u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

Similar documents
³ÎΨÏÀ

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

第10章 アイソパラメトリック要素

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

untitled

2 2 L 5 2. L L L L k.....

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Untitled

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

App. of Leb. Integral Theory (S. Hiraba) Lebesgue (X, F, µ) (measure space)., X, 2 X, F 2 X σ (σ-field), i.e., (1) F, (2) A F = A c F, (3)


x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

phs.dvi

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

December 28, 2018

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

201711grade1ouyou.pdf

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

1 c Koichi Suga, ISBN

30

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1


Lebesgue Fubini L p Banach, Hilbert Höld

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

Note.tex 2008/09/19( )

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

構造と連続体の力学基礎


Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

第5章 偏微分方程式の境界値問題

実解析的方法とはどのようなものか

chap9.dvi


18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

Z: Q: R: C: sin 6 5 ζ a, b

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

A

v er.1/ c /(21)

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

I , : ~/math/functional-analysis/functional-analysis-1.tex

pdf

i 18 2H 2 + O 2 2H 2 + ( ) 3K

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

dvipsj.8449.dvi

第1章 微分方程式と近似解法

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

A 21 A.1 L p A A.3 H k,p () A

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

Morse ( ) 2014

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

: , 2.0, 3.0, 2.0, (%) ( 2.

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

lecture

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

Fubini

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)


Part () () Γ Part ,

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

1 I

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google


1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)


( ) Loewner SLE 13 February


Transcription:

2 2 1 5 5 Schrödinger i u t + u = λ u 2 u.

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q := { q p, q Z, p } p R 2 π e Q R 2 R

ε-δ 1 {q n } n=1 q 1 := 1, q n+1 := 1 + 1, n = 1, 2, 3,... q n + 1 q q q = 1 + 1 q + 1, q 1 2 q = 2 1 1 1 2 1 2 2 Euclid d R d d Euclid C R 2 i R 2 1.2 X Y 1 Y X R 1+d C-

R f x {x n } n=1 x {f(x n )} n=1 f(x ) x R f x f(x + h) f(x ) lim h, h h x d dx f(x ), df dx (x ) x x f f R d R 2 x, y d(x, y) := x y = max{x y, y x} = (x y) 2 d Euclid d((x 1,..., x d ), (y 1,..., y d )) := (x 1 y 1 ) 2 + + (x d y d ) 2 1 j 1 d f x = (x 1,..., x d ) Rd j x j f(x + he j ) f(x ) lim h, h h e j R d x j j 1 x j f(x ), f x j (x ) x R d f x j (x ) j 1 f x x

f f C 1 C 1 C 1 C 2 C 3,..., C ( f ) x 1 x 1 = 2 f, x 2 1 ( f ) = 2 f x 1 x 2 x 1 x 2 Schrödinger 2 R 1+d C 2 (i) Cantor [, 1] (ii) Weierstrass R (iii) R x, y R f(x + y) = f(x) + f(y) f(x) = ax (a R ) 1.3 d Euclid R d C k R d C k C C(R d ), C k (R d ), C (R d ) C (R d ), C k (R d ) R d R d C Cc (R d )

C, C k f C(R d ) := sup x R d f(x), g C k (R d ) := sup α f x (x) α α k x R d R d R d 2 2 C, C k Cc Cc C, C k C c 1 Cc (R d ) p L p (R d ) (1 p < ) L p L p ( f L p (R d ) := f(x) p dx R d Cc (R d ) L p L p L p Cc L p L 2 Fourier L 2 Sobolev L 2 L p ) 1/p 2 Schrödinger 2 t x = (x 1,..., x d ) t x u(t, x) t x u(t, x) x u (x) u(, x) = u (x) u(t, x)

Schrödinger u = i u + F, t u(, x) = u (x). F = F (t, x) u = u (x) F, u (1) 2.1 Fourier Sobolev R d (1) R d Fourier R d f Fourier Ff = ˆf Fourier F 1 ˆf(ξ) := F 1 f(x) := 1 e ix ξ f(x) dx, (2π) d/2 R d 1 (2π) d/2 R d e ix ξ f(ξ) dξ, ξ R d x R d x ξ := d j=1 x jξ j d Euclid f Cc (R d ) ˆf C (R d ) F( f x j )(ξ) = iξ j ˆf(ξ) (j = 1, 2,..., d), F( f)(ξ) = ξ 2 ˆf(ξ)

