Microsoft PowerPoint - Engmat110Y03V1pdf.ppt
|
|
|
- まいか ふじつぐ
- 7 years ago
- Views:
Transcription
1 第三回目結晶の塑性変形と破壊 生命医科学部医工学科バイオメカニクス研究室 ( 片山 田中研 ) IN116N 田中和人 内線 : 6408 材料工学 Ⅰ Biomechanics aboratory 丸棒の引張試験 通常の引張試験引張変位速度 ( 引張試験機のクロスヘッド速度 ) 一定 公称応力 (nominal stress) σ n =/ 0 ( 0 : 初期断面積 ) 真応力 (true stress) σ t =/ (: 実断面積 ) 公称ひずみ ( 全伸び )(nominal strain) ε n =(- 0 )/ 0 真ひずみ ( 対数ひずみ )(logarithmic strain) ε t = 0 d/=ln(/ 0 )=ln(1+ε n ) 伸び標点距離 (gage length) の変化伸び計 単位あたり荷重応力 のびひずみ 機械材料学 74 図 1.1 引張り特性 a. 試験法
2 σ : 比例限 (proportional limit) 応力とひずみが比例する限度の応力 σ E : 弾性限 (elastic limit) 除荷後もとの寸法に戻る限度の応力 : 引張強さ (ultimate tensile strength) 最大荷重に対応する公称応力 σ F : 破断強度 (fracture strength) 破断時に対応する公称応力ヤング率 ( 縦弾性係数 ) E(Young's modulus): 応力とひずみの比例定数ポアソン比 ν(oisson s ratio): 比例限度以下での横ひずみと縦ひずみの比 σ 加工硬化引張強さ破断強度 σ 絞り o f ϕ = o 100 σ f σ 0. 0.% 耐力 除荷 σ f σsu σ S 上降伏点下降伏点 (a) 降伏点降下なし,(b) 降伏点降下あり ( 焼なまされた鉄鋼 ) 機械材料学 75 図 1. 0.% 塑性ひずみ ε B ε f ε 破断伸び ε B ε f ε b. 公称応力 公称ひずみ線図 公称応力 公称ひずみ線図 力の単位 :N 応力の単位 :N/m =a N m Ma = a N N N m mm 6 = 10 = = 3 ( m 10 ) HT50 とか,50k 級とか 1mm で 50kgf N = a m N 50kgf 500Ma = 500 mm mm 1kgf = 9.8N 単位に用いる 10 の整数乗の接頭語 名称読み方記号大きさ tera テ ラ T 10 1 giga ギ ガ G 10 9 mega メ ガ M 10 6 kilo キ ロ k 10 3 hecto ヘクト h 10 deca デ カ da 10 1 deci デ シ d 10 1 centi センチ c 10 milli ミ リ m 10 3 micro マイクロ μ 10 6 nano ナ ノ n 10 9 pico ピ コ p 10 1 femto フェムト f 垂直ひずみ ε = 横ひずみ ε ' = ポアソン比 υ = せん断ひずみ θ d- d + B θ D D C C 応力の単位など ひずみ (strain)
3 垂直ひずみ ( + ) ε = = 横ひずみ ( d ') d ' ε ' = = d d ポアソン比 ε 横ひずみ υ = = ε 縦ひずみ せん断ひずみ θ tanθ = d- d + B θ D D C C 弾性変形 : 原子間距離が伸びているだけで除荷すると元に戻る塑性変形 : せん断力によるすべり変形 アルミニウム 引張 せん断 金属原子の有効半径 l 1.43 =143pm=0.143nm ひずみ (strain) 弾性変形と塑性変形 a. 転位運動とすべり結晶の塑性変形 : 原子がある結晶面を境にして特定方向に移動する = すべりによる完全結晶のすべり : 現実とあわない実際の結晶 : 転位の移動 図.1 理想結晶のすべりと応力 図 1.19 実在結晶のすべり ( 印は転位を示す ) 絨毯の移動でよく説明される b. すべり方向とすべり面すべり系 (slip system) {hkl} HK すべり面 : すべりが起こる面すべり方向 : すべりが起こる方向結晶の変形強さ, 変形の様子に関係原則的にはすべり : 最小並進ベクトルの方向すべり面 : 最ちゅう密面やこれに近い面面心立方金属 (111) 面上で [110] 方向 表.1 金属および合金の結晶構造とすべり系 図.4 面心立方のすべり面とすべりベクトル 結晶の塑性変形と破壊
4 結晶の変形能多結晶を無理なく変形させるには 5 種類以上のすべり系が必要 (von Mises の条件 ) 面心立方晶 {111} 110 : 独立したすべりは 1 体心立方晶 {110} 111, {11} 111 などのすべりちゅう密六方晶底面すべり, 柱面すべりのみ : 最大四種類 変形しにくい Mg, Zn, α-co, α-ti, α-zr c. 単結晶におけるせん断応力とシュミットの法則断面積 の円柱状単結晶引張力 F を負荷 変形は特定のすべり面で生じる引張力 F のすべり面上でのすべり方向への分解せん断応力を求める引張軸とすべり面の法線とのなす角 :φ すべり方向となす角 : すべり面の面積 :/cosφ すべり方向へ働く力の分力 :Fcos 引張応力 σ=f/ F cos = = σ cosφcos cosφ 図.5 単結晶を引張り変形するときのすべり面 すべり方向と応力軸との関係 臨界せん断応力 (critical resolved shear stress 又は単に crss): 外力が増加して がある臨界の値以上で, 転位が運動し, すべり面で変形が生じるシュミットの法則 (Schmid law): 一定温度および一定ひずみ速度下では, 結晶方位に関係なく一定の値シュミット因子 :cosφ cos 単結晶の変形に対する評価に使用 F cos = = σ cosφcos cosφ 図.5 単結晶を引張り変形するときのすべり面 すべり方向と応力軸との関係 e. 