( ) 1

Size: px
Start display at page:

Download "( ) 1"

Transcription

1 ( ) 1

2 1 ( ),,. R R R R : (a, b) a + b, R R R : (a, b) a b, R. (R1) R +. (R2) R a (b c) = (a b) c. (R3) R a (b + c) = a b + a c, (a + b) c = a c + b c. (R4) R 0, R e 0, a R e a = a e = a. e R, 1 1 R. 0 0 R. R a b = b a, R.. R, R Z R Z R = {a R b R a b = b a }. Z R R. Z R R. R. R a, a b = b a = 1 R b R, a. b a 1, a. R R. R. R. K K. (K1) K. (K2) K = K {0}, K. 2

3 K K. K, K. K. A K, λ K, a, b A (λ a) b = a (λ b) = λ (a b), A K K. A K, K A : λ λ1 A. K 1 A K, K A. R, M +. ( ) M R M : (u, a) ua (1), a, b R, u, v M, M R. (M1) (u + v)a = ua + va (M2) u(a + b) = ua + ub (M3) u(a b) = (ua)b (M4) u1 R = u R. R 1 R 2, M R 1 R 2., a 1 R 1, a 2 R 2, u M (a 1 u)a 2 = a 1 (ua 2 ), M (R 1, R 2 ). R. R M, {0} M R, R ( )R, R R ( ).. R, {0} R,. 3

4 2 2.1 R. M R. End R (M) End R (M) = {f : M M f R } (f + g)(u) = f(u) + g(u), (f g)(u) = f(g(u)) (u M)., End R (M). M. End R (M) M M : (f, u) f(u), M End R (M). R, M (End R (M), R). End R (M) Aut R (M), M. Aut R (M) = {f End R (M) f }. 1 (Schur) M R, End R (M). f End R (M), f 0. f 0, Kerf M {0} Imf. M, Kerf = {0} Imf = M, f, f Aut R (M). 2.2 R, m, n, M m,n (R) R m n. m = n, M n,n (R) M n (R). M n (R), R n. i = 1, 2,, n, j = 1, 2,, n, e ij (i, j) 1, 0 M n (R). e ij M n (R). e ij. e ij e kl = { eil (j = k) 0 Mn (R) (j k) (1 i, j, k, l n). 4

5 e ij M n (R)e ij e ij M n (R) 0 0 a 1i 0 0 M n (R)e ij =..... j a 1i,, a ni R, 0 0 a ni e ij M n (R) = a j1 a jn i a j1,, a jn R M n (R) R. R a 1 R n a 2 =. a 1, a 2,, a n R a n. R n 1 0 e 1 = 0, e 2 = ,, e n = e 1,, e n R n. End R (R n ) f, a 1j a 2j f(e j ) =., (a 1j, a 2j,, a nj R, j = 1, 2,, n) a nj. M n (R) a f a f = (a ij ) 1 i,j n, f(u) = a f u (u R n ). f a f, End R (R n ) = M n (R)., End R (R n ) M n (R). 2.3 D. 1 M n (D). 5

6 e ij, (1 i, j n) M n (D). I M n (D) {0 Mn (D)}, 0 Mn (D) a I. a (k, l) a kl 0. (a 1 kl e ik) a e li = e ii i = 1, 2,, n. I 1 Mn (D) = e 11 + e e nn = n (a 1 kl e ik) a e li I i=1, I. I = M n (D). 2 D n M n (D). D n e 1, e 2,, e n, M n (D) {e ij } 1 i,j n. D n 0 u = e 1 a e n a n, (a 1,, a n D). j a j 0, i = 1, 2,, n, a 1 j e ij u a 1 j e ij u = e i., e 1, e 2,, e n u M n (D) M n (D)u. M n (D)u = D n u D, u 0. 3 M n (D) D n. M n (D) D n. M n (D) {e ij } 1 i,j n, 1 Mn (D) = e 11 + e e nn. M M n (D), 0 u M. u = 1 Mn (D)u = e 11 u + e 22 u + + e nn u, i e ii u 0. e ii u M n (D) M n (D)e ii u. M M = M n (D)e ii u. M n (D)e ii M n (D) D n. M n (D)e ii M n (D)e ii u = M : a au M n (D), M n (D)e ii = D n., M n (D). M M n (D). M n (D) {a1 Mn (D) a D} D, M D. M n (D) = 1 i,j n De ij 6

7 , M D. M D. M M n (D),., D, M, M M n (D). N. u M u N. N, M/N, M = N + M n (D)u. M n (D)u = M n (D)e 11 u + M n (D)e 22 u + + M n (D)e nn u, i, {0} M n (D)e ii u N., D n = M n (D)e ii u, M n (D)e ii u. M n (D)e ii u N M n (D)e ii u M n (D), M n (D)e ii u N M n (D)e ii u N = {0}. M/N M = N + M n (D)e ii u = N M n (D)e ii u = N D n. D. 7

8 3 R, I {0} R. A R, B R AB = { a i b i a i A, b i B}. 3.1 R J, {0} J I, I. I R. End R (I): R I 1 I. (1) x I, x 0, I = xr. (2) x I, xi {0}, I e, e 2 = e xe = x. (1) x 0, {0} xr I. I I = xr. (2) R φ : I I φ(a) = xa. φ End R (I), φ Aut R (I). x I, I e φ(e) = x. xe = x. x(e 2 e) = 0, e 2 = e., R 0 e e 2 = e. e, ere = {eae a R}, R., eae, ebe ere eae + ebe = e(a + b)e ere (eae)(ebe) = e(aeb)e ere. e(eae) = eae = (eae)e, e ere, 0 R ere. ere. 2 e R, e I = er. R I End R (I). f End R (I), ψ(f) = f(e)e, ψ(f) ere, ψ : End R (I) ere. I, ψ. f End R (I), f(e) I = er f(e)e Ie = ere. ψ. f, g End R (I). ψ(f + g) = (f + g)(e)e = (f(e) + g(e))e = f(e)e + g(e)e = ψ(f) + ψ(g) 8