x Fourier Fourier Fourier 1 F(fg) = (2π) ˆf ĝ, ( ˆf ĝ)(ξ) := ˆf(ξ η)ĝ(η) dη. d/2 R d Fourier L 2 Plancherel ˆf L 2 (R d ) = F 1 f L 2 (R d ) = f L 2 (R d ). C c L 2 L 2 C c F F 1 L 2 (R d ) s R d Sobolev H s (R d ) Sobolev H s C c (R d ) ( f H s := (1 + 2 ) s/2 ˆf( ) L 2 (R d ) = (1 + ξ 2 ) s ˆf(ξ) 2 dξ R d s = H s L 2 s H s f Fourier ˆf(ξ) s ξ x s Sobolev H s s L 2 k ε > H k+ d 2 +ε (R d ) C k (R d ) Sobolev s d/2 ) 1/2. 2.2 F = (1) t x Fourier û t (t, ξ) = i ξ 2 û(t, ξ), û(, ξ) = û (ξ) ξ ξ û(t, ξ) = e it ξ 2 û (ξ) Fourier u(t, x) = F 1[ e it 2 û ( ) ] (x).

t u(t, x) Fourier û(t, ξ) Fourier û (ξ) 1 e it ξ 2 u Sobolev H s t u(t, ) Sobolev H s s > 2 + d 2 u(t, x) x C2 t C 1 Fourier L 2 C 2 u u(t, x) C 2 u [e it u ](x) t R t e it : u u(t, ) s Sobolev H s (R d ) u u Cc (R d ) Fourier u(t, x) = [e it 1 x y u ](x) = 2 (4πit) d/2 4it u (y) dy t R d e F Fourier x Fourier û t (t, ξ) = i ξ 2 û(t, ξ) + ˆF (t, ξ), û(t, ξ) = e it ξ 2 û (ξ) + û(, ξ) = û (ξ) e i(t t ) ξ 2 ˆF (t, ξ) dt Fourier u(t, x) = [e it u ](x) + [e i(t t ) F (t, )](x) dt

3 Schrödinger u t = i u + iλ u 2 u, u(, x) = u (x) (2) 3.1 (2) (1) F iλ u 2 u u (2) F iλ u 2 u u(t, x) = [e it u ](x) + iλ [e i(t t ) ( u 2 u)(t, )](x) dt (3) u (3) u (2) Duhamel (3) (3) 2 (2) u (2) (3) u (3) u (2) (3) u (X, d) Φ : X X < α < 1 x, y X d(φ(x), Φ(y)) αd(x, y) Φ(x) = x x X Φ 1 ( ).

x X x 1 := Φ(x ), x 2 := Φ(x 1 ),... X {x n } n= n, m (n < m) Φ d(x m, x n ) d(x m, x m 1 ) + d(x m 1, x m 2 ) + + d(x n+1, x n ) = d(φ m 1 (Φ(x )), Φ m 1 (x )) + + d(φ n (Φ(x )), Φ n (x )) { α m 1 + α m 2 + + α n} d(φ(x ), x ) = αn 1 α (1 αm n )d(φ(x ), x ) αn 1 α d(φ(x ), x ) (n ). n n {x n } n= X x X x n+1 = Φ(x n ) n x = Φ(x ) x Φ x, y X Φ 2 Φ d(x, y) = d(φ(x), Φ(y)) αd(x, y). < α < 1 d(x, y) = x y u Φ[u ] Φ[u ] : u(t, x) [e it u ](x) + iλ [e i(t t ) ( u 2 u)(t, )](x) dt u (3) Φ[u ] u Φ[u ] Φ[u ] (3) u x (3) 1 2 u (i) Φ[u ] (ii) 2

3.2 Sobolev Φ[u ] 2 (Sobolev ). s > d/2 H s (R d ) 2 H s (R d ) d, s C fg H s C f H s g H s, f, g H s (R d ) 2 Cauchy-Schwarz fg L 1 f L 2 g L 2 Young f g L 2 f L 1 g L 2 a, b, c (1 + (a + b) 2 ) c 2 max{2c 1,c}{ (1 + a 2 ) c + (1 + b 2 ) c} s ξ, η R d (1 + ξ 2 ) s/2 { 1 + ( ξ η + η ) 2} s/2 { 2 max{s 1,s/2} (1 + ξ η 2 ) s/2 + (1 + η 2 ) s/2}. (1 + ξ 2 ) s/2 ( ˆf ĝ)(ξ) (1 + ξ 2 ) R s/2 ˆf(ξ η) ĝ(η) dη { d 2 max{s 1,s/2} (1 + ξ η 2 ) s/2 ˆf(ξ η) ĝ(η) dη + ˆf(ξ } η) (1 + η 2 ) s/2 ĝ(η) dη R d R d 2 max{s 1,s/2}{ [(1 + 2 ) s/2 ˆf ] ĝ + ˆf [(1 + 2 ) s/2 ĝ ] }. L 2 Young Cauchy-Schwarz (1 + 2 ) s/2 ( ˆf ĝ) L 2 2 max{s 1,s/2}{ (1 + 2 ) s/2 ˆf L 2 ĝ L 1 + ˆf } L 1 (1 + 2 ) s/2 ĝ L 2 2 max{s 1,s/2} 2 (1 + 2 ) s/2 L 2 (1 + 2 ) s/2 ˆf L 2 (1 + 2 ) s/2 ĝ L 2. C := 1 (2π) d/2 2max{s 1,s/2} 2 (1 + 2 ) s/2 L 2 s > d/2 H s

