反強磁性三角格子上 XY モデルの 二種類の相転移と そのユニバーサリティ - クラス 理学研究科 宇宙地球科学専攻 大阪大学 小渕智之 1
|
|
|
- おさむ すみい
- 6 years ago
- Views:
Transcription
1 反強磁性三角格子上 XY モデルの 二種類の相転移と そのユニバーサリティ - クラス 理学研究科 宇宙地球科学専攻 大阪大学 小渕智之
2 目標 次元 XY スピン系に起こる KT 転移を通して 繰りこみ群を解説すること 情報の問題における繰りこみ群適用の可能性についても考えたい もうちょっと身近なモチベーション 身近な人たちのセリフ KT 転移なんて幻想です 実際には無いんです 平均場と繰りこみって何が違うんですか? これらに ( ある程度 ) 答えることが目標 もちろん自分の研究成果も話します
3 モデル ハミルトニアン 反強磁性三角格子の XY モデル H XY 対称性 J S S = os( θ θ ), ( J = ) = j, j, j グローバル回転 (SO() 対称性 ) 鏡映反転にたいする Z 対称性 鏡 j 3
4 フラストレーションとカイラリティ フラストレーション イジングとベクトルスピンの違い 4 イジング : フラストレーションをもろにうける 大量の縮退 相転移無しベクトルスピン : 適当に開いてフラストレーションを逃がせる 相転移有り : 秩序変数 =カイラリティ m ( p) = z S S 3 3, j p j
5 カイラル転移とスピン転移 系の対称性 鏡映反転 :Z 対称性 グローバル回転 :SO() 対称性 Mrmn-Wagnr の定理 次元では SO() 対称性は破れない = スピンが固まる転移 ( 強磁性など ) はない 次元強磁性 XY モデル Kostrltz-Thoulss(KT) 転移という特殊な転移 XY モデルの周期性が生むトポロジカル欠陥による転移 次元反強磁性 XY モデル : 回の転移が起き得る 5 カイラル転移 =Z 対称性の破れ スピン転移 =KT 的な転移
6 結果 手法 : モンテカルロシミュレーション ( 普通のメトロポリス ) ヒストグラム法 + オーバーリラクゼーション 相図 Phas dagram: 0 Spn ordr T s Chral ordr T Para phas T ユニバーサリティークラス カイラル転移 =イジング ( 鏡映反転のZ 対称性の破れ ) スピン転移 =KT 的だが臨界指数のずれ (Non-unvrsal KT) 先行研究 6 カイラル転移 =イジング 3-stats ポッツ スピン転移 = 準長距離秩序 :KT 転移 Non-unvrsal KT 次転移 二つが同時に起きる派 : 次転移 IsngかつKT 転移
7 平均場じゃだめ? 答え : 次元だと全然だめ 平均場 スピンが凍結する単純な相転移 定性的に既にだめ Mrmn-Wagnr の定理 近似を上げても ( ベーテとか ) だめ 臨界指数とか絶望的 平均場 = 期待値近傍の揺らぎを無視 間違いの原因 次元のように低い次元では 揺らぎを適切に取り込んだ解析が必要 繰りこみ群 KT 転移を準厳密に導出 7
8 イジング系の表面転移 ( ラフニング転移 ) 3 次元イジングモデル At T = T 境界条件 H 4.5 = 強磁性転移 周期境界条件 単一の強磁性ドメイン 反周期境界 逆向き固定境界 ドメインウォールの励起 ドメインウォール自体の相転移 表面の粗さの転移 ラフニング転移 転移温度 T 0. 5 r T 転移温度以下 平坦なドメインウォール, j S S j 8
9 SOS 模型 ラフニング転移の記述 Sold on Sold (SOS) モデル 分配関数 h h h j Y Z = B j { h = }, j B ( h h, β ) ( ) j h h j = β ( h h ) j β h h j j, : Absolut valu SOS(ASOS) : Dsrt Gaussan(DGSOS) X 9
10 SOS モデルと ( 強磁性 )XY モデルの関係 XYモデルユニバーサリティ Vllanモデル Dualty+ ポアソン和公式 DGSOS ASOS ポアソン和公式 CSW モデル 繰りこみ群で解析 0
11 SOS モデルと ( 強磁性 )XY モデルの関係 XY モデル Vllan モデル DGSOS CSW モデル Z Z XY V = = d π dθ π Vllan と XY π の周期性 os θ ( θ ) θ j, j, j p j β os = ( θ θ ) β 力学変数 Θ の並進対称性 低温での振る舞い ( スピン波 ) ( θ θ πp ) j j j ( ) θ θ j Vllan と XY は同じ ( と信じられている )
12 SOS モデルと ( 強磁性 )XY モデルの関係 XY モデル Vllan モデル Chargd Spn Wav(CSW) モデル スピン波に電荷 ( 離散自由度 ) が加わっている 電荷がなければ可解 DGSOS CSW モデル Z CSW = { q = } 繰りこみ群で解析 ( ϕ ϕ j ) + π β <, j> dϕ Z CSW, q = 0 Z SW q ϕ 可解