多結晶のすべり変形 一つの結晶粒内ですべりが発生し, リューダース帯として伝ぱ結晶粒界 : すべり伝ぱの障害つまり結晶粒界は強化に寄与 ホール ペッチの関係 (Hall-etch relation) 変形応力は粒径の -1/ 乗に比例して増加する σ = σ + kd a 1 結晶粒微細化 材料の強化につながる 0 y 図.7 結晶粒界に堆積した転位とすべりの伝ぱ
5 図.8 降伏現象とひずみ時効 f. 降伏応力 -ひずみ曲線弾性変形 点 : 塑性変形降伏 (yielding): またはそれより低い応力塑性で変形が進行降伏が開始する 点を上降伏点 (upper yield point) 応力が集中した部分で帯状の変形組織 ( リューダース帯 ) 応力が急激に低下し, 降伏が進行しているB 点を下降伏点 (lower yield point) リューダース帯が下降伏点の応力 BからCにおいて試料全体に伝ぱ面心立方金属 : 明瞭な降伏点はない 降伏が生じる理由転位の溶質原子による固着 :C,N などの溶質原子 転位は動きにくくなるコットレルふん囲気 (Cottrell atmosphere) を形成上降伏点 : 固着状態から転位を引き離す応力下降伏点 : 結晶中を上降伏点より低い応力で転位が運動 公称応力 (nominal stress) σ n =/ 0 ( 0 : 初期断面積 ) 真応力 (true stress) σ t =/ (: 実断面積 ) 公称ひずみ ( 全伸び )(nominal strain) ε n =(- 0 )/ 0 真ひずみ ( 対数ひずみ )(logarithmic strain) ε t = 0 d/=ln(/ 0 )=ln(1+ε n ) 単位あたり荷重応力 のびひずみ a. 試験法 真応力 - ひずみ線図引張側と圧縮側でほぼ対称 ( 延性材料 ) 圧縮強さが大きい ( コンクリートなど ) 引張側は圧縮側より短い加工限界ひずみは圧縮側で求める公称応力 - ひずみ線図 : 対称性なし応力 - ひずみ線図の対称性試験や解析が楽 g. 加工硬化とひずみ時効加工硬化 (work hardening) : 降伏後変形が進むに伴って応力増加する 転位が障害になりすべりが生じにくくなる真応力 - 真ひずみ曲線 n σ = Kε n: ひずみ硬化指数 (strain hardening exponent) 転位運動の障害 : 析出粒子や溶質原子, 結晶粒界などの格子欠陥 + 堆積した転位 σ f σ 0. σ 0.% 除荷 負荷 ε B ε f 加工硬化 真応力 ひずみ線図
6 単軸引張り試験における真応力 - 真塑性ひずみ曲線 = 塑性曲線, 塑性加工の解析に利用塑性曲線 : 材料の塑性変形が継続して生じるために必要な応力, すなわち変形抵抗 ( または流動抵抗 ) を表す. 広く用いられている塑性曲線例 a. 完全塑性体 : 加工硬化がほとんどない. σ = σ Y (σ Y : 降伏応力 ) b. 線形硬化塑性体 : 加工硬化を直線で近似できる. σ = σ Y + Cε t c. n 乗硬化塑性体 : 加工硬化を指数関数で近似できる. n σ = Fε t 定数 F: 塑性係数 (F 値 ) n: 加工硬化指数 (n 値 ) (C: 定数 ) 応力 - ひずみ曲線の数式化 応力 - ひずみ曲線の数式化 g. 加工硬化とひずみ時効バウシンガ効果 (Bauschinger effect) 引張変形後, 圧縮変形させると降伏応力が低くなる現象一般に : 圧縮, 引張変形の降伏応力は等しい 図.9 バウシンガ効果ひずみ時効 (strain aging) 転位へ,C,Nなどの溶質原子が拡散し, コットレルふん囲気を形成, 降伏点上昇, じん性が低下ひずみと時間の経過 図.8 降伏現象とひずみ時効 a. 双晶変形 金属が変形する機構 : すべり, 双晶双晶変形 : せん断変形により, ある面に平行に, この面からの距離に比例して原子面を集団移動させる変形のこと B 面を境にして上下の原子面は鏡面対称 表に示す特定の双晶面で, 特定の変位 ( 双晶方位 ) 生じる複雑な結晶構造, 低温における変形で重要 図.10 bcc 結晶の双晶 白丸は変形前 黒丸は双晶変形後の原子の位置 表. 双晶変形の双晶面と方向 他の変形様式
Microsoft PowerPoint - ‚æ3‘Í [„Ý−·…‡†[…h]
第 3 章変形と理論強度 目的 弾性変形および塑性変形に関し, 原子レベルからの理解を深める. 3. 弾性変形 (elastic defomation) 3.. 原子間に作用する力 3.. ポテンシャルエネルギー 33 3..3 フックの法則 3..4 弾性率の温度依存性 3..5 弾性変形時のポアソン比 3..6 理論強度 3. 塑性変形 (plastic defomation) 3.. すべり
<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63>
-1 ポイント : 材料の応力とひずみの関係を知る 断面内の応力とひずみ 本章では 建築構造で多く用いられる材料の力学的特性について学ぶ 最初に 応力とひずみの関係 次に弾性と塑性 また 弾性範囲における縦弾性係数 ( ヤング係数 ) について 建築構造用材料として代表的な鋼を例にして解説する さらに 梁理論で使用される軸方向応力と軸方向ひずみ あるいは せん断応力とせん断ひずみについて さらにポアソン比についても説明する