9 . f(e) = ea, g(e) = eb, f R e 2 = e ψ(f g) = (f g)(e)e = f(g(e))e = f(eb)e = f(e)be = f(e 2 )be = f(e)ebe = eaebe = (eae)(ebe) = ψ(f)ψ(g). id I End R (I) I, ψ(id I ) = e 2 = e. ψ.. c R, f c End R (I) f c (x) = ecx (x I). ψ(f c ) = ece ψ. Kerψ End R (I). I End R (I), Kerψ = {0}. ψ. 3.2 Wedderburn I, R I S = End R (I), S I T = End S (I). I (S, R) (S, T ). R a, ι a T u ι a = ua (u I). a ι a ι : R T. 3 a I, t T ι a t = ι a t. ι I ι(i) T. I b, s b S s b u = bu (u I)., t T a I (ba) t = (s b a) t = s b (a t) = b(a t), b (ι a t) = (b ι a ) t = b ι a t b I. ι a t = ι a t. 4 R, ι : R T. R, ι. ι. ι ι(r). ι 1R = 1 T ι(r), ι(r)t ι(r). I R RI. I, RI. R R = RI., ι(r) = ι(r)ι(i), ι(i)t = ι(i) ι(r)t ι(r). 2 R. (1) (2). 9

10 (1) R. (2) R D n M n (D). (1). I. R I, End R (I). D = End R (I). I D. J = {a R Ia = {0}}, J R. J R, R J = {0}. II {0}, I e. I I = er, D Ie = ere. Ie D. S = {a R dim D Ia < }, S R, e S, {0} S. R S = R, 1 R S, dim D I = n <. R = End D (I) = M n (D). 5 D 1 D 2 M n1 (D 1 ) = M n2 (D 2 ), n 1 = n 2 D 1 = D2. R = M n1 (D 1 ) = M n2 (D 2 ), I. D = End R (I). e 11 M n1 (D 1 ), I = e 11 M n1 (D 1 ). e 11 I,, D = e 11 Re 11 = D1. D = D 2 D 1 = D2., dim D I = n 1 = n 2. 6 R Z R. R Z R a Z R, a 0, Ra = ar, Ra. Ra = R, a a 1 R. b R, a b = b a, b a 1 = a 1 b. a 1 Z R. 7 D. Z Mn (D) = Z D. 10

11 4 K. 4.1 K R,. (CS1) R K. (CS2) Z R = K.,. A(K) = K A s (K) = K A cs (K) = K D(K) = K D(K) A cs (K) A s (K) A(K).. 3 R A s (K), K D R = M n (D). R A cs (K) D D(K). 4 K. A s (K) = A cs (K), D(K) = {K}, A A s (K) M n (K). A A s (K), K Z A. Z A /K K = Z A, A A cs (K). A s (K) = A cs (K)., A = M n (D), D D(K). a D, K K(a) D, K(a)/K, K = K(a), a K. D = K, A = M n (K). 4.2 A, B A(K), A B K A B. A B A(K). 8 A, B A(K) = Z A B = Z A Z B. {b i } B K, A B x x = i x i b i, (x i A) 11

12 . x Z A B, a A (a 1)x = x(a 1), (ax i ) b i = (x i a) b i i i. i ax i = x i a, x i Z A. Z A B Z A B. {a i } Z A K, Z A B y y = a i y i, (y i B) i. y Z A B y i Z B, Z A B Z A Z B. Z A Z B Z A B. 5 A A cs (K), B A(K). 0 I A B, I 1 A b 0. A, 0 a A, x 1, x 1, x 2, x 2,, x m, x m A. x I m x i ax i = 1 A (2) i=1 p(x) = min{j x = a 1 b a j b j, a i A, b i B} p = min{p(x) 0 x I}. p = 1. p > 1. x I, p(x) = p, x = a 1 b a p b p. a p = 1 A., a p 1 a p. ( p(x) < p ). a p 1 / Z A, c A, ca p 1 a p 1 c 0 x = (c 1)x x(c 1) = (ca 1 a 1 c) b (ca p 1 a p 1 c) b p 1 0 p(x ) < p. p = 1. 0 a b I. (x i 1)(a b)(x i 1) = 1 A b I. i 12

13 1 A A cs (K), B A s (K) = A B A s (K). 0 I A B, 0 1 A b I. B, y 1, y 1,, y n, y n B n y i by i = 1 B. n (1 A y i )(1 A b)(1 A y i) = 1 A 1 B I. i=1 i=1 2 A, B A cs (K) = A B A cs (K) L/K. A A cs (K) A L A cs (L). 3 A A cs (K), dim K A. K/K K. A K = M n (K), dim K A = n 2. A A cs (K), D D(K), A = M m (D). deg A = dim K A A, inda = dim K D A. 4.4 A A(K). A : A A A a b = ba (a, b A). A K. A, A. A A cs (K) A A cs (K). 10 A A cs (K), deg A = n. A A = End K (A) = M n 2(K). 13

