h s } t+k s=t {ĥs} t+k s=t Shephard and Pitt(1997) U i [0, 1] [ k i = int T i + U ] i, i =1,,L L + int[x] x 3.3 MCMC 9,,(48),(49) 35

39 {ɛ s } T s=1.{h s} T s=1 single-move sampler Gibbs sampler Gibbs sampler CD(convergence diagnostic) : 90 CD φ [0.8717, 0.97] ση [0.0059, ] σr [0.8799, ] SV,ARCH. SV ARCH,.,SV., GMM,QMLE MCMC 36

40 ,, SV. 37

41 5 5.1 σ t z t., E(ɛ t σ t )=σ t E(z t σ t )=σ t E(z t )=σ t, E(σ t )=E(E(ɛ t σ t )) = E(ɛ t ). Jensen E(ɛ 4 t ) = E(σ4 t )E(z4 t ) = 3E((σ t ) ) 3(E(σ t )) = 3(E(ɛ t )),. E(ɛ 4 t ) (E(ɛ t )) 3 5. Gibbs sampler (θ 1,θ,θ 3 ) 3 f(θ 1,θ,θ 3 ) f(θ 1,θ,θ 3 ) f(θ 1 θ,θ 3 ) f(θ θ 3,θ 1 ) f(θ 3 θ 1,θ ) 38

42 (θ 1,θ,θ 3 ) f(θ 1,θ,θ 3 ) Gibbs sampler (θ (0),θ(0) 3 ) f(θ 1 θ (0),θ(0) 3 ) θ (1) 1 θ (1) 1 f(θ θ (0) 3,θ(1) 1 ) θ(1) θ (1) 1 θ(1) f(θ 3 θ (1) 1,θ (1) ) θ (1) 3 1 (θ (1),θ (1) 3 ) (θ () 1,θ (),θ () 3 ) n (θ (n) 1,θ(n),θ(n) 3 ) n (θ (n) 1,θ (n),θ (n) 3 ) f(θ 1,θ,θ 3 ) 5.3 A-R f(x) ( g(x) ) f(x) A-R(acceptance-rejection; ) g(x) x f(x) cg(x)( c ) f(x) (1)g(x) x [0, 1] u 39

43 () f(x ) cg(x ) x f(x) ( ) 1 f(x ) cg(x ) (1) u f(x ) cg(x ) x u > f(x ) (1) cg(x ) ( Pr x u f(x) ) cg(x) = = ( Pr u f(x) cg(x) ( Pr u f(x) cg(x) f(x) cg(x) g(x) f(x) = cg(x) g(x)dx = f(x) ) x g(x) ) x g(x)dx f(x) f(x)dx g(x) f(x) g(x) cg(x) c 5.4 M-H/A-R 5.3 A-R x f(x) cg(x) g(x) f(x) M-H/A-R(Metropolis-Hasting/acceptancerejection) 5.3 g(x) M-H/A-R f(x) N (X 1,,X N ) 40

44 (1)n =1 x n >1 x = X n 1 [ ] f(x) ()A-R min cg(x), 1 y X n (3) α(x, y) = 1, { f(x) cg(x) cg(x) f(x), f(x) >cg(x) f(y) cg(y) [ ] { f(y)g(x) min f(x)g(y), 1 f(x) >cg(x), f(y) <cg(y) (4)() y α(x, y) 1 α(x, y) X n = y X n = x (5)n <N n = n +1 () n = N f(x) cg(x) α(x, y) =1 A-R 41

45 5.5 SV,h 1,f(h 1 θ) c( ). f(φ ) f(θ, {h s } T s=1, {ɛ s} T s=1 ) = f(θ)f({h s } T s=1 θ)f({ɛ s} T s=1 {h s} T s=1,θ) = f(φ)f(ση)f(σ r)f(h T h T 1,θ) f(h 1 θ)f({ɛ s } T s=1 {h s } T s=1,σr) T f(φ) exp ( (h ) t φh t 1 ) t= ση ) ( P T t= φ hth t 1 P T t= exp h t ση P T t= h t I[ 1, 1] f(σ η ) =f(σ η ) dσ η dση f(θ, {h s } T s=1, {ɛ s} T s=1 )σ4 η = f(θ)f({h s } T s=1 θ)f({ɛ s } T s=1 {h s } T s=1,θ)σ 4 η = f(φ)f(ση )f(σ r )f(h T h T 1,θ) f(h 1 θ)f({ɛ s } T s=1 {h s} T s=1,σ r )σ4 η T f(ση 1 )σ4 η exp ( (h ) t φh t 1 ) σ t= η ση ( ) =(ση ) T 1 1 exp ση P T t= (ht φh t 1) 4