Microsoft PowerPoint - ‚æ2‘Í.ppt
第 2 章力学的挙動と静的強度 目的 荷重が作用した際の金属材料の力学的挙動について理解する. 2.1 応力 - ひずみ曲線 2.1.1 公称応力 / ひずみと真応力 / ひずみ 2.1.2 応力 - ひずみ曲線 2.1.3 力学的性質 ( 機械的性質 ) 2.1.4 加工硬化 2.1.5 じん性 2.1.6 指標の意味 2.2 力学的性質を求める異なる方法 2.2.1 ヤング率の測定方法 2.2.2
結晶粒と強度の関係
SPring-8 金属材料評価研究会 218 年 1 月 22 日 @AP 品川 転載不可 アルミニウムにおける 置換型固溶元素が引張変形中の 転位密度変化に及ぼす影響 兵庫県立大学材料 放射光工学専攻〇足立大樹 背景 放射光を用いた In-situ XRD 測定により 変形中の転位密度変化を高時間分解能で測定可能となっており 結晶粒径による転位増殖挙動の変化について明らかにしてきた * * H.
Microsoft PowerPoint - 第8章 [互換モード]
第 8 章クリープと環境強度 目的 クリープ現象および環境強度に関する基本的な事項を理解する. 8.1 クリープ 8.1.1 クリープの重要性 8.1.2 事例紹介 8.1.3 クリープ曲線 8.1.4 クリープの機構 8.1.5 変形機構図 8.2 環境強度 8.2.1 温度の影響 8.2.2 環境の影響 8.1 クリープ 8.1.1 クリープの重要性 クリープ (creep) 材料に一定荷重を加えたまま,
Microsoft Word - 第5回講義資料.docx
5. 金属の強化機構 金属材料の塑性変形は, 多くの場合すべり面に沿った転位の運動により担われる. したがって, 結晶中の転位運動の難易が, 材料の強度とみなすことができる. 金属材料の強化は, 塑性変形を担う転位のすべりを抑制する ( すべりに要する応力を増大させる ) ことに対応する. その強化方法には, 固溶強化, 転位強化, 析出強化 ( 分散強化も含む ), 粒界強化の 4 つに分類される.4.2
Microsoft PowerPoint - elast.ppt [互換モード]
弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)
材料の力学解答集
材料の力学 ( 第 章 ) 解答集 ------------------------------------------------------------------------------- 各種応力の計算問題 (No1) 1. 断面積 1mm の材料に 18N の引張荷重が働くとき, 断面に生じる応力はどれほどか ( 18(N/mm ) または 18(MP)) P 18( N) 18 N /
<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D>
弾塑性構成式 弾塑性応力 ひずみ解析における基礎式 応力の平衡方程式 ひずみの適合条件式 構成式 (), 全ひずみ理論 () 硬化則 () 塑性ポテンシャル理論の概要 ひずみ 応力の増分, 速度 弾性丸棒の引張変形を考える ( 簡単のため 公称 で考える ). 時間増分 dt 時刻 t 0 du u 時刻 t t 時刻 t t のひずみ, 応力 u, 微小な時間増分 dt におけるひずみ増分, 応力増分
材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有
材料強度試験 ( 曲げ試験 [] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有の抵抗値のことであり, 一般に素材の真応力 - 真塑性ひずみ曲線で表される. 多くの金属材料は加工硬化するため,
線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル
Constitutive equation of elasti solid Hooke s law λδ μ kk Lame s onstant λ μ ( )( ) ( ) linear elasti solid kl kl Copyright is reserved. No part of this doument may be reprodued for profit. 線形弾性体 線形弾性体
PowerPoint Presentation
Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /
PowerPoint Presentation
H8 年度有限要素法 1 構造強度設計 1. 塑性崩壊 1.3 疲労設計 ( 一部修正版 ) H8-1/6 早川 (R : 夏学期の復習部分 ) 1. 塑性崩壊とその評価法 ( 極限解析 ) R 塑性崩壊 : 構造物として使用に耐えないほどの過度の塑性変形 全断面降伏 前提 : 弾完全塑性材モデル E ひずみ硬化ありひずみ硬化なし : 降伏強さ E : ヤング率 ε 図 1.3 弾完全塑性材モデルの応力
すべり系 (slip system) その 1 すべり面とすべり方向の組合せ. すべり面 (slip plane) 最密面 (close-packed plane) 原子密度が大きな面ほど面間距離が大きく, 原子面の間でずれが生じやすい.