14 . a A b A, ψ a,b End K (A) ψ a,b (x) = axb (x A). ψ : A A End K (A) : m a i b i i=1 m i=1 ψ ai,b i, ψ. A A ψ. ψ. 4.5 Brauer A, B A cs (K), 1 p, q Z A M p (K) = B M q (K), A B Brauer, A B.. A [A].. Br(K) = A cs (K)/ = 11 D 1, D 2 D(K). M n (D 1 ) M m (D 2 ) D 1 D 2 D 1 = D A, B A cs (K) A = B A B deg A = deg B 13 D(K)/ = K.. D(K)/ = Br(K) : (D ) [D]. 14

15 14 Br(K) [A] [B] = [A B], (A, B A cs (K)). (1) well-definied. (2) [K]. (3) [A] [A] 1 = [A ]... Br(K). K Brauer. 15 L/K.. Br(K) Br(L) : [A] [A L] 15

16 5 5.1 A A(K), X A, {a A x X ax = xa} X A Z A (X). Z A (X) A. 6 A A cs (K), B A. Z A (B) dim A = dim B dim Z A (B). ψ : A A End K (A), A A A. B A A A, A B A. f End K (A), f End B A (A) f ψ b,a = ψ b,a f (b B, a A )., ψ. Z A A (B A ) = End B A (A) Z A A (B A ) = Z A (B) Z A = ZA (B). B A, I B A, D = End B A (I), I D s B A = End D (I) = M s (D)., B A A = I k. Z A (B) = End B A (I k ) = M k (D), Z A (B). dim Z A (B) = k 2 dim D, dim B A = s 2 dim D, dim A = k dim I = ks dim D. dim B dim C = s k k2 dim D = dim A. 4 A A cs (K), B A K, K A = B Z A (B). Z A (B) K. B Z A (B) K. B Z A (B) A : x y xy B Z A (B) = A. 16

17 5.2 A A cs (K). L/K L A A. A. 16 L A. (1) C = Z A (L), C Z C = L. C A cs (L). (2) deg A = [L : K] deg C. [L : K] deg A. (1) C. B = L, D C = Z A (L) = M k (D), L A = Ms (D). L A A cs (L) D D(L). C A cs (L). (2) dim L C = m 2, dim K A = dim K L dim K C = [L : K]m 2 [L : K] = [L : K] 2 m 2. deg A = [L : K]m. L A, [L : K] = deg(a).. M n (C). 17 D D(K). L D, L. D. C = Z D (L)., L = Z C C D. L C, c C, c L. C, L(c) L. L = C, deg D = [L : K] 5.3 A A cs (K), deg A = n. L/K, L A. A L = M n (L) 17

18 18 A A cs (K), D D(K), A D. L/K L A L D 19 D D(K). L/K D deg D [L : K]. deg D = d, D L = M d (L). V D L. V = L d, D M d (L) = V d. [L : K] = dim D D L = dim D M d (L) = dim D V d = d dim D V, d [L : K]. 20 D D(K), L D.. L L L D deg D = d. ( =) [L : K] d, d [L : K]. [L : K] = d. (= ) [L : K] = d dim L D = d. D (D, L). φ : D L = D L End L (D) = M d (L). D L.. 4 D D(K), D K D = K. d = deg D, L D. [L : K] = d. (ch(k) = 0 ) 1 < d L/K. d = 1, D = K. (ch(k) = p > 0 ) L/K d = [L : K] = p m. K K, D K = M d (K)., K D D K : a a 1 φ : D M d (K). a D, K(a)/K a pk = λ K. p k = [K(a) : K] d = p m., M d (K) (φ(a) λ 1/pk 1 d ) pk = 0 18

19 . φ(a) λ 1/pk 1 d, 1 < d, p d dλ 1/pk = 0, Tr(φ(a)) dλ 1/pk = Tr(φ(a) λ 1/pk 1 d ) = 0. Tr(φ(a)) = 0 (a D) M d (L) = D K = φ(d)k, x M d (K) Tr(x) = 0. d = 1, D = K. 7 D D(K), L D, L/K. L = K D. C = Z D (L), C D(L). L C, L L C, L /K, L. L = C, L = Z D (L), L. 5 A A cs (K), K. 19

20 6 Skolem-Noether 6.1 Skolem-Noether 5 R A s (K), M 1 M 2 R. dim K M 1 = dim K M 2 M 1 = M2., M 1, M 2 R N. M 1 = N k, M 2 = N l dim K M 1 = dim K M 2 k = l M 1 = M2. A A cs (K). a A, i a : A A : i a (x) = axa 1 (x A). i a K.. Inn(A) = {i a a A }.. a i a A /Z A = Inn(A). 8 (Skolem-Noether) A A cs (K), R A s (K), f, g : R A K. i a Inn(A), g = i a f. D D(K), A = M n (D) = End D (D n ). D D. V = D n ( D ) (A D ) V V : (a d, v) avd A D. f : R A V R D V f. V f = V, (R D ) V f V f : (α d, v) f(α)vd. g : R A V R D V g. R D A s (K). dim K V f = dim K V = dim K V g, R D V f = Vg. φ : V f V g, φ(f(α)vd) = g(α)φ(v)d (α R, d D, v V ). D φ Aut D (V ) = A. A a a f(α)v = φ(f(α)v) = g(α)φ(v) = g(α)a v v V. g(α) = af(α)a 1 = i a f(α) α R, g = i a f. 20