13 CSW の繰りこみ群 Z いくつかの方法があるけれど サインゴルドンモデル ( 先に小さい の和を取る ) へ移行 波数空間繰りこみ群 ( 一番ありふれた繰り込み群 ) で計算可 繰りこみ群 ( の思想 ) とは?. 小さい ( 長さ ) スケールをトレースアウト. 残った自由度が成す系を別パラメータの同じ系と見なす 3. ~ を繰り返す 大きいスケールの現象が自然と表出 3 CSW Z ( β ) sn = ( β ) { q = } = dϕ ( ϕ ϕ j ) + π β <, j> dϕ β q q ϕ ( ϕ ϕ j ) + y os( πϕ ) <, j> y = π β βj
14 CSW の繰りこみ群 Z いくつかの方法があるけれど サインゴルドンモデル ( 先に小さい の和を取る ) へ移行 波数空間繰りこみ群 ( 一番ありふれた繰り込み群 ) で計算可 繰りこみ群 ( の思想 ) とは?. 小さい ( 長さ ) スケールをトレースアウト. 残った自由度が成す系を別パラメータの同じ系と見なす 3. ~ を繰り返す 大きいスケールの現象が自然と表出 4 CSW Z ( β ) sn = ( β ) { q = } = dϕ ( ϕ ϕ j ) + π β <, j> dϕ β q q ϕ ( ϕ ϕ j ) + y os( πϕ ) <, j> y = π β ( βj ) '
15 CSW の繰りこみ群 Z いくつかの方法があるけれど サインゴルドンモデル ( 先に小さい の和を取る ) へ移行 波数空間繰りこみ群 ( 一番ありふれた繰り込み群 ) で計算可 繰りこみ群 ( の思想 ) とは?. 小さい ( 長さ ) スケールをトレースアウト. 残った自由度が成す系を別パラメータの同じ系と見なす 3. ~を繰り返す 大きいスケールの現象が自然と表出 5 CSW Z ( β ) sn = ( β ) { q = } = dϕ ( ϕ ϕ j ) + π β <, j> dϕ β q q ϕ ( ϕ ϕ j ) + y os( πϕ ) <, j> y = π β ( βj ) ''
16 サインゴルドンの繰りこみ群 手順. 連続化 ( 格子間隔 a 0),. フーリエ変換 ( 波数空間へ移行 ) 3. 波数の大きい部分 Λ dλ < k < Λ を積分 4. 積分の影響をパラメータに押し込める β, y β ', y 5. 3~4を繰り返して行った先を見る β, y β, ポイント 物理的意味 : 大きい波数成分の消去 小さい長さスケールの消去 4. が可能 : 有意な変数の個数が有限 & それを尽くしている 6 Z sn Z ( β ) sn = ( β ) = dϕ 0< k <Λ k β ( ϕ ϕ j ) + y os( πϕ ) <, j> dϕ k dx ϕ ( ) ( ' ) ( ) ( ) y = π β ( x) = dk ϕ( k) kx { ( ϕ ( x )) + yos( π βϕ ( x ))} ff y ff
17 KT 転移の描像 Z sn β ( ϕ ϕ j ) + y os( πϕ ) <, j> 繰りこみの流れ 結論 7 β ff Z V は /π から 0 に飛ぶ ( β ) = Z SW Para ( T > T ) ( β ) T ( β ) ( < T ) ff 低温では y 0 Spn Wav で OK ( 但し 温度は 離散性の効果でより高温のに繰りこまれる ) β ff x = πβ β ff ( β ) < β
18 スピン波の振る舞い 相関関数 ξ ( ) ( ) θ = T > T 0 θr η r ( T < T ) r η = πβ ff T T ( T T ) ξ KT 転移を特徴づける量 Hlty modulus Y: ひねりに対するFの変化率 β ff Vortty modulus V:q =±を導入した時のFの変化率 8 V ( T L) = v ( T ) v ( T ) ln L, 0 + 低温でずっと相関長発散 準長距離秩序 v( T ) 0 = > 0 ( T > T ) ( T < T )
19 Hlty Modulus ひねりの導入 Z SW ( β, ) ff = XY モデルにも定義可能 d θ β { ( θ θ+ x ) + ( θ θ y + ) } ff + Hlty Modulus d log Z ( β ) SW ff, βff Y = β d β H XY = 0 ( ) = { os( θ θ ) + os( θ θ + ) } + x + y Y = π T L 9
20 話を戻して 0 反強磁性三角格子上の XY モデルのモンテカルロシミュレーション 物理量 カイラル磁化 複素磁化 ビンダー比 相関長 (Ornstn-Zrnk form を仮定 ) Hlty modulus, Vortty modulus = all ) ( ) ( p p m N m r p q q s N m S q r q K + = ) ( ) ( = 4 (0) 3 (0) 3 m m g = 4 (0) (0) s s s m m g ) ( (0) ) 3 / sn( mn,,, = q s s s m m L π ξ
21 期待される振る舞い カイラル転移点 ( T ) 近傍 次転移 比熱の発散 ビンダー比 相関長のクロス ユニバーサリティー : イジング? χ ( T, L) 有限サイズスケーリング スピン転移点 (T s ) 近傍 準長距離秩序 ( 無限次相転移 ) ビンダー比 相関長 Hlty modulus のジャンプ のマージ ユニバーサリティー :Just KT か? 否か? 転移点で η < 4? v T L η / ν ( L) = T + al Isng valus η = ν = 0.5 Cho-Stroud, Mnnhagn, L-L, Kawamura