金属結晶のすべり Slip in Metallic Crystals Copyright is reserved. No part of this document may be reproduced for profit. すべり系 (slip system) その 1 すべり面とすべり方向の組合せ. すべり面 (slip plane) 最密面 (close-packed plane) 原子密度が大きな面ほど面間距離が大きく,
Microsoft PowerPoint - zairiki_3
材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,
Microsoft Word - 第1回講義資料.docx
1. 転位と塑性変形 1.1 転位身の周りに存在する金属 (metals) 及び合金 (alloys) は結晶である. 結晶の塑性変形 (Plastic deformation) を微視的観点から理解すると, ある特定の結晶学的な面に沿って特定の方向に原子が移動することである この面をすべり面 (slip plane), 方向をすべり方向 (slip direction) という. 通常, 金属の結晶内部には原子の並びが線上に乱れた領域が存在し,
Microsoft PowerPoint - ‚æ4‘Í [„Ý−·…‡†[…h]
第 4 章転位 dislocation 目的 転位の概念のおよび転位の移動と塑性変形の関係を理解する. 4. 転位の概念と基礎 4.. 刃状転位 4.. パイエルス ナバロウ応力 4..3 刃状転位の応力場 4..4 刃状転位の上昇運動 4..5 らせん転位 4..6 らせん転位の応力場 4..7 らせん転位の交差すべり 4..8 らせん転位と刃状転位の相違 4..9 複合転位 4. 転位に基づく塑性変形
Microsoft PowerPoint - ‚æ5‘Í.ppt
第 5 章転位 dislocation 目的 転位の概念の説明および転位に基づく塑性変形の検討 転位の概念と基礎 刃状転位 パイエルス ナバロウ応力 刃状転位の応力場 刃状転位の上昇運動 らせん転位 らせん転位の応力場 らせん転位の交差すべり らせん転位と刃状転位の相違 複合転位 転位に基づく塑性変形 転位のエネルギー ピーチ ケラー力 転位の増殖 塑性変形の不可逆性 転位移動と塑性変形量 5. 転位の概念と基礎
構造力学Ⅰ第12回
第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB
A9RF112.tmp.pdf
9 1-1 9 9 10 11 13 17 1-2 18 18 19 20 21 21 22 23 24 26 2-1 26 26 26 30 33 35 2-2 36 36 38 40 44 44 45 3-1 45 45 47 49 51 53 58 3-2 59 59 60 62 64 68 69 70 4-1 70 70 72 4-2 73 73 74 74 75 76 77 77 79 80
破壊の予測
本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?
Japanese nuclear policy and its effect on EAGLE project
2018 年 8 月 23 日 JASMiRT 第 2 回国内ワークショップ 3 既往研究で取得された関連材料特性データの現状 - オーステナイト系ステンレス鋼の超高温材料特性式の開発 - 鬼澤高志 下村健太 加藤章一 若井隆純 日本原子力研究開発機構 背景 目的 (1/2) 福島第一原子力発電所の事故以降 シビアアクシデント時の構造健全性評価が求められている 構造材料の超高温までの材料特性が必要
0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =
RC LC RC 5 2 RC 2 2. /sc sl ( ) s = jω j j ω [rad/s] : C L R sc sl R 2.2 T (s) ( T (s) = = /CR ) + scr s + /CR () 0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db(
第3章 ひずみ
第 4 章 応力とひずみの関係 4. 単軸応力を受ける弾性体の応力とひずみの関係 温度一定の下で, 負荷による変形が徐荷によって完全に回復する場合を広義の弾性というが, 狭義の弾 性では, 負荷過程と徐荷過程で応力 - ひずみ関係が一致しない場合は含めず ( 図 - 参照 ), 与えられたひ ずみ状態に対して応力が一意に定まる, つまり応力がひずみの関数と して表される. このような物体を狭義の弾性体
Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt
シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析
問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた
問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた 測定データを図 1-2 に示す データから, オーステナイト系ステンレス鋼どうしの摩擦係数を推定せよ
<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D>
単純な ( 単純化した ) 応力状態における弾塑性問題 () 繊維強化複合材の引張り () 三本棒トラスへの負荷 () はりの曲げ (4) 円筒 丸棒のねじりとせん断変形 (5) 熱弾塑性問題 負荷 ( 弾性変形 ) 負荷 ( 弾塑性変形 ) 除荷 残留応力 第 9 章,4 ページ ~ その. 繊維強化複合材料の引張り Rs.: []htt://authrs.library.caltch.du/5456//hrst.it.du/hrs/
