15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x

Similar documents
II Time-stamp: <05/09/30 17:14:06 waki> ii

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 =

1 UTF Youtube ( ) / 30

2012 A, N, Z, Q, R, C

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

p-sylow :

mahoro/2011autumn/crypto/

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

?

i

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)


Block cipher


II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

Z...QXD (Page 1)

O E ( ) A a A A(a) O ( ) (1) O O () 467

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2


f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp

,2,4

koji07-01.dvi



.n.s.N.._...{.\1

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a


入試の軌跡

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

, = = 7 6 = 42, =

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University


( ) x y f(x, y) = ax

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

untitled

( )

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

D 24 D D D

= = = = = = 1, 000, 000, 000, = = 2 2 = = = = a,

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

LCM,GCD LCM GCD..,.. 1 LCM GCD a b a b. a divides b. a b. a, b :, CD(a, b) = {d a, b }, CM(a, b) = {m a, b }... CM(a, b). q > 0, m 1, m 2 CM

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 +

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)



I: 2 : 3 +

newmain.dvi

2000年度『数学展望 I』講義録

数学Ⅱ演習(足助・09夏)

II


No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

untitled

ii-03.dvi

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

Chap9.dvi

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

高校生の就職への数学II

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

Solutions to Quiz 1 (April 17, 2008) 1. P, Q, R (P Q) R (P R) (Q R). P Q R (P Q) R (P R) (Q R) X T T T T T T T T T T T T T T T F T T F T T T F F T F F

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

(2000 )

A

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

.1 1,... ( )

Armstrong culture Web

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking RSA Group Name RSA C

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

ii

直交座標系の回転

i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

Solutions to Quiz 1 (April 20, 2007) 1. P, Q, R (P Q) R Q (P R) P Q R (P Q) R Q (P R) X T T T T T T T T T T F T F F F T T F T F T T T T T F F F T T F

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

kou05.dvi

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

Transcription:

A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1

15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y (mod N) x y N mod N mod N 1.1.3 N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x (mod N) (3) x y (mod N), y z (mod N) x z (mod N) (3) x y (mod N), y z (mod N) x y y z N x z = (x y)+(y z) x z N 1.1.4 N, x, y, m N > 0 (1) x y (mod N) x mod N = y mod N (2) x y (mod N) mx my (mod N) (3) m 0 x y (mod N) mx my (mod mn) (4) x y (mod mn) x y (mod N) (1) x y (mod N) x = q 1 N + r 1, y = q 2 N + r 2 r 1 r 2 x y = (q 1 q 2 )N +(r 1 r 2 ). x y N r 1 r 2 N 0 r 1 r 2 < N r 1 r 2 = 0 x mod N = r 1 = r 2 = y mod N (2) x y N mx my = m(x y) N 2

(3) ( ) x y (mod N) x y = qn (q: ) m(x y) = mqn mx my mn ( ) mx my (mod mn) mx my = qmn (q: ) m(x y) = mqn m 0 x y = qn x y N (4) mn N mod N 1.1.5 x x (mod N) y y (mod N) x + y x + y (mod N), xy x y (mod N) x x (mod N) y y (mod N) x x y y N (x + y) (x + y ) = (x x ) + (y y ) N x + y x + y (mod N). xy x y = xy x y + x y x y = (x x )y + x (y y ) N xy x y (mod N). 1.2 1.2.1 m, d m d d m d m d n d m n m n gcd(m, n) m n 3

1.2.2 m, n > 0 (1) r = 0 gcd(m, n) = n m = qn + r (2) r 0 gcd(m, n) = gcd(n, r) (1) n > 0 n n r = 0 n m gcd(m, n) = n (2) d d m n d n r m n n r m n (1) r := m mod n (0 r < n ) (2) r = 0 n (3) r > 0 n r 1.2.3 m := n; n := r (1) 2109 1653 2109 1653 = 456 1653 456 3 = 285 456 285 = 171 285 171 = 114 171 114 = 57 114 57 2 = 0 4