21 6 A A cs (K), R A. f : R A, i a Inn(A) f = i a R. 6.2 Brauer 9 (Frobenius) D D(R) = D = H. 1 < deg D. L D. 1 < d = [L : R] = 2. L = C. τ : C C : α + β 1 α β 1. Skolem-Noether, i a Inn(D), i a C = τ. a(α + β 1)a 1 = α β 1. i a 2 C, a 2 Z D (C) = C. τ(a 2 ) = aa 2 a 1 = a 2 a 2 R. a 2 > 0 a 2 = t 2 (t R), a = ±t, i a C τ. a 2 < 0, a 2 = t 2., i = 1, j = at 1, k = ij i 2 = j 2 = k 2 = ijk = 1, dim R D = 4 D = R1 + Ri + Rj + Rk, D = H. 7 Br(R) = {±1}. 6.3 Brauer 6 G, H G. ghg 1 G. g G [G : H] = n > 1, H = h G = nh. G/H g 1,, g n ghg 1 = g G n i=1 g i Hg 1 i ghg 1 g i Hgi 1 (n 1) = nh (n 1) < nh = G g G i=1 21

22 10 (Wedderburn). D. K = Z D. q = K, deg D = d > 1. D L 1, L 2, [L 1 : K] = [L 2 : K] = d L 1 = L 2 = q d. L 1 = L2. Skolem-Noether, D. L 1 L 2. D. D,, D = al 1 a 1 a D,,. 8 K Br(K) = 0. 22

23 7 7.1 K. L/K n, Γ L/K =< σ >. a K, x. x 1 = x 0, x, x 2,, x n 1 L n V = L1 + Lx + + Lx n 1. (αx i )(βx j ) = { (ασ i (β))x i+j (i + j < n) (aασ i (β))x i+j n (i + j n) (0 i, j n 1. α, β L).. (CY1) x n = a. (CY2) xα = σ(α)x (α L). V K., V = (L/K, σ, a). 21 (L/K, σ, a) A cs (K).. 22 L A A cs (K), u A. (CY0) 1, u,, u n 1 L A. (CY1) u n K. (CY2) uαu 1 = σ(α) (α L). A = (L/K, σ, u n ). Skolem-Noether, σ : L L i u Inn(A). uαu 1 = σ(α) u n αu n = σ n (α) = α u n Z A (L) = L, (α L). (α L). σ(u n ) = uu n u 1 = u n u n K. 1, u,, u n 1 L. dim L A = n, A. 23

24 9 A A cs (K), A, A K. 11 (1) n k (L/K, σ, a) = (L/K, σ k, a k ). (2) (L/K, σ, a) = (L/K, σ, b) ab 1 Nr L/K (L ). (3) (L/K, σ, a) = M n (K) a Nr L/K (L ). (1) (L/K, σ k, a k ) = L1 + Ly + + Ly n 1. φ : (L/K, σ k, a k ) (L/K, σ, a) : { φ(α) = α (α L) φ(y) = x k. (2) A = (L/K, σ, a), B = (L/K, σ, b). ( =) ab 1 = δ δ σ δ σn 1 B = L1 + Ly + + Ly n 1. φ : A B : { φ(α) = α (α L) φ(x) = δy. (= ) φ : A B. Inn(B), φ L = id. i x Inn(A), i y Inn(B), i φ(x) L = i y L = σ. φ(x)y 1 Z B (L) = L, δ L φ(x) = δy. a = φ(a) = φ(x n ) = (δy) n = Nr L/K (δ)y n = Nr L/K (δ)b. (3) (2) (L/K, σ, a) = (L/K, σ, 1) a Nr L/K (L ), (L/K, σ, 1) = M n (K). M n (K) = End K (L). φ : (L/K, σ, 1) End K (L) : { φ(α) = α (α L) φ(x) = σ. 23 a, b K. (L/K, σ, a) (L/K, σ, b) (L/K, σ, ab). 24

25 7.2 n ch(k), µ n K 1 n. µ n K. 1 n ζ K. L/K n, Kummer, a K, L = K( n a), Γ L/K µ n : σ σ( n a) n a. Γ L/K σ σ( n a) n a = ζ. b K, (L/K, σ, b) (L/K, σ, b) = L1 + Ly + + Ly n 1 { (CY1) y n = b (CY2) yα = σ(α)y (α L). x = n a L = K1 + Kx + + Kx n 1, x n = a., (CY2) α = x. yα = σ(α)y (α L) yx = σ(x)y = ζxy. (L/K, σ, b) (L/K, σ, b) = Kx i y j 05i,j5n 1 x n = a y n = b yx = ζxy. a K. µ n K, n ζ µ n. a, b K, x n = a Kx i y j y n = b yx = ζxy 05i,j5n 1 K (a, b) n, ( ) a, b. K, ζ 24 (a, b) n A cs (K). A = (a, b) n, K(x) = K1 + Kx + + Kx n 1. K(x) A,. A u = f 0 (x)1 + f 1 (x)y + + f n 1 (x)y n 1, f j (x) = c 0j 1 + c 1j x + + c n 1j x n 1 K(x) 25

26 . ( ) u Z A. yu = uy c ij = c ij ζ i (0 i, j n 1). i 0 c ij = 0. u = c c 01 y + + c 0n 1 y n 1. xu = ux c 01 = = c 0n 1 = 0, u = c 00 K. Z A = K. ( ) 0 I A. l = min{deg y u u I}, I l = {u I deg y u = l} I, k = min{deg f(x) f(x) M}, M = { u I l y l } K(x). u I l u = f(x)y l + v + f 0 (x)1, deg f(x) = k, 1 deg y v l 1, f 0 (x) K(x). f(x) = c 0 + c 1 x + + c k x k. 1 k. I l u yuy 1 = (f(x) f(ζx))y l +, f(x) f(ζx) M 0 I x 1 (u yuy 1 ) = x 1 (f(x) f(ζx))y l +, deg x 1 (f(x) f(ζx)) = k 1, k. k = 0, f(x) = c 0 K u = c 0 y l + v + f 0 (x) I l. 1 l. f 0 (x) = 0, uy 1 I, deg y uy 1 = l 1 l, f 0 (x) 0. I u ζ l xux 1 = v ζ l xvx 1 + (1 ζ l )f 0 (x) 0 deg y (u ζ l xux 1 ) l 1, l. l = 0, I u = c 0 K I = A. 7 A A cs (K), deg A = n, A = M n (K) A K n = K K. 26