静的弾性問題の有限要素法解析アルゴリズム
概要 基礎理論. 応力とひずみおよび平衡方程式. 降伏条件式. 構成式 ( 応力 - ひずみ関係式 ) 有限要素法. 有限要素法の概要. 仮想仕事の原理式と変分原理. 平面ひずみ弾性有限要素法定式化 FEM の基礎方程式平衡方程式. G G G ひずみ - 変位関係式 w w w. kl jkl j D 構成式応力 - ひずみ関係式 ) (. 変位の境界条件力の境界条件境界条件式 t S on V
< B795FB8C6094C28F6F97CD97E12E786477>
長方形板の計算システム Ver3.0 適用基準 級数解法 ( 理論解析 ) 構造力学公式集( 土木学会発行 /S61.6) 板とシェルの理論( チモシェンコ ヴォアノフスキークリ ガー共著 / 長谷川節訳 ) 有限要素法解析 参考文献 マトリックス構造解析法(J.L. ミーク著, 奥村敏恵, 西野文雄, 西岡隆訳 /S50.8) 薄板構造解析( 川井忠彦, 川島矩郎, 三本木茂夫 / 培風館 S48.6)
<4D F736F F D E682568FCD CC82B982F192668BAD93785F F2E646F63>
7. 粘土のせん断強度 ( 続き ) 盛土 Y τ X 掘削 飽和粘土地盤 せん断応力 τ( 最大値はせん断強度 τ f ) 直応力 σ(σ) 一面せん断 図 強固な地盤 2 建物の建設 現在の水平な地表面 ( 建物が建設されている過程では 地下水面の位置は常に一定とする ) 堆積 Y 鉛直全応力 σ ( σ ) 水平全応力 σ ( σ ) 間隙水圧 図 2 鉛直全応力 σ ( σ ) 水平全応力
Microsoft PowerPoint - fuseitei_6
不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という
<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>
人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形
H23 基礎地盤力学演習 演習問題
せん断応力 τ (kn/m ) H6 応用地盤力学及び演習演習問題 4 年月日. 強度定数の算定 ある試料について一面せん断試験 ( 供試体の直径 D=6.cm, 高さ H=.cm) を行い 表に示す データを得た この土の強度定数 c, φ を求めよ 垂直応力 P (N) 4 せん断力 S (N) 5 8 < 解答 > 供試体の断面積 A=πD /4 とすると 垂直応力 σ=p/a 最大せん断応力
Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為
Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m
まえがき 材料力学の教科書を見ると 2ページ目から 微分 積分 行列の式などがずらっと並んでいます もう それを見るだけで拒絶反応を起こしてしまう方もおられるのではないでしょうか? 確かに 三次元で評価しようとするとそのような計算が必要になるかもしれませんが 一次元 二次元なら 簡単な式にまとめられ
技術士だぁーちゃんの 材料力学基礎講座 http://www.eonet.ne.jp/~northriver/gijutsushi/ まえがき 材料力学の教科書を見ると 2ページ目から 微分 積分 行列の式などがずらっと並んでいます もう それを見るだけで拒絶反応を起こしてしまう方もおられるのではないでしょうか? 確かに 三次元で評価しようとするとそのような計算が必要になるかもしれませんが 一次元
レオロジーの準備その 1: 変形と流動 せん断変形 せん断以外の変形の例 : 一軸伸長変形 一般には変形はテンソルで記述されるが, せん断変形だけ知っていればレオロジーの論文の大半は読める x d せん断ひずみ ( 変形量の指標 ) γ = x /d ( 変形速度の指標 ) ( 単位なし ) dγ
おもしろレオロジー (+ レオロジーとプラスチック CAE) 京大化研 まとめ レオロジーとは何か? 物質のひずみとの関係を調べる学問 弾性率 = / ひずみ, = / 現象論レオロジー : 物質挙動を / ひずみで定量化 興味ぶかいレオロジー挙動の例 理想液体と理想固体の間に様々な挙動がある. 以下は例. がの増加で低下する 降伏以上の外力で流れる塑性流体 と弾性率が時間変化する粘弾性流体 レオロジーとプラスチック
[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F
Microsoft PowerPoint - Engmat111Y6V1pdf.ppt
第六回目鉄鋼の熱処理の基礎 a.fe-c 状態図と標準組織炭素鋼 ( 鋼 ):Fe+ 少量の C Fe 3 C( セメンタイト, cementite): 準安定相で, 安定相は黒鉛, 通常の熱処理ではセメンタイトとして存在 生命医科学部医工学科バイオメカニクス研究室 ( 片山 田中研 ) IN116N 田中和人 E-mail: 内線 : 6408 材料工学 Ⅰ 鋼 (steel) :C 量が約 2.0%
PowerPoint Presentation
目指せ 世紀の岩盤力学! 北大工岩力! 4. 応力とひずみ 目指せ 世紀の岩盤力学! 北大工岩力! 実際の材料の応力 - ひずみ線図 (stress-strain curve) 真破断力 引張強度 降伏点 実応力 (P / A') A': 実際の断面積 応力 (P / A) 降伏強度 最大荷重点 弾性領域 a 塑性ひずみ 弾性ひずみ 鋼の応力 - ひずみ線図 ( 模式図 ) 目指せ 世紀の岩盤力学!