46 f(σ r ) =f(σ r ) dσ r dσr f(θ, {h s } T s=1, {ɛ s} T s=1 )σ4 r = f(θ)f({h s } T s=1 θ)f({ɛ s} T s=1 {h s} T s=1,θ)σ4 r = f(φ)f(ση )f(σ r )f(h T h T 1,φ,ση ) f(h 1 θ)f({ɛ s } T s=1 {h s} T s=1,σ r )σ4 r T ( ) f(σr)σ r 4 1 σ t=1 r exp(h t /) exp ɛ t σr exp(h t ) ( ) (σr ) T 1 exp σr P T t=1 ɛ t exp( ht) 5.6 SV h t 5.5,h 1,f(h 1 θ) c( ). f(h t θ, {h s } s t, {ɛ s } T s=1 ) = f({ɛ s } T s=1 θ, {h s } T f(θ, {h s } T s=1 s=1) ) f(θ, {h s } s t, {ɛ s } T s=1) = f({ɛ s } T s=1 θ, {h s } T f(θ, {h s } s t ) s=1)f(h t θ, {h s } s t ) f(θ, {h s } s t, {ɛ s } T s=1 ) f(ɛ 1 θ, h 1 ) f(ɛ T θ, h T ) f({h s} T s=1 θ) f({h s } s t θ) f(ɛ t θ, h t )f({h s } T s=1 θ) = f(ɛ t θ, h t )f(h T h T 1,θ) f(h 1 θ) f(ɛ 1 θ, h 1 )f(h h 1,θ), t =1 f(ɛ t θ, h t )f(h t h t 1,θ)f(h t+1 h t,θ), t T 1 f(ɛ T θ, h T )f(h T h T 1,θ), t = T 43

47 t =1 f(h t θ, {h s } s t, {ɛ s } T s=1) ( ) 1 σ r exp(h 1 /) exp ɛ 1 1 exp ( (h ) φh 1 ) σr exp(h 1 ) σ η ση ( exp h ) ( ) 1 exp ɛ 1 exp( h σr 1 ) exp (h 1 h φ ) t T 1 σ η φ f(h t θ, {h s } s t, {ɛ s } T s=1) ( exp h ) ( ) t ɛ t exp σr exp(h exp t) ( exp h ) ( 1 exp ɛ t σr t = T ) exp( h t ) ( (h t φh t 1 ) exp σ η ) exp ( h t φ(h t 1+h t+1 ) σ η 1+φ 1+φ ) ( (h ) t+1 φh t ) σ η f(h t θ, {h s } s t, {ɛ s } T s=1) ( ) 1 σ r exp(h T /) exp ɛ T 1 exp ( (h ) T φh T 1 ) σr exp(h T ) σ η ση ( exp h ) ( ) T exp ɛ T exp( h σr T ) exp ( (h ) T φh T 1 ) ση 44

48 6 1 ( ) ds E WqY = E qy [(α λk)dt + dq] S V WqY ( ds S ) = E Y [(α λk)dt +(Y 1)λdt] =αdt = E WqY [ λkdt + dw + dq] E qy [σ dt +(dq) λkdtdq] (σ + E Y (Y 1) )dt. E WqY I t dw t,dq t,y. 3 [t, t + h], v(t, t + h) = exp( hy (t, t + h)) Y (t, t + h) = 1 log v(t, t + h) h. 4 (1988) Granger (1988) Granger. x t (predicton mean squared error:pmse) σ (x t I t 1 ) σ (x t I t 1 {z s } s=0 t 1 ) σ (x t I t 1 ) t 1 PMSE σ (x t I t 1 {z s } t 1 s=0 ) t 1 {z s} t 1 s=0 ) PMSE 6.1 (Granger ) σ (x t I t 1 )=σ (x t I t 1 {z s } t 1 s=0 ) Granger z t x t 45

49 Granger x t z t PMSE 5 t µ t,σ t,γ t,δ t,ρ t I U t - 6 z t η t,(46) z t 1 ɛ t = σ t z t log σ t = ω + φ log σ t 1 + λz t 1 + η t leverage effects. 7 φ [ 1, 1] ση σ r log ση log σ r [, ] σ η σr f(ση)=f(log σr) d log σ η dση 1 ση f(σ r )=f(log σ r ) d log σ r dσ r 1 σr 8 f(φ, σr,σ η, {h t} T t=1 {ɛ t} T t=1 ) {h t} T t=1 (φ, σr,σ η, {h t} T t=1 ) Gibbs sampler 9 GAUSS. 10 (6),f (h t ) log f (h t )., (log f (h t )). 11 CD {θ (i) } i= {θ (i) } 3000 i= {θ(i) } i=7001 {θ (i) } 3000 i=1 θ 1 ˆσ 1 {θ (i) } i=7001 θ ˆσ CD θ 1 CD = θ ˆσ ˆθ 3000, 3000 {θ (i) } 3000 i= {θ(i) } i=7001