27 (= ). ( =). K n e 1,, e n e e n = 1, e i e j = δ ij e j. A A A = e 1 A e n A. A = M m (D), D D(K), D m A, m n. m deg A = n, m = n D = K. 12 d n. a, b K ( a d ) ( ), b a, b = K, ζ K, ζ d M d (K). (a n, b) n = Mn (K). n = dm. ζ d 1 m. A = (a d, b) n = Kx i y j. K(x) = K1 + Kx + + Kx n 1, K. K(x) = K[X]/(X n a d ) d 1 = K[X]/(X m aζ im ) i=0 (ζ i X mod (X m aζ im )) i=0,1,,d 1 K(x) z. z m = a, y d zy d = ζz. z w = y d ( ) B = Kz i w j a, b = K, ζ d 05i,j5m 1. B A cs (K), A = B Z A (B). x m Z A (B), t = x m Z A (B) K(t) = K1 + Kt + + Kt d 1 = K[X]/(X d a d ) = K d. deg Z A (B) = d, Z A (B) = M d (K). 27

28 10 a, b K, L X n a = 0 m = [L : K]. σ Γ L/K σ( n a) = ζ n/m n a, (a, b) n = (L/K, σ, b) Mn/q (K). (a, b) n = Mn (K) b Nr L/K (L ). c = ( n a) m K, L = K( m c). a = c n/m ( ) ( ) (a, b) n c, b c, b = K, ζ n/m M n/m (K), = K, ζ n/m (L/K, σ, b).,. (a, b) n = Mn (K) (L/K, σ, b) = M m (K) b Nr L/K (L ) 13 a, b, c K. (1) (a, b) n = (b 1, a) n (2) (a, b) n (a, c) n (a, bc) n, (a, b) n (c, b) n (ac, b) n. (3) (a, 1 a) n = Mn (K). (1) (a, b) n = Kx i y j, (b 1, a) n ) = Kz i w j. φ : (a, b) n (b 1, a) n : φ(x) = w, φ(y) = w 1. (2) L X n a = 0, (a, b) n (a, c) n (L/K, σ, b) (L/K, σ, c) (L/K, σ, bc) (a, bc) n. (3) (a, 1 a) n = Kx i y j. z = x + y z n = (x + y) n = x n + y n = a + 1 a = 1. K(z) = K1 + Kz + + Kz n 1 = K n, (a, 1 a) n = Mn (K). 28

29 7.3 K. A A cs (K) deg A = 2,. A. 8 A A cs (K). (1) A, A = M 2 (K). (2) A A. (1) A, inda < deg A = 2 A = M 2 (K). (2) A, A K L. [L : K] = deg A = 2, L/K. A. A = (L/K, σ, b). ch(k) 2, L = K( a) A = (a, b) 2 = K1 + Kx + Ky + Kxy, x 2 = a, y 2 = b, yx = xy. ch(k) = 2, L X 2 + X + a = 0,. A = K1 + Kx + Ky + Kxy, x 2 + x = a, y 2 = b, yxy 1 = x

30 8 8.1 Noether A A cs (K),. (CP) A K L. L/K Γ = Γ L/K. σ Γ Skolem-Noether, u σ A σ = i uσ L. ξ σ,τ = u σ u τ u 1 στ Z A (L) = L (σ, τ Γ). u σ u τ = ξ σ,τ u στ (u σ u τ )u ρ = u σ (u τ u ρ ) ξ σ,τ ξ στ,ρ = ξ σ,τρ σ(ξ τ,ρ ) (σ, τ, ρ Γ). A B = σ Γ Lu σ, {u σ } σ Γ L, dim K B = [L : K] 2 = dim K A, A A = σ Γ Lu σ, { uσ αu 1 σ = σ(α) (α L) u σ u τ = ξ σ,τ u στ. L/K, Γ = Γ L/K. ξ : Γ Γ L : (σ, τ) ξ σ,τ, ξ Noether 2. (NF) ξ σ,τ ξ στ,ρ = ξ σ,τρ σ(ξ τ,ρ ) (σ, τ, ρ Γ). Noether Z 2 (Γ, L ). 9 ξ Z 2 (Γ, L ) ξ e,σ = ξ e,e, ξ σ,e = σ(ξ e,e ), (σ Γ). (NF), σ = τ = e, ξ e,e ξ e,ρ = ξe,ρ 2, ξ e,e = ξ e,ρ. τ = ρ = e, ξσ,e 2 = ξ σ,e σ(ξ e,e ), ξ σ,e = σ(ξ e,e ). 30