<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>
地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味
スライド タイトルなし
第 4 章. 材料の破壊と破壊力学 脆性破壊 材料の破壊事例 (1) 阪神大震災で鋼構造物の脆性破壊による発生した落橋状況 延性破壊 材料の破壊事例 (2) 平成 14 年度浜岡原子力発電所における配管破断事故 疲労破壊 材料の破壊事例 (3) インデューサ羽根の疲労破面 1999 年 11 月 H-2 ロケット 8 号機打ち上げ失敗事件 クリ - プ破壊 材料の破壊事例 (4) RFCC/ セパレーター塔壁の溶接部の流体の漏出事故
スライド 1
第 3 章 鉄筋コンクリート工学の復習 鉄筋によるコンクリートの補強 ( 圧縮 ) 鉄筋で補強したコンクリート柱の圧縮を考えてみよう 鉄筋とコンクリートの付着は十分で, コンクリートと鉄筋は全く同じように動くものとする ( 平面保持の仮定 ) l Δl 長さの柱に荷重を載荷したときの縮み量をとする 鉄筋及びコンクリートの圧縮ひずみは同じ量なのでで表す = Δl l 鉄筋及びコンクリートの応力はそれぞれの弾性定数を用いて次式で与えられる
構造化学
構造化学 消滅則と空間群の判定 第 回 7 月 日 河野淳也 本日の目標 消滅則と空間群の判定について理解しよう 内容 復習 X 線結晶構造解析の手順 消滅則 空間群の判定 これまでの話 結晶 回折像 ( 前半 ) 結晶の対称性 ( 後半 ) - 電子 - + 原子 単位胞 X 線回折像からの結晶構造解析 結晶 X 線結晶構造解析の手順 結晶作成回折データ測定格子定数の決定空間群の判定位相決定 (
<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>
第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ
Microsoft PowerPoint - 構造強度_材料力学第二2018.pptx
構造強度と材料強度 構造強度 ( 実機の強度 ) 構造物が意図する機能 ( 目的 ) を達成できるために 材料強度 を基礎に 構造物としてもたねばならない強度 構造強度は人間が決める クリップの構造強度とは? 弾性 塑性 座屈など 材料強度 構造物を構成する部品をつくる材料の変形と強度および破壊の基礎資料 構造強度の基礎となる材料自体の特性 本講座では 静的強度 ( 塑性崩壊 ) と疲労強度を扱う
2 (1) 軸応力 σが最大値 σ max に達する以前 : 応力 -ひずみ線図は ほぼ直線となる 軸応力- 軸ひずみ線図の傾きからヤング率 Eが dσ/dεとして求まり 同一の応力レベルにおける軸ひずみと周ひずみの比としてポアソン比 νが得られる E=dσ/dε ν= ε θ /ε z (3.1)
1 3. 岩石の変形強度特性 3.1 緒言 2 章では 1 軸や3 軸圧縮試験などの岩石の標準的な試験によって供試体にどのような応力ひずみ状態が現れるかについて説明した 本章では これらの岩石の標準的な試験で得られる岩石の変形強度特性について述べる 岩盤を構成する基質部が岩石であるが 岩盤のもう一つの構成要素である不連続面の強度変形特性とそれらを調べる試験方法については4 章で述べる 基質部と不連続面から成る岩盤の強度変形特性については5
第1章 単 位
H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,
Microsoft PowerPoint - 材料加工2Y0807V1pdf.ppt
第 7 回目圧延 生命医科学部医工学科バイオメカニクス研究室 ( 片山 田中研 ) IN6N 田中和人 E-ail: 内線 : 648 圧延の定義回転する上下ロール間に素材をかみこませ, 厚さや断面積の小さな板, あるいは形材等をつくる方法圧延の歴史 5 世紀末 : レオナルド ダ ビンチ 6 世紀 : 棒や板材の圧延 8 世紀末 : 動力に蒸気力を利用ロール, ハウジングの大型化ロールの多段化 世紀
電気基礎
電気基礎 Ⅰ 1. 電流 電圧 電力 2. オームの法則 直流回路 3. 抵抗の性質 4. キルヒホッフの法則 5. 電力 6. 磁気の性質 7. 電流の磁気作用 8. 鉄の磁化 9. 磁気と電流の間に働く力 10. 電磁誘導作用とインダクタンス 11. 静電気の性質 12. 静電容量とコンデンサ 参考文献 : 新編電気理論 Ⅰ [ 東京電機大学出版局 ] 1. 電流 電圧 電力. 電荷の電気量電荷の持っている電気の量を電荷量といい
PowerPoint プレゼンテーション
材料実験演習 第 6 回 2015.05.17 スケジュール 回 月 / 日 標題 内容 授業種別 時限 講義 演習 6,7 5 月 17 日 8 5 月 24 日 5 月 31 日 9,10 6 月 7 日 11 6 月 14 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート
線形粘弾性 a.応力緩和とマクスウェル模型
地殻 上部マントルのレオロジー 高温 長時間では, 岩石は流動する. 線形粘弾性体 ( 歪速度はせん断応力に比例 ) 流体力学 ( ナビエ - ストークスの式 ) べき乗型流動則 ( 歪速度はせん断応力のべき乗に比例 ) 比例係数の温度依存性が大きい. 参考書岩波講座地球科学 2 地球の物質科学 Ⅰ レオロジーと地球科学唐戸俊一郎グローバルテクトニクス杉村新 色々な深度の断層岩 ( 産業技術総合研究所,
19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional
19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e
1
鉄筋コンクリート柱のせん断破壊実験 1 2 2-1 4 CS- 36N 2% CS-36A2 4% CS-36A4 2 CS-36HF -1 F C28 =36N/mm 2-1 CS-36N 普通コンクリート 36NC 2-3 CS-36A2 石炭灰 2% コンクリート 36CA2 2-4 2% CS-36A4 石炭灰 4% コンクリート 36CA4 2-5 4% CS-36HF 高流動コンクリート
PowerPoint プレゼンテーション
材料実験演習 第 6 回 2017.05.16 スケジュール 回 月 / 日 標題 内容 授業種別 時限 実験レポート評価 講義 演習 6,7 5 月 16 日 8 5 月 23 日 5 月 30 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート 鉄筋コンクリート梁実験レポート作成
スライド 1
概要材料に外から力が作用すると応力が発生し それに見合った変形が生じる 変形が発生すると 材料に内力が発生し 内力は外力と釣り合い変形が止まる この応力と変形 ( 歪 ) の関係を本講座では復習する 学習の内容. 応力と歪. 真っ直ぐな軸に外力が軸方向に作用する場合 3. 真っ直ぐな梁の曲げ. 軸のねじり 5. 座屈 6. エネルギー法 第 章 : 釣り合いの状態力の釣り合いとモーメントの釣り合いを満たすことによる.