3 ( ). s > d/2 u H s (R d ) T > [ T, T ] R d (3) u C([ T, T ]; H s (R d )) T s, d, λ c > T c u 2 H s C([ T, T ]; H s (R d )) [ T, T ] R d u(t, x) t [ T, T ] u(t, ) H s t u(t, ) [ T, T ] H s C([ T, T ]; H s (R d )) u C([ T,T ];H s ) := max T t T u(t, ) H s u H s T > Φ[u ] X := { u C([ T, T ]; H s (R d )) } u C([ T,T ];H s ) 2 u H s X C([ T, T ]; H s (R d )) u X Φ[u ](u) X H s e it u C([ T,T ];H s ) = max t Sobolev ū H s = u H s iλ = λ max T t T λ C 2 λ C 2 T e i(t t ) ( u 2 u)(t ) dt C([ T,T ];H s ) λ max max T t T u(t )u(t )u(t ) H s dt u(t ) 3 H s dt max T t T u(t) 3 H s λ C 2 T (2 u H s) 3, e it u H s = max u H s = u H s. t T t T e i(t t ) ( u 2 u)(t ) H s dt C Sobolev s, d T λ C 2 T 8 u 2 H s 1 Φ[u ](u) C([ T,T ];H s ) u H s + u H s = 2 u H s

Φ[u ](u) X Φ[u ](u) X u, v X Φ[u ](u) Φ[u ](v) C([ T,T ];H s ) iλ λ T max T t T u(t) 2 u(t) v(t) 2 v(t) H s. e i(t t ) ( u 2 u v 2 v)(t ) dt C([ T,T ];H s ) u 2 u v 2 v = (u v)( u 2 + v 2 ) + uv(u v) Φ[u ](u) Φ[u ](v) C([ T,T ];H s ) ( λ C 2 T u(t) 2 H s + v(t) 2 H + u(t) s H s v(t) ) H s u(t) v(t) H s max T t T λ C 2 T 3(2 u H s) 2 u v C([ T,T ];H s ). T λ C 2 T 12 u 2 H s < 1 Φ[u ](u) X T T = 1 16 λ C 2 u 2 H s 3.3 H d/2 L 2 (3) d = 1 Sobolev Strichartz C u L 2 (R) T > Schrödinger (1) u ( ) max u(t) L T t T 2 + u L 8 C u T L4 L 2 + F 8/7 L. T L4/3

1 p, q < L p T Lq u L p T Lq := { T ( ) p/q } 1/p u(t, ) L q (R) = L u(t, x) q dx p ( T,T ) dt T R Strichartz L 2 4 (L 2 ). u L 2 (R) T > [ T, T ] R d (3) u C([ T, T ]; L 2 (R)) L 8 T L4 T λ c > T c u 4 L 2 L 8 T L4 Cc (R 2 ) [ T, T ] R L 8 T L4 3 T > Φ[u ] X := { u L 8 T L 4 u L 8 T L 2C u } 4 L 2 C Strichartz 3.4 L 2 (3) T Schrödinger L 2 5 (L 2 ). u L 2 (R) u : [ T, T ] R C (3) t [ T, T ] u(t) L 2 = u L 2

u u u Cc (R) 3 u u(t) 2 L 2 t C 1 d dt u(t) 2 L = d u(t, x)u(t, x) dx = 2 dt R R { u } (t, x)u(t, x) + u(t, x) u t t (t, x) dx. 2 u (t, x) t ( d dt u(t) 2 L 2 = { (i 2 u R x + 2 iλ u 2 u ) u + u { 2 u = i R x u u } 2 u 2 (t, x) dx x 2 [{ u } ] = i x u u u (t, ) x =. i 2 u )} x 2 iλ u 2 u (t, x) dx i R { u u x x u u x x } (t, x) dx u(t) 2 L 2 (3) u L 2 u 3 u 3 u 2 u λ L 2 L 2 L 2 6 (L 2 ). u L 2 (R) R R (3) u C(R; L 2 (R))