57 gcd(2109, 1653) = gcd(1653, 456) = gcd(456, 285) = gcd(285, 171) = gcd(171, 114) = gcd(114, 57) = 57 1.2.4 1. 2257 mod 1073 (2257 1073 ) 2. 2257 1073 1.2.3 2 456 1 1653 (2109 1653) 3 = 285 1653 4 2109 3 = 285 456 285 = 171 456 285 2109 1653 171 2109 1653 114 2109 1653 57 2109 1653 1.2.5 m, n 0 x, y mx + ny = gcd(m, n) 5

x, y 1 (1) 2109 1 +1653 0 = 2109 (2) 2109 0 +1653 1 = 1653 (3) 2109 1 +1653 ( 1) = 456 (1) (2) (4) 2109 ( 3) +1653 4 = 285 (2) (3) 3 (5) 2109 4 +1653 ( 5) = 171 (3) (4) (6) 2109 ( 7) +1653 9 = 114 (4) (5) (7) 2109 11 +1653 ( 14) = 57 (5) (6) gcd(m, n) = 1 1.2.6 m, n 0 gcd(m, n) = 1 m n 1.2.7 m, n > 0 (1) m n (2) mx + ny = 1 x, y (3) mx 1 (mod n) x (4) nx 1 (mod m) x (1) (2) 1.2.5 (2) (1) d = gcd(m, n) (2) d m, n mx + ny 1 d > 0 d = 1 (2) (3) mx + ny = 1 ny 0 (mod n) mx 1 (mod n) (3) (2) mx 1 (mod n) mx 1 = qn q mx + n( q) = 1 (2) (4) 6

1.2.8 N > 0 m mx 1 (mod N) x mod N m ( ) x mod N (x N 0 (x mod N) < N) m 1 mod N m mod N m N mod N ( ) 1.2.9 mod 97 23 23x 1 (mod 97) 97x 0 (mod 97) 2 x 2 x a (mod N) (1) 97x 0 (mod 97) (2) 23x 1 (mod 97) (3) 5x 4 (mod 97) (1) (2) 4 (4) 3x 17 (mod 97) (2) (3) 4 (5) 2x 21 (mod 97) (3) (4) (6) x 38 (mod 97) (4) (5) 23 38 = 874 = 97 9 + 1 1 (mod 97) (23 38 1)/97 = 9 23 38 + 97 ( 9) = 1 Nx 0 (mod N) mx 1 (mod N) x x a (mod N) a mod N m 7

m n mx + ny = 1 x, y 1.2.10 mod 97 22 97x + 22y = 1 x, y 1 96 mod 97 1.2.11 3 5 1 1600cc 1300cc 100cc 1.3 1 100 3, 5, 7 x x a (mod 3), x b (mod 5), x c (mod 7) x = (70a + 21b + 15c) mod 105 1.3.1 m n a, b mu+nv = 1 8

u, v { x a (mod m) x b (mod n) x nva + mub (mod mn). 1 mn (0 mn 1) 1 x a (mod m) x b (mod n) nx na (mod mn) mx mb (mod mn) nvx nva (mod mn) mux mub (mod mn) (nv + mu)x nva + mub (mod mn) nv + mu = 1 x nva + mub (mod mn) x nva + mub (mod mn) m mn x nva + mub (mod m) mu 0 (mod m) mu+nv = 1 nv 1 (mod m) mub 0 (mod m) nva + mub a (mod m) nva + mub b (mod n) 1.3.2 x a (mod 3), x b (mod 5) 3 2 5 = 1 x 6b 5a (mod 15) x c (mod 7), x d (mod 15) 9

7 ( 2) + 15 = 1 x 15c 14d (mod 105) d = 6b 5a x 15c 14(6b 5a) (mod 105) x 70a 84b + 15c (mod 105) 84 21 (mod 105) x 70a + 21b + 15c (mod 105) x a (mod 3), x b (mod 5), x c (mod 7) 10