第1章 単 位
H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H
第 14 章柱同寸筋かいの接合方法と壁倍率に関する検討 510
第 14 章柱同寸筋かいの接合方法と壁倍率に関する検討 5 14.1 検討の背景と目的 9 mm角以上の木材のたすき掛け筋かいは 施行令第 46 条第 4 項表 1においてその仕様と耐力が規定されている 既往の研究 1では 9 mm角筋かい耐力壁の壁倍率が 5. を満たさないことが報告されているが 筋かい端部の仕様が告示第 146 号の仕様と異なっている 本報では告示どおりの仕様とし 9 mm角以上の筋かいたすき掛けの基礎的なデータの取得を目的として検討を行った
Microsoft PowerPoint - マグネ協会.ppt
マグネシウム合金板の冷間プレス成形 マグネシウム合金部品の製造 豊橋技術科学大学森謙一郎平成 19 年 1kg 軽量 :1km/l 燃費向上 高張力鋼板 (7.8) チタン (4.5) アルミニウム (2.7) マグネシウム (1.8) 引張強度 / MPa 比重 比強度 / MPa マク ネシウム合金板 (AZ31) 25 1.8 139 アルミニウム合金板 (A552) 29 2.7 17 軟鋼板
転位論 結晶の塑性変形を担うのは結晶欠陥である転位である Al 合金の疲労試験においてすべり線に沿って形成された初期クラック 疲労試験した鋼の表面に形成されたすべり線に沿った初期クラックの断面写真 塑性力学 : 巨視的に塑性変形の力学を扱う学問 単結晶の塑性変形 亜鉛 3) 単結晶のすべりによる塑性
転位論 結晶の塑性変形を担うのは結晶欠陥である転位である 合金の疲労試験においてすべり線に沿って形成された初期クラック 疲労試験した鋼の表面に形成されたすべり線に沿った初期クラックの断面写真 塑性力学 : 巨視的に塑性変形の力学を扱う学問 単結晶の塑性変形 亜鉛 単結晶のすべりによる塑性変形 すべり面 すべり方向 P 多重すべり 単一すべり アルミニウム単結晶のせん断応力ーひずみ曲線 変形初期 理想せん断強度
技術専攻の学 生に向けた授業「材料力」
愛知教育大学技術教育研究,3,pp. 15~20,October,2016 技術専攻の学生に向けた授業 材料力学 の授業実践 Class practice of the lecture "Strength of materials" for the technology education student 北村一浩愛知教育大学技術教育講座 Kazuhiro Kitamura Department of
道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月
道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月 目次 本資料の利用にあたって 1 矩形断面の橋軸方向の水平耐力及び水平変位の計算例 2 矩形断面 (D51 SD490 使用 ) 橋軸方向の水平耐力及び水平変位の計算例 8 矩形断面の橋軸直角方向の水平耐力及び水平変位の計算例
Microsoft Word - 1B2011.doc
第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を
強化プラスチック裏込め材の 耐荷実験 実験報告書 平成 26 年 6 月 5 日 ( 株 ) アスモ建築事務所石橋一彦建築構造研究室千葉工業大学名誉教授石橋一彦
強化プラスチック裏込め材の 耐荷実験 実験報告書 平成 26 年 6 月 5 日 ( 株 ) アスモ建築事務所石橋一彦建築構造研究室千葉工業大学名誉教授石橋一彦 1. 実験目的 大和建工株式会社の依頼を受け 地下建設土留め工事の矢板と腹起こしの間に施工する 強 化プラスチック製の裏込め材 の耐荷試験を行って 設計荷重を保証できることを証明する 2. 試験体 試験体の実測に基づく形状を次に示す 実験に供する試験体は3
疲労に関する重要知識 実機で疲労破壊起点となる鋭い切欠きや微小欠陥の取扱いについて
原子力研究委員会 FQA2 小委員会疲労に関する重要知識 Subcommittee for Organizing Question and Answer of Fatigue Knowledge(Phase 2) 疲労に関する重要知識講演資料集 実機で疲労破壊起点となる鋭い切欠きや微小欠陥の取扱いについて この資料は,( 一社 ) 日本溶接協会原子力研究委員会 FQA2 小委員会における講演資料を掲載したものです.
(Microsoft PowerPoint - \221\34613\211\361)
計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.