31 10 ξ, η Z 2 (Γ, L ), ξ η : Γ Γ L (ξ η) σ,τ = ξ σ,τ η σ,τ, (σ, τ Γ), ξ η Z 2 (Γ, L ), Z 2 (Γ, L ). 1 1 σ,τ = 1 (σ, τ Γ). t : Γ L, t : Γ Γ L t σ,τ = t σ σ(t τ )t 1 στ, (σ, τ Γ), t.. B 2 (Γ, L ). 11 B 2 (Γ, L ) Z 2 (Γ, L ). Z 2 (Γ, L )/B 2 (Γ, L ), Γ L, H 2 (Γ, L ). ξ Z 2 (Γ, L ) [ξ], [1]. 8.2 L/K, Γ = Γ L/K. V = σ Γ Lx σ {x σ } σ Γ L. ξ Z 2 (Γ, L ), V (CP1) x σ α = σ(α)x σ, (α L, σ Γ). (CP2) x σ x τ = ξ σ,τ x στ, (σ, τ Γ).. V ξ 1 e,e x e K. L Γ ξ, (L, Γ, ξ).. 25 (L, Γ, ξ) A cs (K), L (L, Γ, ξ). 31

32 A = (L, Γ, ξ). ( ) Z A z = σ Γ a σ x σ. α L, αz = zα αa σ = σ(α)a σ, (σ Γ). σ e σ(α) α α L, a σ = 0. z = a e x e, zx σ = x σ z σ(a e )ξ σ,e = a e ξ e,σ. σ(a e ξ e,e ) = a e ξ e,e, a e ξ e,e K. z = a e x e = a e ξ e,e 1 A K. ( ) I A. π : A A/I. π L : L A/I, L A/I. x σ = π(x σ ). x σ α = σ(α)x σ (α L, σ Γ). {x σ } σ Γ L., J Γ {x σ } σ J. J Γ, τ J x τ = σ J a σ x σ. α L τ(α)x τ = x τ α = σ J a σ x σ α = σ J a σ σ(α)x σ 0 = σ J a σ (τ(α) σ(α))x σ. {x σ } σ J σ J a σ 0, a σ (τ(α) σ(α)) = 0. τ(α) = σ(α), (α L), τ = σ J. J = Γ. dim L A/I = dim L A = [L : K], I = A A cs (K), A K. 32

33 14 ξ, η Z 2 (Γ, L ) (L, Γ, ξ) = (L, Γ, η) [ξ] = [η]. A = (L, Γ, ξ) = Lx σ, B = (L, Γ, η) = Ly σ. (= ) φ : A B. Skolem-Noether φ L = id. φ(x σ )α = σ(α)φ(x σ ), (α L). φ(x σ ) = c τ y τ τ Γ,. φ(x σ ) = c σ y σ,. φ(x σ x τ ) = c σ y σ c τ y τ = c σ σ(c τ )y σ y τ = c σ σ(c τ )η σ,τ y στ φ(x σ x τ ) = φ(ξ σ,τ x στ ) = ξ σ,τ c στ y στ ξ σ,τ = ĉ σ,τ η σ,τ, [ξ] = [η]. ( =) [ξ] = [η], c : Γ L ξ = ĉ η. φ : A B φ( a σ x σ ) = a σ c σ y σ,. 15 (L, Γ, 1) = M n (K). (L, Γ, 1) = Lx σ. φ : (L, Γ, 1) End K (L) : { φ(α) = α (α L) φ(x σ ) = σ (σ Γ). 12 (L, Γ, ξ) = M n (K) [ξ] = [1]. 16 ξ, η Z 2 (Γ, L ) (L, Γ, ξ) (L, Γ, η) (L, Γ, ξ η). 33

34 A = (L, Γ, ξ) = Lx σ, B = (L, Γ, η) = Ly σ, C = (L, Γ, ξ η) = Lz σ. A, B L. A L, L V = A L B. V (A, B), A B. C V. (a L b )(a b) = a a L b b = a a L b b, (a, a A, b, b B) C V V : αz σ (a L b) = a (αx σ ) L y σ b = αx σ a L y σ b αz σ βz τ (a L b) = αz σ (βx τ a L y τ b) = (αx σ βx τ a) L (y σ y τ b) = (ασ(β)ξ σ,τ x στ a) L (η σ,τ y στ b) = (ασ(β)ξ σ,τ η σ,τ z στ )(a L b) = (αz σ βz τ )(a L b), V C. V (C, A B), K (A B) End C (V ). (A B),. dim K V = [L : K] dim L A dim L B = n 3 = n dim K C, C V = C n. End C (V ) = End C (C n ) = M n (End C (C)) = M n (C ) = C M n (K). dim K End C (V ) = n 2 dim K C = n 4 = dim K (A B) (A B) = EndC (V ) = C M n (K). A B C. 34

35 8.3 L/K n, Γ = Γ L/K =< σ >. 26 a K, (L/K, σ, a). ξ σ i,σ j = { 1 (i + j < n) a (i + j n) ξ, (L/K, σ, a) = (L, Γ, ξ). (L/K, σ, a) L,. (L/K, σ, a) = Lxσ, Noether ξ. 27 ξ Z 2 (Γ, L ), (L, Γ, ξ).,,. 35

36 9 Brauer 9.1 L/K,, Br(K) Br(L) : [A] [A L]. Br(L/K). Br(L/K) = {[A] Br(A) [A L] = [1]}. 28 Br(K) = Br(L/K). L/K :, A A cs (K) K. 17 L/K,. H 2 (Γ, L ) Br(L/K) : [ξ] [(L, Γ, ξ)] Z 2 (Γ, L ) Br(K) : ξ [(L, Γ, ξ)], B 2 (Γ, L ). H 2 (Γ, L ) Br(K). Br(L/K). D D(K) [D] Br(L/K). deg D = d, [D ] = [D] 1 Br(L/K) L D = Md (L). V = L d L D. V (L, D). D V n. End D (V ) = M n (D) dim K V = d[l : K] = n dim K D = nd 2 dim K End D (V ) = dim K M n (D) = d 2 n 2 = (dn) 2 = [L : K] 2. L End D (V ) : α α, L End D (V ), L End D (V )., End D (V ) = (L, Γ, ξ) ξ Z 2 (Γ, L ).. [D] = [M n (D)] = [End D (V )] = [(L, Γ, ξ)] 36