1.4 1.4.1 N > 0 Z N = {a Z : 0 a < N, a N } Z N φ(n) φ(n) 1.4.2 Z 12 = {1, 5, 7, 11}, φ(12) = 4. Z 10 = {1, 3, 7, 9}, φ(10) = 4. Z 7 = {1, 2, 3, 4, 5, 6}, φ(7) = 6. 1.4.3 N > 0 (1) a N a mod N Z N. (2) a Z N a 1 mod N Z N. (3) a, b Z N ab mod N Z N. (1) a N 1.2.7 ab 1 (mod N) b a = a mod N 0 a < N a a (mod N) a b ab 1 (mod N) 1.2.7 a N a mod N = a Z N (2) a Z N a N b = a 1 mod N ab 1 (mod N) 0 b < N b Z N (3) a, b Z N aa 1 (mod N) bb 1 (mod N) a, b c = ab mod N 0 c < N c ab (mod N) c(a b ) ab(a b ) = (aa )(bb ) 1 (mod N) c Z N 1.4.4 N > 0 N 11

a a φ(n) 1 (mod N) a Z N Z N = {a 1,..., a m } m = φ(n) 1.4.3 i = 1,..., m a i = aa i mod N a i Z N {a 1, a 2,..., a m} = {a 1, a 2,..., a m } i j a i a j a i = a j aa i mod N = aa j mod N aa i aa j (mod N) b = a 1 mod N baa i baa j (mod N) ba 1 (mod N) 1 a i 1 a j (mod N) a i a j (mod N) 0 a i, a j < N a i = a j a i aa i (mod N) a 1a 2 a m = a 1 a 2 a m a m a 1 a 2 a m = (aa 1 )(aa 2 ) (aa m ) a 1 a 2 a m (mod N) a m a 1 a 2 a m a 1 a 2 a m (mod N) b i = a 1 i mod N b m b 2 b 1 a m (a 1 a 2 a m )(b m b 2 b 1 ) (a 1 a 2 a m )(b m b 2 b 1 ) (mod N) a i b i 1 (mod N) (a 1 a 2 a m )(b m b 2 b 1 ) 1 (mod N) a m 1 (mod N) 12

a N a = a mod N a φ(n) 1 (mod N) a a (mod N) a φ(n) a φ(n) 1 (mod N) Z 10 = {1, 3, 7, 9} 3 1 3 (mod 10) (1) 3 3 9 (mod 10) (2) 3 7 1 (mod 10) (3) 3 9 7 (mod 10) (4) (3 1)(3 3)(3 7)(3 9) 3 9 1 7 (mod 10) 3 4 (1 3 7 9) 1 3 7 9 (mod 10) 9 3 7 3 4 (3 7 9)(9 3 7) (3 7 9)(9 3 7) (mod 10) (3 7 9)(9 3 7) 1 (mod 10) 3 4 1 (mod 10) p Zp = {1, 2,..., p 1} 1.4.5 p ( ) a p a p 1 1 (mod p) a a p a (mod p) 13

p 1.4.6 p Z p 1 (mod p) a Z p Z p = {a i mod p : i = 1, 2,..., p 1} a 1.4.7 Z 7 3 5 1.4.8 Z p φ(p 1) a Z p l > 0 l p 1 al l p 1 lj 1 (mod p 1) j > 0 lj = 1 + m(p 1) (m 0) (a l ) j = a lj = a 1+m(p 1) = a(a p 1 ) m a 1 m = a (mod p). a l Z p Z p 1.5 RSA ( ) 0 1 (2 ) ( ) 2 2 2 14

1.5.1 2 11010110 2 1 2 7 + 1 2 6 + 0 2 5 + 1 2 4 + 0 2 3 + 1 2 2 + 1 2 1 + 0 2 0 2 10 10 RSA 1 1.5.2 RSA p, q 2 L p 1 q 1 ( ) e L e = 41, 257, 65537 2 N = pq : e N : x < N y = x e mod N : d = e 1 mod L x = y d mod N 1.5.3 RSA y = x e mod N ed 1 (mod L) ed = 1 + ml y d x ed (mod N). N = pq y d x ed (mod p), y d x ed (mod q) 15