22 Pak of Spf Hat around T
23 Cross of Bndr paramtr around T 3
24 Cross of Corrlaton Lngth around T 4
25 Loaton of T May b du to Grown Spn- Corrlaton lngth at T Bhavor Chang around L~ ξ s 00 at T = 0.55 ν = 0.7(5) T = (30) ν = 5 T =0.555(0)
26 Crtal Proprty of Chral Transton Fttng of Chral susptblty χ ( T, L) a( T ) + b( T ) L η η 0.5 Isng unvrsalty 6
27 Bndr paramtr around T s 7
28 Corrlaton Lngth around T s 8 Extrmly hard to dntfy rossng ponts for larg L...
29 Rdud Vortty v ( T ) around T s Salng of Vortty modulus: V ( T, L) a( T ) + v( T ) log L 9
30 Estmat of T s 準長距離秩序 ξ s / x ( T ) T スケーリング形 ( log L) x Ozk/003, 0.508() Non unvrsal KT T s =0.5038(9)(x~.8(7)) Myashta/983, 0.50 S. L/998, 0.50() 普通の KT 解析,T s =0.505(5) (x=) 30
31 Crtal xponnt η 通りの決め方 帯磁率から決める χ ( T, L) L s η η ( ) ( att ) 0.0 = η ( ) ( att ) 0.5 = Bndr 比等から決めた転移点とかなりずれる 3
32 Crtal xponnt η 通りの決め方 Hlty modulus から決める Y = T πη η = 0. T=0.505(): Inonsstnt wth KT η = 0.5 T s =0.5037(5),x=0.8(3): Consstnt wth Non unvrsal KT
33 解析のまとめ Salng Bndr のクロス等からの Ts 帯磁率からの T s と η Hlty からの T s と η KT (log L) (5) x=(fx) Non-KT (log L) -x (9) x=.84(70) T s =0.5064() η=0.5(fx) T s =0.5038(fx) η=0.0() T s =0.505() η=0.5(fx) x=(fx) T s =0.5037(5) η=0.0(fx) x=.8(3) KT を仮定すると nonsstnt な転移温度を導く Non-Unvrsal KT 転移 33
34 まとめと比較 モンテカルロで反強磁性三角格子上の XY モデルを解析 Author/ Yar T Unvrsalty att Ts Unvrsalty at Ts Sz/ Mthod Myashta t al./983 S. L t al./998 Ozk t al./003 Our rsult / Isng 0.50 KT L=45/ MC 0.53() 3-stat Potts 0.50() Non-unvrsal KT L=0/ MC 0.5() Isng 0.508() KT L=000/ NER 0.555(0) Isng (9) Non-unvrsal KT L=5/ MC カイラル転移 Isngのユニバーサリティと考えて矛盾ない スピン転移 KTと考えると転移点がばらつく 34 KT lk だけど Non-unvrsal な転移
35 SOS モデルと厳密解 Body-Cntrd SOS modl (BCSOS) Z BCSOS = { h = }, j β h BCSOS= ある種のアイスモデル (F modl) (H. V. Bjrn 977) h j h h j = 次元アイスモデル = 多くが Solvabl KT の厳密解 T T ( ) π T ξ T T, = 8 ln / 35 (.g. BCSOS)
36 Colorng と KT 転移 Thr olorng= アイスモデル (A. Lnard, E. H. Lb 967) 3 Thr Colorng は KT 転移を起こす 他のColorngだったら? Colorngの問題一般に繰りこみ群は適用可? 情報の繰りこみ群 色々な人が妄想してるけど堅実な切り口を見たこと無い そういう人のとはちょっと目標が違うのかも まずは3 色でやって色数増やしていくのがいいかも だれかネタに困ったらやってみてください 36
ハルデン相を特徴付けるストリング秩序の有限サイズスケーリング
-1- 吉田研究室コロキウム 2008/06/09 ハルデン相を特徴付けるストリング秩序の 有限サイズスケーリング 阪大基礎工上田宏 -2- アウトライン はじめに 少しだけ自己紹介 相転移に関する予備知識 相転移を身近に感じるために 秩序変数と自発的対称性の破れ モデル計算の流れ ( 一例 ) 量子相転移の相境界を新たな手法で捉える 数値解析手法の現状と新手法の提案 既知の相図 (S=1XXZ 鎖