50 [1],,, (1988) [],,, (000) [3] Andersen, T.G. Stochastic autoregressive volatility: A framework for volatility modeling Math.Finance, Vol.4, (1994), pp75-10 [4] Andersen, T.G., Chung, H.J. and Sorensen, B.E. Efficient Method of Moments Estimation of a Stochastic Volatility Model: A Monte Carlo Study Journal of Econometrics, Vol.91, (1999), pp61-87 [5] Black, F. Studies in stock price volatility changes Proceeding of the 1976 Business Meeting of the Business and Economic Statistics Section, Amer. Statist. Assoc., (1976), pp [6] Black, F. and Scholes, M. The pricing of options and corporate liabilities J.Politic.Econom., Vol.81, (1973), pp [7] Bollerslev, T., Engle, R.F., and Nelson, D.B. ARCH Models in R.F.Engle and D.L.McFadden(eds), The Handbook of Econometrics, Vol.4, North-Holland, (1994), pp [8] Chib, S., and Greenberg, E. Understanding the Metropolis- Hastings Algorithim American Statistician, Vol.49, (1995), pp

51 [9] Clark, P. A Subordinated Stochastic Process Model with Finite Variance for Speculative Process Econometrica, Vol.41, (1973), pp [10] de Jong, P. and Shephard, G. The Simulation Smoother for Time Series Biometrika, Vol.8, (1995), pp [11] Engle, R.F. Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation Econometrica, Vol.55, (198), pp [1] Ghysels, Harvey and Renault Stochastic Volatility in G.S.Maddala and D.L.Rao(eds), The Handbook of Econometrics, North-Holland, (1996), pp [13] Hull, J. and White, A. The pricing of options on assets with stochastic volatilities J.Finance, Vol.4, (1987), pp [14] Jacquier, E., Polson, N.G., and Rossi, P.E. Bayesian analysis of stochastic volatility models (with discussion) J.Business Econom.Statist., Vol.1, (1994), pp [15] Merton, R.C. Option pricing when underlying stock returns are discontinuous J.Financ.Econom., Vol.3, (1976), pp [16] Merton, R.C. Continuous Time Finance, Basil Blackwell, Oxford, (1990) 48

52 [17] Nelson, D.B. The Time Series Behavior of Stock Market Volatility and Returns unpublished doctoral dissertation, Department of Economics, M.I.T. [18] Schwert, G.W. Business cycles, financial cycles and stock volatility Carnegie-Rochester Conference Series on Public Policy, Vol.39, (1989), pp83-16 [19] Shephard, G. and Pitt, M.K. Likelihood Analysis of Non- Gaussian Measurement Time Series Biometrika, Vol.84, (1997), pp [0] Tauchen, G. and Pitts, M. The Price Variability-Volume Relationship on Speculative Markets Econometrica, Vol.51, (1983), pp [1] Taylor, S.J. Modeling Financial Time Series, John Wiley Sons, (1986) 49

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

日経225オプションデータを使ったGARCHオプション価格付けモデルの検証

日経225オプションデータを使ったGARCHオプション価格付けモデルの検証 GARCH GARCH GJREGARCH Duan Duan t GARCHGJREGARCH GARCH GJR EGARCHGARCHGJRt E-mail: twatanab@bcomp.metro-u.ac.jp Black and ScholesBS Engle ARCHautoregressive conditional heteroskedasticity BollerslevGARCHgeneralized

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’« 2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

「国債の金利推定モデルに関する研究会」報告書

「国債の金利推定モデルに関する研究会」報告書 : LG 19 7 26 2 LG Quadratic Gaussian 1 30 30 3 4 2,,, E-mail: kijima@center.tmu.ac.jp, E-mail: tanaka-keiichi@tmu.ac.jp 1 L G 2 1 L G r L t),r G t) L r L t) G r G t) r L t) h G t) =r G t) r L t) r L t)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

082_rev2_utf8.pdf

082_rev2_utf8.pdf 3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)

More information

Working Paper Series No March 2012 日本の商品先物市場におけるボラティリティの 長期記憶性に関する分析 三井秀俊 Research Institute of Economic Science College of Economics, Nihon Un