L p 1 x ed = x 1+mL = x(x p 1 ) m x p x ed = x(x p 1 ) m x 1 m x (mod p) x p 0 x ed x (mod p) y d x (mod p) y d x (mod q) ( y d x p q ) y d x (mod pq) 0 < x < N = pq y d mod N = x. e, N d N = pq p q ( 1000 ) N p N 2 1000 d d 1000 y d mod N 2 1000 16

1.5.4 d 2 α x d mod N α mod N 2 α 0 α0 α 2 1 α1 α 2 + 1 x α mod N = a x α0 mod N = a 2 mod N, x α1 mod N = a 2 x mod N d 2 x d mod N 3 37 mod 100 37 = 100101 2 2 3 1 = 3, 3 10 = 3 2 = 9, 3 100 = (3 10 ) 2 = 81, 3 1001 = (3 100 ) 2 3 = 81 2 3 83 (mod 100) 3 10010 = (3 1001 ) 2 83 2 89 (mod 100) 3 100101 = (3 10010 ) 2 3 89 2 3 63 (mod 100) 1.6 ElGamal RSA ElGamal RSA ElGamal 1 ( ) 17

IC ElGamal Z n b b x x b b x = b x x b b Diffie-Hellman p Z p g ga mod p g b mod p g ab mod p ElGamal q Z q ( )q 1 q := ( ); (q ) 1 < g < q 1 g 1 (g ) g Z p 1 < a < q 1 (a ) h = g a mod q; (h ) x (0 < x < q): (g k mod q, xh k mod q) : (y, z) x = zy a mod q y = g k mod q y a g ka (mod q) y = (y a ) 1 mod q y g ka 1 (mod q) z = xh k xg ak (mod q), zy x (mod q) 18

2 ( ) 2 RSA 2 2 2 2 10 ( ) 1425 10 3 + 4 10 2 + 2 10 + 5 10 1 4 2 5 + 3 1 7 1 6 1 8 0 1 1 4 2 5 3 7 6 8 5 5 0 9 9 7 5 4 2 7 5 5 3 5 8 0 0 1 x 3 + 4x 2 + 2x + 5 3x 2 + 7x + 6 x 1 4 2 5 + 3 7 6 1 7 9 11 1 4 2 5 3 7 6 6 24 12 30 7 28 14 35 3 12 6 15 3 19 40 53 47 30 19

1 7 9 11 x 3 + 7x 2 + 9x + 11 3 19 40 53 47 30 3x 5 + 19x 4 + 40x 3 + 53x 2 + 47x + 30 x 1 Z[x] mod 10 1 4 2 5 + 3 7 6 1 7 9 1 1 4 2 5 3 7 6 6 4 2 0 7 8 4 5 3 2 6 5 3 9 0 3 7 0 10 Z 10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Z 10 x Z 10 [x] Z 10 [x] 2 2 (0 1) 1 2 Z 2 = F 2 = {0, 1} F 2 x F 2 [x] F 2 [x] 1011 x 3 + x + 1 x 2 10 x 2 = 10 2 = 100 x 3 = 10 3 = 1000... F 2 [x] 1011 + 111 1011 111 1 0 1 1 + 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 20

2.1 F 2 [x] 2.1.1 F 2 [x] ( ) 0 1011 = x 3 + x + 1 3 1 n F 2 [x] n 1 f F 2 [x] f deg f 0 0 0 0 f F 2 [x] x a F 2 = Z 2 ( mod 2 ) f(a) f = 1011 = x 3 + x + 1 f(0) = (0 3 + 0 + 1) mod 2 = 1 f(1) = (1 3 + 1 + 1) mod 2 = 3 mod 2 = 1 2.1.2 f F 2 [x] f 0 g F 2 [x] g = qf + r, 0 deg r < deg f q, r F 2 [x] 1 q g/f r r g mod f F 2 = Z 2 1 1 (mod 2) 1 1 1 1 1 ) 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 + 1 0 1 0 1 1 21