37 9.2 A A cs (K), [A] Br(K) A, exp(a). 29 m = ind(a) [A] m = [1]. exp(a) ind(a). L/K [A] Br(L/K). [A] = [(L, Γ, ξ)]. [A] m = [(L, Γ, ξ m )], ξ m B 2 (Γ, L ). B = (L, Γ, ξ) = M r (D), D D(K), V = D r B. L B, V L. [L : K] = deg(l, Γ, ξ) = deg M r (D) = rm dim K V = r dim K D = rm 2 = dim L V [L : K] = dim L V rm dim L V = m. V L v 1,, v m, b B bv i = b i1 v b in v n m m (b ij ) M m (L)., x σ X σ. ξ m B 2 (Γ, L ). B = Lx σ ξ σ,τ X στ = σ(x τ )X σ ξ m σ,τ det(x στ ) = σ(det(x τ )) det(x σ ) 13 Br(K). 30 p ind(a), p exp(a).. [A] = [(L, Γ, ξ)], (L, Γ, ξ) = M r (D) d = ind(a) = deg(d) Γ = [L : K] = (deg M r (D)) = dr p Γ. Γ p-sylow Γ p. L p = L Γp [L : L p ] = Γ p. p [L p : K], L p D. A. exp(a L p ) 1. [A L p ] Br(L/L p ), ind(a L p ) [L : L p ] = Γ p. exp(a L p ) ind(a L p ) p exp(a L p ). exp(a L p ) exp(a) p exp(a). 37

38 D 1, D 2 D(K), deg(d 1 ) deg(d 2 ) D 1 D 2. d 1 = deg(d 1 ), d 2 = deg(d 2 ). D 1 D 2 = Mn (D), D D(K). n = 1. D 3 D(K) D 1 D = M r (D 3 ), M d 2 1 (D 2 ) = Md 2 1 (K) D 2 = D 1 D 1 D 2 = D 1 M n (D) = M nr (D 3 ), D 2 = D3 d 2 1 = nr. n d2 1. n d2 2 n = D D(K), d = deg(d) d = p e 1 1 pe 2 2 pe l l D 1,, D l D(K). D = D 1 D 2 D l, deg(d i ) = p e i i, i = 1, 2, l. D 1,, D l. d = d 1 d 2, d 1 d 2,, D 1, D 2 D(K) D = D 1 D 2, deg(d 1 ) = d 1, deg(d 2 ) = d 2,. q 1, q 2 Z d 1 q 1 + d 2 q 2 = 1. Br(K), [D] d 2q 2 = [D 1 ], [D] d 1q 1 = [D 2 ] D 1, D 2 D(K). D 1, D 2. [D 1 D 2 ] = [D] d 2q 2 +d 1 q 1 = [D]. deg(d) = ind(d) = d, [D 1 ] d 1 = [D] d 1d 2 q 2 = [D] dq 2 = [1]. exp(d 1 ) d 1. exp(d 2 ) d 2. d 1 d 2 exp(d 1 ) exp(d 2 ). ind(d 1 ) = deg(d 1 ) ind(d 2 ) = deg(d 2 ). D 1 D 2, [D] = [D 1 D 2 ] D = D 1 D , Brauer.. 1,. 38

39 19 (Wedderburn, Albert, Dickson) D D(K), deg D {2, 3, 4, 6, 12} D. 20 (Frobenius, Hasse, Tsen, Wedderburn, Witt) K. C, C(t), C((t)). R, R(t), R((t)).. ().. D D(K).,. 21 (Brussel) K Q Q(t) Q Q((t)). D(K),. 2 D D(K) deg D = p, D. p = 2, 3. p = 5. D D(K), D = D 1 D 2 K D 1, K D 2 D(K) decomposable, indecomposable., D indecomposable, deg(d)., p p e p d, exp(d) = p e, deg(d) = p d indecomposable. 22 (Albert, Jacob) (p e, p d ) (2, 4), K indecomposable D D(K) exp(d) = p e, deg(d) = p d.,, exp(d) = 2, deg(d) = 4,. 39

40 10 Merkurjev-Suslin 10.1 Milnor K K K K 1 (K). l : K K 1 (K) : a l(a). l(1) = 0, l(a n ) = nl(a), l(ab) = l(a) + l(b) (n Z, a, b K ). K 1 (K) Z, TK 1 (K). TK 1 (K) = T n K 1 (K), n=0 T 0 K 1 (K) = Z, T n K 1 (K) = K 1 (K) Z Z K 1 (K). TK 1 (K) J = {l(a) l(1 a) a K, a 1}, TK 1 (K)/J. π : TK 1 (K) TK 1 (K)/J, K n (K) = π(t n K 1 (K)), {a 1,, a n } = π(l(a 1 ) l(a n )).. TK 1 (K)/J = K n (K) n=0 K n (K) K Milnor K. K 2 (K), (M1) {ab, c} = {a, c} + {b, c}, {a, bc} = {a, b} + {a, c}. (M2) {a, 1 a} = 0, (a 1). (M3) {a, 1} = {1, a} = 0, {a, b 1 } = {a, b}.. 31 a, b K. (M4) {a, a} = 0. (M5) {a, b} = {b, a}. 40