: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =
1 11 11.1 ψ e iα ψ, ψ ψe iα (11.1) *1) L = ψ(x)(γ µ i µ m)ψ(x) ) ( ) ψ e iα(x) ψ(x), ψ(x) ψ(x)e iα(x) (11.3) µ µ + iqa µ (x) (11.4) A µ (x) A µ(x) = A µ (x) + 1 q µα(x) (11.5) 11.1.1 ( ) ( 11.1 ) * 1)
Microsoft PowerPoint - ip02_01.ppt [互換モード]
空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-
プランクの公式と量子化
Planck の公式と量子化 埼玉大学理学部物理学科 久保宗弘 序論 一般に 量子力学 と表現すると Schrödinger の量子力学などの 後期量子力学 を指すことが多い 本当の量子概念 には どうアプローチ? 何故 エネルギーが量子化されるか という根本的な問いにどうこたえるか? どのように 量子 の扉は叩かれたのか? 序論 統計力学 熱力学 がことの始まり 総括的な動き を表現するための学問である
数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数
. 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6
5. 磁性イオン間の相互作用
第 6 回. 量子スピン系の基礎 量子効果 (=/ の場合 ) =/ の つスピンが反強磁性的に相互作用している場合 最低エネルギー状態 H J 古典スピン /> -/> あるいは -/> /> H J J z z 量子スピン ( / / / / ) z z x x y H J J( Resonate することでエネルギーを得する J E=-J/4 y = + ) E=-3J/4 スピンの大きさ 0
Microsoft PowerPoint - 東大講義09-13.ppt [互換モード]
物性物理学 IA 平成 21 年度前期東京大学大学院講義 東京大学物性研究所高田康民 2009 年 4 月 10 日 -7 月 17 日 (15 回 ) 金曜日 2 時限 (10:15-11:45) 15 11 理学部 1 号館 207 号室 講義は自己充足的 量子力学 ( 第 2 量子化を含む ) 統計力学 場の量子論のごく初歩を仮定 最後の約 10 分間は関連する最先端の研究テーマを雑談風に紹介する
Microsoft PowerPoint - summer_school_for_web_ver2.pptx
スピン流で観る物理現象 大阪大学大学院理学研究科物理学専攻 新見康洋 スピントロニクスとは スピン エレクトロニクス メモリ産業と深くつなが ている メモリ産業と深くつながっている スピン ハードディスクドライブの読み取りヘッド N 電荷 -e スピンの流れ ピ の流れ スピン流 S 巨大磁気抵抗効果 ((GMR)) from http://en.wikipedia.org/wiki/disk_readand-write_head
パソコンシミュレータの現状
第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に
混沌系工学特論 #5
混沌系工学特論 #5 情報科学研究科井上純一 URL : htt://chaosweb.comlex.eng.hokudai.ac.j/~j_inoue/ Mirror : htt://www5.u.so-net.ne.j/j_inoue/index.html 平成 17 年 11 月 14 日第 5 回講義 デジタルデータの転送と復元再考 P ({ σ} ) = ex σ ( σσ ) < ij>
カイラル秩序をもつ磁性体のスピンダイナミクス
発表の流れ カイラル秩序をもつ磁性体 LiCuVO4 本研究の目的 一次元モデル 三次元モデル スピン フロップ転移の発現機構 三方向印加磁場に対するスピンの振る舞い LiCuVO4 の豊かな物性 1 スピンフラストレート鎖 Cu 2+ CuO2 chin J 1 =-1.6meV( 強磁性 ) J 2 =3.8meV( 反強磁性 ) LiCuVO4 結晶構造 [1] カイラル秩序 90 低磁場 (
PowerPoint Presentation
付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
Microsoft PowerPoint - CSA_B3_EX2.pptx
Computer Science A Hardware Design Excise 2 Handout V2.01 May 27 th.,2019 CSAHW Computer Science A, Meiji University CSA_B3_EX2.pptx 32 Slides Renji Mikami 1 CSAHW2 ハード演習内容 2.1 二次元空間でのベクトルの直交 2.2 Reserved
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
PowerPoint プレゼンテーション