1011 = x 3 + x + 1 111 = x 2 + x + 1 F 2 [x] 0 1 F 2 [x] f = f(x) F 2 [x] x F 2 a F 2 f(a) F 2 = {0, 1} f(0) f(1) f(a) = 0 a f 2.1.3 f, g F 2 [x] f = gh h F 2 [x] g f ( ) g f f mod g = 0 2.1.4 a F 2 x a ( 2 1a) f F 2 [x] f(a) = 0 (a f ) f(x) = (x a)q + r r 0 0 F 2 f(a) = r r 0 f(a) = 0 2.1.5 F F 0 F 2 [x] f, g F 2 [x] f g F ( 0) f g (mod F ) f g F mod F mod F 2.1.6 F, f, g, h F 2 [x] F 0 (1) f f (mod F ) (2) f g (mod F ) g f (mod F ) 22

(3) f g (mod F ), g h (mod F ) f h (mod F ) 2.1.7 F, f, g, h F 2 [x] (1) f g (mod F ) f mod F = g mod F (2) f g (mod F ) hf hg (mod F ) (3) h 0 f g (mod F ) hf hg (mod hf ) (4) f g (mod hf ) f g (mod F ) 2.1.8 f f (mod F ) g g (mod F ) f + g f + g (mod F ), fg f g (mod F ) 2.2 2.2.1 F 2 1 f, g, h f = gh g(h ) f ( ) h f h g h f g f g gcd(f, g) f g 2.2.2 f, g F 2 1 g 0 f = qg + r (1) r = 0 gcd(f, g) = g (2) r 0 gcd(f, g) = gcd(g, r) F 2 f g 0 (1) r := f mod g (deg g > 0 0 deg r < deg g ) (2) r = 0 g 23

(3) r 0 g r f := g; g := r (1) (1) deg r = 0 r = 1 0 2.2.3 1111 (= x 3 + x 2 + x + 1) 1010 (= x 3 + x) 101 (= x 2 + 1) 1111 1010 = 101 1010 101 10 = 0 2.2.4 f, g 0, f, g F 2 [x] fu + gv = gcd(f, g) u, v F 2 [x] gcd(m, n) = 1 2.2.5 f, g 0, f, g F 2 [x] gcd(f, g) = 1 f g 2.2.6 f, g 0, f, g F 2 [x] (1) f g (2) fu + gv = 1 u, v F 2 [x] (3) fu 1 (mod g) u F 2 [x] (4) gv 1 (mod f) v F 2 [x] 2.2.7 f F 2 [x] deg f 1 deg g < deg f 24

g F 2 [x] g 0 g f f f f F 2 [x] 1 deg f p Z p = {1,..., p 1} mod p Z p Z p Z p 1 (mod p ) 2.3 F 2 [x] F 2 [x] F 2 [x] 1 ( ) 1 1 f = 101 f(1) = 1 2 + 1 = 0 101 m n (m + n) ( ) 7 4 4 3 3 1 10, 11 (1 ) 2 111 1 ( ) 1 1 1 2 1 111 3 1011, 1101 1 2 3 1 25

4 10011, 11001, 11111 1 10101 4 1 2 111 3 111 0 10101 = 111 2 2.3.1 F 2 [x] 8 110000111 F 2 [x] ( 8 4 ) 2.3.2 n 1 F 2 [x] n 1 2 1 1 n 1 n 2.4 2 n F 2 [x] 2 {0, 1, 10, 11} F 2 [x]( ) f, g 2 f g fg mod 111 ( 111 ) F 4 = {0, 1, 10, 11} F 4 F 2 [x] 0 10 11 = 110 1 (mod 111) a 0 ax = 1 x 0 ( ) F 4 4 26

4 q q 2.4.1 2 n F F 2 [x] n q = 2 n F q = F 2 [x] n 1 F 2 [x] f, g F q fg f g F F q F q q n 1 n 1 n 2... 1 0 n 0 1 2 2 n F 2 [x] 0 f F q F F 2 [x] F f 1 2.2.6 fu + F v = 1 u, v F 2 [x] g = u mod F g n 1 fg 1 (mod F ) F q fg = 1 3 F q q F q F q = F q {0} 1 27