41 10.2 Merkurjev-Suslin n. Br(K) n = {[A] Br(K) [A] n = [1]} 23 (Merkurjev-Suslin) (n, ch(k)) = 1, µ n K. 1 n ζ µ n. ( ) a, b K 2 (K) Br(K) : {a, b} (a, b) n = K, ζ well-definied, nk 2 (K), Br(K) n.. K 2 (K)/nK 2 (K) = Br(K) n 14 (n, ch(k)) = 1 µ n K. A A cs (K) exp(a) n, a 1, b 1,, a r, b r K. A (a 1, b 1 ) n (a r, b r ) n 15 ch(k) 2. A A cs (K), exp(a) = 2, a 1, b 1,, a r, b r K. A (a 1, b 1 ) 2 (a r, b r ) 2 41

42 11 Brauer 11.1 D. D. v : D R v. (VA1) v(x) 0, (x D), v(x) = 0 x = 0. (VA2) v(xy) = v(x)v(y), (x, y D). (VA3) v(x + y) max(v(x), v(y)), (x, y D)., v(x) = 1, (x D ). v D, O v = {x D v(x) 1}. v. O v., O v, O v = {x D v(x) = 1} P v = {x O v v(x) < 1}., O v /P v v. v, D δ v δ v (x, y) = v(x y), (x, y D). D. δ v D D v. D v, v D v. D = D v v. v w D. r > 0, w = v r, v w, v w.., v w O v O w P v P w (D, δ v ) (D, δ w ) v(d ) R v. ϖ O v, v(d ) = {v(ϖ) n n Z}. ϖ O v. v. D O v v, O v /P v 42

43 v D (D ). O D, P D, f D = O D /P D. K v, K D K. v D w, D. e(d/k) = [w(d ) : v(k )], f(d/k) = [f D : f K ]. [D : K] = e(d/k)f(d/k). K v, L/K. L. e(l/k) = 1, L/K. n, K n /K, [K n : K] = n. q = [O v : P v ], K n = K(µ q n 1). K n /K. Frobenius K, K n /K Γ Kn/K, f Kn /f K Γ fkn /f K. Γ Kn/K Γ fkn /f K : σ σ OKn. f K = Fq, f Kn = Fq n, Γ fk n /f K σ : f Kn f Kn : x x q. σ Γ Kn /K σ n, K n /K Frobenius Brauer 24 K, D D(K), deg D = d. D d K d /K e(d/k) = f(d/k) = [K d, K]. K d D, D. 25 K, ϖ K. θ K : Q/Z Br(K) : m n mod Z [(K n /K, σ n, ϖ m )]. 43

44 12 Brauer 12.1 K/Q. K V K,f. V K,f. V K,f v. v V K,f, K v K δ v. K v., θ v : Br(K v ) Q/Z. K C Hom(K, C). Hom(K, C) φ ψ φ(x) = ψ(x) (x K), V K,. V K, K. w V K,, w ψ w Hom(K, C). K w = ψ w (K) C. ψ w, K w = R K w = C. K w = R w, K w = C w. V K,1, V K,2. [K : Q] = (V K,1 ) + 2 (V K,2 ). w V K,1, θ w : Br(K w ) = Br(R) 1 2 Z/Z : θ w([a]) =. V K = V K, V K,f. V K K. { 1/2 + Z ([A] = [H]) 0 + Z ([A] = [1]) 12.2 K/Q. A A cs (K) v V K A v = A K K v. ([A v ]) v VK v V K Br(K v ) 44

45 ,. Br(K) v V K Br(K v ) : [A] ([A v ]) v VK 26 (Albert-Hasse-Brauer-Noether) A A cs (K), deg A = n. (1) v V K, A v = Mn (K v ). ([A v ]) v VK v V K Br(K v ). (2) v V K A v = Mn (K v ) A = M n (K). Br(K) v V K Br(K v ). (3). 1 Br(K) v V K Br(K v ) Br(K) = (α v) v V K Q/Z P θv Q/Z 1 α v = 0, α w 1 2 Z/Z (w V K,1), α w = 0 (w V K,2 ). v V K 27 A A cs (K) ind(a) = exp(a). 45

46 13 Hausdorff-Banach-Tarski Paradox Brauer-Severi 46

47 , Bourbaki ( ) van der Waerden ( III).., (associative ring), [1] Rowen, Ring Theory I & II, Academic Press, 1988 [2] Pierce, Associative Algebras, Springer Verlag, [1],. [2], [1]. Wedderburn,,, [1],, [2]. [3] Herstein, Noncommutative Rings, The Mathematical Association of America, 1968., Brauer, [4] Draxl, Skew Fields, Cambridge University Press, 1983 [5] Farb & Dennis, Noncommutative Algebra, Springer Verlag, 1993 [6] Jacobson, Finite-Dimensional Division Algebras over Fields, Springer Verlag, 1996 [7] Kersten, Brauergruppen von Körpern, Vieweg, Brauer, [1],[2],[4],[5], [8] Deuring, Algebren, Springer Verlag, 1968 [9] Albert, Structure of Algebras, American Mathematical Society, 1961 [10] Weil, Basic Number Theory, Springer Verlag, [11] Saltman, Lectures on Division Algebras, American Mathematical Society, [12] Platonov & Yanchevskii, Finite-Dimensional Division Algebras, in Algebra IX, Encyclopaedia of Mathematical Sciences, Springer Verlag, [12]., (order). [13] Reiner, Maximal Orders (2nd ed.), Clarendon Press, [14] Vignéra, Arithmétique des Algèbres de Quaternions, Springer Verlag, Eichler [15],,,, 21, [16] Kleinert, Units in Skew Fields, Birkhäuser, 2000., (involution), [17] Knus, Merkurjev, Rost & Tignol, The Book of Involutions, American Mathematical Society,

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information