光が作る周期構造 : 光格子 λ/2 光格子の中を運動する原子 左図のように レーザー光を鏡で反射させると 光の強度が周期的に変化した 定在波 ができます 原子にとっては これは周期的なポテンシャルと感じます これが 光格子 です 固体 : 結晶格子の中を運動する電子 隣の格子へ 格子の中を運動する粒子集団 Quantum Simulation ( ハバードモデル ) J ( トンネル ) 移動粒子間の
Microsoft PowerPoint - 複素数.pptx
00 年 月 9 日 ( 金 第 時限 平成 年度物質科学解析第 7 回 複素数 冨田知志 0. なぜ複素数か?. 虚数単位. 複素数の計算. オイラーの公式. 複素平面 5. 級数での複素数 ( オイラーの公式 の活用 6. 量子力学で出てくる複素数の例 0. なぜ複素数か? 量子論 ( 量子力学 で不可欠だから参照 : 光ナノサイエンスコアI 古典論や電気回路でも複素数は使うただしそれはあくまでも数学的道具
スライド 1
暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx
Probit , Mixed logit
Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,
Microsoft PowerPoint - 第3回2.ppt
講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3
τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索
τ - K - π - π + ν τ 崩壊における CP 対称性の破れの探索 奈良女子大学大学院人間文化研究科 物理科学専攻高エネルギー物理学研究室 近藤麻由 1 目次 はじめに - τ 粒子の概要 - τ - K - π - π + ν τ 崩壊における CP 対称性の破れ 実験装置 事象選別 τ - K - π - π + ν τ 崩壊の不変質量分布 CP 非対称度の解析 - モンテカルロシミュレーションによるテスト
Microsoft PowerPoint - 物情数学C(2012)(フーリエ前半)_up
年度物理情報工学科 年生秋学期 物理情報数学 C フーリエ解析 (Fourier lysis) 年 月 5 日 フーリエ ( フランス ) (768~83: ナポレオンの時代 ) 歳で Ecole Polyechique ( フランス国立理工科大学 ) の教授 ナポレオンのエジプト遠征に従軍 (798) 87: 任意の関数は三角関数によって級数展開できる という フーリエ級数 の概念を提唱 ( 論文を提出
画像処理工学
画像処理工学 画像の空間周波数解析とテクスチャ特徴 フーリエ変換の基本概念 信号波形のフーリエ変換 信号波形を周波数の異なる三角関数 ( 正弦波など ) に分解する 逆に, 周波数の異なる三角関数を重ねあわせることにより, 任意の信号波形を合成できる 正弦波の重ね合わせによる矩形波の表現 フーリエ変換の基本概念 フーリエ変換 次元信号 f (t) のフーリエ変換 変換 ( ω) ( ) ωt F f
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録
遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx
反射係数
平面波の反射と透過 電磁波の性質として, 反射と透過は最も基礎的な現象である. 我々の生活している空間は, 各種の形状を持った媒質で構成されている. 人間から見れば, 空気, 水, 木, 土, 火, 金属, プラスチックなど, 全く異なるものに見えるが, 電磁波からすると誘電率, 透磁率, 導電率が異なるだけである. 磁性体を除く媒質は比透磁率がで, ほとんど媒質に当てはまるので, 実質的に我々の身の回りの媒質で,
ଗȨɍɫȮĘർǻ 図 : a)3 次元自由粒子の波数空間におけるエネルギー固有値の分布の様子 b) マクロなサイズの系 L ) における W E) と ΩE) の対応 として与えられる 周期境界条件を満たす波数 kn は kn = πn, L n = 0, ±, ±, 7) となる 長さ L の有限
: Email: [email protected], D38 0 08 5 S = k B ln W ) W n [] [] 5 N. 6 d h m dx ϕ nx) = E n ϕ n x) ) L 5 ϕ n x = 0) = ϕ n x = L) = 0, N k n ϕ n = N sink n x), E n = h k n m 3) k n = nπ, n =,,
Microsoft PowerPoint _量子力学短大.pptx
. エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は
Microsoft Word - 素粒子物理学I.doc
6. 自発的対称性の破れとヒッグス機構 : 素粒子の標準模型 Dc 方程式.5 を導くラグランジアンは ϕ ϕ mϕϕ 6. である [H] Eu-nn 方程式 を使って 6. のラグランジア ンから Dc 方程式が導かれることを示せ 6. ゲージ対称性 6.. U 対称性 :QED ディラック粒子の複素場 ψに対する位相変換 ϕ ϕ 6. に対して ラグランジアンが不変であることを要請する これは簡単に示せる
ディジタル信号処理
ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*