土の三軸圧縮試験
J G S 5 土の三軸試験の供試体作製 設置 サンプルデータ試験年月日平成 6 年 9 月 6 日 試料番号 ( 深さ ) T- (8.~8.7m) 試験者藤代哲也 供試体を用いる試験の基準番号と名称 試料の状態 供試体の作製 土質名称 置 飽和過程圧密前(試験前供試体 No. 直径 平均直径 D i 初高さ 期平均高さ H i 状体積 V i 含水比 w i 質量 m i 態) 湿潤密度 ρ ti
<8D5C91A28C768E5A8F91836C C768E5A8F A2E786C73>
スカイセイフティネット構造計算書 スカイテック株式会社 1. 標準寸法 2. 設計条件 (1) 荷重 通常の使用では スカイセーフティネットに人や物は乗せないことを原則とするが 仮定の荷重としてアスファルト ルーフィング1 巻 30kgが1スパンに1 個乗ったとした場合を考える ネットの自重は12kgf/1 枚 これに単管 (2.73kgf/m) を1m 辺り2 本考える 従ってネット自重は合計で
PowerPoint プレゼンテーション
負荷応力方向 負荷応力方向 クリープひずみ (%) 研究成果 1 平成 29 年度研究成果報告会 Ni 基合金 HR6W のクリープ条件下での損傷シミュレーションと結晶方位解析 Ni 基合金 HR6W 供試材料 (45Ni-2Cr-7W) 平均結晶粒径 : 約 26µm A-USC 候補材としてクリープ強度 クリープ延性 大径厚肉管の製造性や耐熱疲労特性を重視し開発された 緒方隆志 金属組織 1µm
PowerPoint プレゼンテーション
不飽和土の力学を用いた 締固めメカニズムの解明 締固めとは 土に力を加え 間隙中の空気を追い出すことで土の密度を高めること 不飽和土 圧縮性の減少透水性の減少せん断 変形抵抗の増大 などに効果あり 締固め土は土構造物の材料として用いられている 研究背景 現場締固め管理 締固め必須基準 D 値 施工含水比 施工層厚 水平まきだし ( ρdf ) 盛土の乾燥密度 D値 = 室内締固め試験による最大乾燥密度
Microsoft PowerPoint - H24 aragane.pptx
海上人工島の経年品質変化 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー ( 埋土施工前に地盤改良を行う : 一面に海上 SD を打設 ) 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー
19年度一次基礎科目計算問題略解
9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる
Microsoft PowerPoint - zairiki_11
許容応力度設計の基礎 圧縮材の設計 ( 座屈現象 ) 構造部材には 圧縮を受ける部材があります 柱はその代表格みたいなものです 柱以外にも トラス材やブレース材 ラチス材といったものがあります ブレースは筋交いともいい はりや柱の構面に斜め材として設けられています この部材は 主に地震などの水平力に抵抗します 一方 ラチス材は 細長い平鋼 ( 鉄の板 ) を組み合わせて はりや柱をつくることがありますが
第 2 章 構造解析 8
第 2 章 構造解析 8 2.1. 目的 FITSAT-1 の外郭構造が, 打ち上げ時の加速度等によって発生する局所的な応力, 及び温度変化によってビスに発生する引っ張り応力に対して, 十分な強度を有することを明らかにする. 解析には SolidWorks2011 を用いた. 2.2. 適用文書 (1)JMX-2011303B: JEM 搭載用小型衛星放出機構を利用する小型衛星への構造 フラクチャコントロール計画書
Microsoft PowerPoint - suta.ppt [互換モード]
弾塑性不飽和土構成モデルの一般化と土 / 水連成解析への適用 研究の背景 不飽和状態にある土構造物の弾塑性挙動 ロックフィルダム 道路盛土 長期的に正確な予測 不飽和土弾塑性構成モデル 水頭変動 雨水の浸潤 乾湿の繰り返し 土構造物の品質変化 不飽和土の特徴的な力学特性 不飽和土の特性 サクション サクション s w C 飽和度が低い状態 飽和度が高い状態 サクションの効果 空気侵入値 B. サクション増加
<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>
降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ
機械設計工学
第二章 強度設計の基礎 (1) 荷重の空間的に分類 : 1. 荷重の形式 引張り荷重 : トルク : F F T=FR R 圧縮荷重 : ねじりトルク : F T T 曲げ荷重 ( モーメント ): せん断荷重 : F F 試験片に荷重の加え方 ( 材料強度試験時 ) ねじり試験曲げ試験ねじり 曲げ試験 試験片試験片試験片 (a) ねじり荷重 (b) 曲げ荷重 (c) ねじりと曲げ荷重 荷重 (2)
untitled
(1) 100 100 60% (2) (3) - 1 - 1 2 3 4 100 200-2 - 1 2 3-3 - 4 5 6 7......... (1) (2) (3) 1) 2) 3) 8(5) - 4 - 0.5 27.3 3 0.05 27.30 4 0.005 Système International d'unités 7218 1 (1) Pas Pas J/molK J/(molK)
建築支保工一部1a計算書
P7118088-(1) 型枠支保工 (1) 計算書 工事名称 (1) B1FL-3570~1FL (W1-W~WE~WF 間 ) 1 / 1 1: 条件 鉄筋コンクリートの単位重量 r 3.50 kn /m 3 (.400 t/m 3 ) 作業荷重 W 1 ( 作業荷重 :1.47kN/m + 衝撃荷重 :1.96kN/m) 3.430 kn /m (0.350 t/m ) 合板 (1mm) の許容曲げ応力度
Microsoft PowerPoint - O4-1_H24MLF-yasuda-O4-1.ppt [互換モード]
セッション 4 物質 材料 BL19 工学材料回折装置 新規超弾性材料及び超弾性機構 大阪大学 J-PARCセンター CROSS 安田弘行 丸山武紀 Stefanus Harjo 伊藤崇芳 第 3 回 MLF シンポジウム平成 24 年 1 月 20 日於 : いばらき量子ビームセンター 2/26 本日の講演内容 1. 一般的な超弾性の特徴と発現機構 2. 中性子回折を利用した研究動向 3. 新規鉄系超弾性合金の特徴
集水桝の構造計算(固定版編)V1-正規版.xls
集水桝の構造計算 集水桝 3.0.5 3.15 横断方向断面の計算 1. 計算条件 11. 集水桝の寸法 内空幅 B = 3.000 (m) 内空奥行き L =.500 (m) 内空高さ H = 3.150 (m) 側壁厚 T = 0.300 (m) 底版厚 Tb = 0.400 (m) 1. 土質条件 土の単位体積重量 γs = 18.000 (kn/m 3 ) 土の内部摩擦角 φ = 30.000