Working Paper Series No March 2012 日本の商品先物市場におけるボラティリティの 長期記憶性に関する分析 三井秀俊 Research Institute of Economic Science College of Economics, Nihon Un Working Paper Series No. 11-04 March 2012 日本の商品先物市場におけるボラティリティの 長期記憶性に関する分析 三井秀俊 Research Institute of Economic Science College of Economics, Nihon University 2012 3, FIGARCH, FIEGARCH.,,, ( ),., Student-t,,

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1 2016 1 12 4 1 2016 1 12, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, 1980 1990.,, 225 1986 4 1990 6, TOPIX,1986 5 1990 2, explosive. 2,.,,,.,, 1986 Q2 1990 Q2,,. :, explosive, recursiveadf,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

16 7 5

16 7 5 16 7 5 1 2 1.1.......................................... 2 1.2....................................... 5 1.2.1.................................... 5 1.2.2............................... 6 1.2.3...............................

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) LA-VAR 1 1 1973 4 2000 4 Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) E-mail b1215@yamaguchi-u.ac.jp 2 Toda, Hiro Y. and Yamamoto,T.(1995) 3

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

kanatani0709wp.dvi

kanatani0709wp.dvi Recent Studies on Estimation of Volatility in the Presence of Market Microstructure Noise 2009 9 RV MMN 21730174 522-8522 1-1-1 HP: http://www.biwako.shiga-u.ac.jp/sensei/t-kanatani/ Email: t-kanatani@biwako.shiga-u.ac.jp

More information

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich Vol. 3 No. 2 51 64 (Mar. 2010 1 1 1 An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koichi Miyazaki 1 and Koji Nishiki 1 Preceding researches

More information

02.„o“φiflì„㙃fic†j

02.„o“φiflì„㙃fic†j X-12-ARIMA Band-PassDECOMP HP X-12-ARIMADECOMP HPBeveridge and Nelson DECOMP X-12-ARIMA Band-PassHodrick and PrescottHP DECOMPBeveridge and Nelson M CD X ARIMA DECOMP HP Band-PassDECOMP Kiyotaki and Moore

More information

財政赤字の経済分析:中長期的視点からの考察

財政赤字の経済分析:中長期的視点からの考察 1998 1999 1998 1999 10 10 1999 30 (1982, 1996) (1997) (1977) (1990) (1996) (1997) (1996) Ihori, Doi, and Kondo (1999) (1982) (1984) (1987) (1993) (1997) (1998) CAPM 1980 (time inconsistency) Persson, Persson

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

1

1 1 , Cross-Entropy Cross-Entropy ( ) (Coin flipping, finding max) 2 , ( ).. X = (X 1,, X n ) : R n - H : R n R f : X., l = H(x)f(x)dx = E f [H(X)] R n., E f : f X. 3 (CMC),, X 1,, X N, i.i.d, f, ˆl CMC

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

39, 1, , Empirical Analysis on Jump Detection in High-Frequency Data Hiroki Masuda and Takayuki Morimoto, (realized volatility, RV).,, ( )

39, 1, , Empirical Analysis on Jump Detection in High-Frequency Data Hiroki Masuda and Takayuki Morimoto, (realized volatility, RV).,, ( ) 39, 1, 2009 9 33 63, Empirical Analysis on Jump Detection in High-Frequency Data Hiroki Masuda and Takayuki Morimoto, (realized volatility, RV).,, ( ) realized bipower variation (BPV)., BPV, Lee and Mykland

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an CDO 2010 5 18 CDO(Collateralized Debt Obligation) Duffie and Garleânu[4] CDO CDS(Credit Default Swap) Duffie and Garleânu[4] 4 CDO CDS CDO CDS CDO 2007 CDO CDO CDS 1 1.1 2007 2008 9 15 ( ) CDO CDO 80 E-mail:taiji.ohka@gmail.com

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

わが国企業による資金調達方法の選択問題

わが国企業による資金調達方法の選択問題 * takeshi.shimatani@boj.or.jp ** kawai@ml.me.titech.ac.jp *** naohiko.baba@boj.or.jp No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * E-mailtakeshi.shimatani@boj.or.jp ** E-mailkawai@ml.me.titech.ac.jp

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/081051 このサンプルページの内容は, 初版 1 刷発行時のものです. i AI ii z / 2 3 4 5 6 7 7 z 8 8 iii 2013 3 iv 1 1 1.1... 1 1.2... 2 2 4 2.1...

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Managemen

Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Managemen Multivariate Realized Stochastic Volatility Models with Dynamic Correlation and Skew Distribution: Bayesian Analysis and Application to Risk Management 2019 3 15 Dai Yamashita (Hitotsubashi ICS) MSV Models

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate School of Economics and Institute of Economic Research

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information