H AB φ A,1s (r r A )Hφ B,1s (r r B )dr (9) S AB φ A,1s (r r A )φ B,1s (r r B )dr (10) とした (S AA = S BB = 1). なお,H ij は共鳴積分 (resonance integra),s ij は重
半経験量子計算法 : Tight-binding( 強結合近似 ) 計算の基礎 1. 基礎 Tight-binding 近似 ( 強結合近似, TB 近似あるいは TB 法などとも呼ばれる ) とは, 電子が強く拘束されており隣り合う軌道へ自由に移動できない, とする近似であり, 自由電子近似とは対極にある. 但し, 軌道間はわずかに重なり合っているので, 全く飛び移れないわけではない. Tight-binding
工業数学F2-04(ウェブ用).pptx
工業数学 F2 #4 フーリエ級数を極める 京都大学加納学 京都大学大学院情報学研究科システム科学専攻 Human Systems Lab., Dept. of Systems Science Graduate School of Informatics, Kyoto University 復習 1: 複素フーリエ級数 2 周期 2π の周期関数 f(x) の複素フーリエ級数展開 複素フーリエ係数
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
DVIOUT
3 第 2 章フーリエ級数 23 フーリエ級数展開 これまで 関数 f(x) のフーリエ級数展開に関して 関数の定義区間やフーリエ級数の積分区間を断りなく [, ] に取ってきました これは フーリエ級数を構成する三角関数が基本周期 2 を持つためです すなわち フーリエ級数の各項 cos nx および sin nx (n =1, 2, 3, 4, ) の周期は それぞれ 2, 2 2, 2 3,
ポリトロープ、対流と輻射、時間尺度
宇宙物理学 ( 概論 ) 6/6/ 大阪大学大学院理学研究科林田清 ポリトロープ関係式 1+(1/) 圧力と密度の間にP=Kρ という関係が成り立っていると仮定する K とは定数でをポリトロープ指数と呼ぶ 5 = : 非相対論的ガス dlnp 3 断熱変化の場合 断熱指数 γ, と dlnρ 4 = : 相対論的ガス 3 1 = の関係にある γ 1 等温変化の場合は= に相当 一様密度の球は=に相当
例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (
第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表
Microsoft PowerPoint - siryo7
. 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/
画像解析論(2) 講義内容
画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い
超伝導状態の輸送方程式におけるゲージ不変性とホール効果
超伝導状態の輸送方程式におけるゲージ不変性とホール項 輸送方程式について 研究の歴史 微視的導出法 問題点 - 項 超伝導体の 効果の実験 北大 理 物理北孝文 非平衡状態の摂動論 の方法 輸送方程式の微視的導出と問題点 ゲージ不変性とホール項 まとめ バイロイト 月 - 月 カールスルーエ 月 - 月 カールスルーエのお城 モーゼル渓谷 ザルツカンマ - グート ( オーストリア ) バイロイト近郊
カイ二乗フィット検定、パラメータの誤差
統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,
スライド 1
暫定版修正 加筆の可能性あり ( 付録 球面波 回折 (. グリーンの定理. キルヒホッフの積分定理 3. ホイヘンスの原理 4. キルヒホッフの回折公式 5. ゾンマーフェルトの放射条件 6. 補足 付録 (90~904 のアプローチ : 回折 (diffaction までの道標. 球面波 (pheical wave のみ対象 : スカラー表示. 虚数単位 i を使用する 3. お詫び : 自己流かつ説明が飛躍する場面があります
Microsoft Word - 補論3.2
補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は
PowerPoint プレゼンテーション
米田 戸倉川月 7 限 193~21 西 5-19 応用数学 A 積分定理 Gaussの定理 divbd = B nds Stokesの定理 E bds = E dr Green の定理 g x f y dxdy = fdx + gdy = f e i + ge j dr Gauss の発散定理 S n FdS = Fd 1777-1855 ドイツ Johann arl Friedrich Gauss
FEM原理講座 (サンプルテキスト)
サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]
Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その
ニュートン重力理論.pptx
3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間