2.4.2 q F q α F q F q = {α i : i = 1, 2,, q 1} α q 1 = 1 α F q x F q xq 1 = 1 F q [y](f q ) 2.4.3 F 2 [x] mod 1011 F 8 (8 = 2 3 ) 10 α = 10 α = 10, α 2 = 100, α 3 = 1000 11 (mod 1011), α 4 = 110, α 5 = 1100 111 (mod 1011), α 6 = 1110 101 (mod 1011), α 7 = 1010 1 (mod 1011). f mod f 10 = x f 2.4.4 F 2 [x] 10011, 11001 11111 mod 11111 1 (11 ) 28

2.5 F 2 n Z/pZ (p ) q q F q q 1 F q 1 GF (q) p F p = Z/pZ = {0, 1,..., p 1} + p p n 2 F p [x] n f F p [x]/(f) F p n 1 1 + ( ) F p f F p [x]/(f) (0 ) F p [x]/(f) n F p = {0, 1,..., p 1} p n F p n = F p [x]/(f) (f n 1 ) F q 1 F q [y] a 0 y 3 + a 1 y 2 + a 2 y + a 3 = (a 0, a 1, a 2, a 3 ) F q 2.5.1 F q m (a 0, a 1, a 2,..., a m 1 ) (a i F q ) ( ) F m q Fm q (m 1) 1 ( ) 29

2.5.2 f = (a 0, a 1,..., a m 2, a m 1 ) F m q F q y y f(y) = a 0 y m 1 + a 1 y m 2 + + a m 2 y + a m 1 f = (1, 2, 3) R 3 f(y) = y 2 + 2y + 3 f(1) = 6 f = (1, 0, 0, 0) f(y) = y 3 F q [y] F 2 [x] 2.5.3 K f K[y] deg f > 0 g K[y] g = qf + r, 0 deg r < deg f q, r K[y] 1 q g/f r r g mod f K = F 4 = F 2 [x]/(111) (111 x 2 + x + 1 ) F 4 = {0, 1, 10, 11} 10 2 = 11, 11 2 = 10, 10 11 = 1 f = (11, 1, 10) = 11y 2 + y + 10, g = (1, 11, 10, 1, 0, 1) = y 5 + 11y 4 + 10y 3 + y 2 + 1 30

10 10 1 1 11 1 10 ) 1 11 10 1 0 1 1 10 11 1 1 1 1 10 11 11 10 0 11 1 10 11 10 1 11 1 10 11 11 11 11 1 = 10 2.5.4 F 2 [x] f, g, F K[y] f g mod F = 0 f g (mod F ) 2.5.5 K K 1 f, g, h f = gh g h f (, factor, divisor) g f f 0 (mod g) h f h g h f g f g 1 gcd(f, g) f g 2.5.6 K a K y a f K[y] f(a) = 0 f(a) = 0 a f ( ) f(y) = (y a)q + r r 0 0 K f(a) = r r 0 f(a) = 0 31

2.5.7 K f(y) K[y] n f(y) K (f(y) = 0 ) n a 1 K f(a 1 ) = 0 f(y) = (y a 1 )f 2 (y) a 2 K f(a 1 ) = 0 a 2 a 1 f(a 2 ) = (a 2 a 1 )f 2 (a 2 ) = 0 (a 2 a 1 ) 1 = f 2 (a 2 ) = 0 f 2 (y) = (y a 2 )f 3 (y) f(y) = (y a 1 )(y a 2 )f 3 (y) a 3 K f(a 3 ) = 0 a 3 a 1, a 2 f(a 3 ) = (a 3 a 1 )(a 3 a 2 )f 3 (a 3 ) = 0 a 3 a 1 0 a 3 a 2 0 K f 3 (a 3 ) = 0 f 3 (y) = (y a 3 )f 4 (y) 1 n n 2.5.8 f, g K[y] g 0 f = qg + r, q, r K[y] (1) r = 0 gcd(f, g) = a 1 g (a g ) (2) r 0 gcd(f, g) = gcd(g, r) K f g 0 (1) r := f mod g (deg g > 0 0 deg r < deg g deg g = 0 g K g 1 K ) (2) r = 0 a 1 g a g (3) r 0 g r f := g; g := r (1) 32

(1) deg r = 0 r K 0 33