Microsoft PowerPoint - qcomp.ppt [互換モード]
量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??
量子臨界現象におけるトポロジー
大学院共通授業科目 トポロジー理工学特別講義 量子臨界現象におけるトポロジー 理学研究院物理学部門網塚浩 1. 重い電子状態の現象論と微視的機構. 量子相転移と非フェルミ液体異常 3. 量子臨界異常の観測例 4. 量子相転移とトポロジー 1. 重い電子状態の現象論と微視的機構 弱 局在性 強 s,p 4d 3d 5f 4f 通常 属 ransition Heavy electron metal Valence
Microsoft PowerPoint - H21生物計算化学2.ppt
演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A
φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m
2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x
7.一次元磁性体の研究 (ハルデン予想以前)
第 13 回幾何学的フラストレーション ( 二次元反強磁性体 ) 三角格子反強磁性体 カゴメ格子反強磁性体シャストリ-サザーランド格子反強磁性体の強磁場磁性 2 次元系での幾何学的フラストレーション 三角格子 イジング強いフラストレーション ( 無秩序 ) ハイゼンベルグ 120スピン構造 S=1/2 ( 量子系 ) ( 古典系 ) スピン固体 Bernu et al. (1994)?? 遠距離相互作用か双二次相互作用スピン液体
応用数学A
応用数学 A 米田 戸倉川月 7 限 1930~2100 西 5-109 V を :x 2 + y 2 + z 2 = 4 で囲まれる内部とする F = ye x xe y + ze z FdV = V e x e y e z F = = 2e z 2e z dv = 2e z 3 23 = 64π 3 e z y x z 4π V n Fd = 1 F nd 2 F nd 法線ベクトル n g x,
ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.
23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%
横浜市環境科学研究所
周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.
DVIOUT
第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため
線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル
Constitutive equation of elasti solid Hooke s law λδ μ kk Lame s onstant λ μ ( )( ) ( ) linear elasti solid kl kl Copyright is reserved. No part of this doument may be reprodued for profit. 線形弾性体 線形弾性体
D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j
6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..
氏 名 田 尻 恭 之 学 位 の 種 類 博 学 位 記 番 号 工博甲第240号 学位与の日付 平成18年3月23日 学位与の要件 学位規則第4条第1項該当 学 位 論 文 題 目 La1-x Sr x MnO 3 ナノスケール結晶における新奇な磁気サイズ 士 工学 効果の研究 論 文 審 査
九州工業大学学術機関リポジトリ Title La1-xSrxMnO3ナノスケール結晶における新奇な磁気サイズ効果の研究 Author(s) 田尻, 恭之 Issue Date 2006-06-30 URL http://hdl.handle.net/10228/815 Rights Kyushu Institute of Technology Academic Re 氏 名 田 尻 恭 之 学 位
W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)
3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)
Microsoft Word - note02.doc
年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm
Korteweg-de Vries
Korteweg-de Vries 2011 03 29 ,.,.,.,, Korteweg-de Vries,. 1 1 3 1.1 K-dV........................ 3 1.2.............................. 4 2 K-dV 5 2.1............................. 5 2.2..............................
<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>
宇宙工学基礎 ( 軌道の基礎 松永三郎 機械宇宙学科 機械宇宙システム専攻 ニュートンの法則 第 法則 力が作用作用しないしない限り 質点質点は静止静止ないしはないしは一定速度一定速度で運動するする ( 慣性の法則 慣性空間 慣性座標系慣性座標系の定義第 法則 慣性座標系におけるにおける質点質点の運動 p F ( pɺ t ( F: 全作用力, pmv: 並進運動量 ( 質量と速度速度の積 慣性系を規準規準としてとして時間微分時間微分を行うことにことに注意第
1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC
1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC
スライド 1
平成 24 年度大学院共通授業科目トポロジー理工学特別講義 Ⅱ 有機導体における密度波状態 応用物理学専攻トポロジー工学研究室 DC1 上遠野一広 目次 低次元導体, 有機導体の特徴について ゆらぎと次元性の関係と朝永 -Luttinger 液体 (g-gology) 私の研究について 目次 低次元導体, 有機導体の特徴について ゆらぎと次元性の関係と朝永 -Luttinger 液体 (g-gology)
ベイズ統計入門
ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき
ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.
24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
物性基礎
水素様原子 水素原子 水素様原子 エネルギー固有値 波動関数 主量子数 角運動量 方位量子数 磁気量子数 原子核 + 電子 個 F p F = V = 水素様原子 古典力学 水素様原子 量子力学 角運動量 L p F p L 運動方程式 d dt p = d d d p p = p + dt dt dt = p p = d dt L = 角運動量の保存則 ポテンシャルエネルギー V = 4πε =
Gmech08.dvi
145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2
Microsoft PowerPoint - aep_1.ppt [互換モード]
物理計測法特論 No.1 第 1 章 : 信号と雑音 本講義の主題 雑音の性質を理解することで 信号と雑音の大きさが非常に近い状態での信号の測定技術 : 微小信号計測 について学ぶ 講義の Web http://www.g-munu.t.u-tokyo.ac.jp/mio/note/sig_mes/tokuron.html 物理学の基本は実験事実の積み重ねである そして それは何かを測定することから始まる
気体の性質-理想気体と状態方程式
自由エネルギー 熱力学関数 202 5/3 第 3セメスター化学 B 第 7 回講義担当奥西みさき前回の復習 : エントロピー今回の主題 : 自由エネルギー 講義資料は研究室のWebに掲載 htt://www.tagen.tohoku.ac.j/labo/ueda/index-j.html クラウジウスの式 サイクルに流れ込む熱量を正とする 不可逆サイクル 2 可逆サイクル η 熱機関 C η 熱機関
位相最適化?
均質化設計法 藤井大地 ( 東京大学 ) 位相最適化? 従来の考え方 境界形状を変化させて最適な形状 位相を求める Γ t Ω b Γ D 境界形状を変化させる問題点 解析が進むにつれて, 有限要素メッシュが異形になり, 再メッシュが必要になる 位相が変化する問題への適応が難しい Γ Γ t t Ω b Ω b Γ D Γ D 領域の拡張と特性関数の導入 χ Ω ( x) = f 0 f x Ω x
(Microsoft PowerPoint - \221\34613\211\361)
計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.
N cos s s cos ψ e e e e 3 3 e e 3 e 3 e
3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >
QMI_10.dvi
... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy
<4D F736F F F696E74202D2091E688EA8CB4979D8C768E5A B8CDD8AB B83685D>
第一原理計算法の基礎 固体物理からのアプローチを中心に 第一原理計算法とは 原子レベルやナノスケールレベルにおける物質の基本法則である量子力学 ( 第一原理 ) に基づいて, 原子番号だけを入力パラメーターとして, 非経験的に物理機構の解明や物性予測を行う計算手法である. 計算可能な物性値 第一原理計算により, 計算セル ( 原子番号と空間座標既知の原子を含むモデル ) の全エネルギーと電子のエネルギーバンド構造が求まる.
