all.dvi

Similar documents
all.dvi

all.dvi

all.dvi

行列代数2010A

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

弾性定数の対称性について

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

linearal1.dvi

行列代数2010A

DVIOUT-HYOU

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

Part () () Γ Part ,

構造と連続体の力学基礎

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

~nabe/lecture/index.html 2

TOP URL 1


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

第5章 偏微分方程式の境界値問題

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

OHP.dvi

OHP.dvi


untitled

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

meiji_resume_1.PDF


.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

TOP URL 1

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

( )


Gmech08.dvi

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

SO(2)


ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

newmain.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

TOP URL 1

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

( ) ( )

TOP URL 1

II 1 II 2012 II Gauss-Bonnet II

QMII_10.dvi

QMI_09.dvi

QMI_10.dvi


Gmech08.dvi

Report98.dvi

29

untitled

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

B ver B

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

73

difgeo1.dvi

,,..,. 1

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

note1.dvi

05Mar2001_tune.dvi

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

A

Microsoft Word - 表紙.docx


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

数学Ⅱ演習(足助・09夏)

untitled

70 : 20 : A B (20 ) (30 ) 50 1

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π


1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Transcription:

5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ).

6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0 0 0 a a a,. a e x

.. 7. a e =(a i e i ) e =(a e + a e + a e ) e (.) = a e e + a e e + a e e (.4) = a +a 0+a 0 (.5) = a (.6),...,,. a 0 0 {, 0, 0} a = a {, 0, 0} 0 + a {, 0, 0} + a {, 0, 0} 0 = a 0 0 a.. a, b θ a b = a b cos θ., a b = a b + a b + a b = a i b i., a b e a b = a b e a b e = a b e + a b e + a b e a b e a b e a b e =(a b a b )e +(a b a b )e +(a b a b )e det[a] =det[a T ],, (, ), a b e a b = a b e a b e = e a b e a b e a b = a a a b b b e e e = e e e a a a b b b a,,.,... a = a i e i = a e + a e + a e (.7) =ā i ē i =ā ē +ā ē +ā ē (.8)

8 x a x a x ā ā x a.:.4., a, a ā a = ā a.,.. x x x x 0. x x a {a,a } = {, }, x x,, {ā, ā } = {, }.,,. a x x a,a a = a e,a = a e,, x x ā, ā ā = a ē, ā = a ē.. ā ā i = a ē i (.9) =(a e + a e ) ē i (.0) = a e ē i + a e ē i (.).5... { } { },., { { } = 0} { }

.. 9 { 0 = } { } + { } {a,a } T, { } [ { } a = a a { } ] [ + a { } ( a = a a + a ā, ā. ā = ) { { } + } ( + a + a a + a, ā = a + { a ) { { } ] {a,a } = {, }, {ā, ā } = {, }.. } e ē = {, 0} =, e ē = {0, } { } e ē = {, 0} =, e ē = {, 0},. ā = a e ē + a e ē = a + a ā = a e ē + a e ē = a + a } { } = { } = [P ]. P ij i ē i, j e j ē e ē e ē e P ij = ē i e j = e j ē i, [P ]= ē e ē e ē e (.) ē e ē e ē e P ij e, ē. e ē i (i =,, ). e =(e ē )ē +(e ē )ē +(e ē )ē (.) = P ē + P ē + P ē (.4)

0 ē e i (i =,, ). ē =(ē e )e +(ē e )e +(ē e )e (.5) = P e + P e + P e (.6) a i, ā i.,.,, P ij, i j. P ij a j, P ji a j, [P ].. δ ij Kronecker i = j δ ij = δ ij =0., a k δ jk = a j, X ij δ jk = X ik.. e i e j = δ ij. a i e i =ā i ē i (.7) a i e i ē k =ā i ē i ē k (.8) P ki a i =ā i δ ik =ā k (.9) ā k = P ki a i (.0) a i e i e k =ā i ē i e k (.) a k = P ik ā i (.). ā P P P a a P P P ā ā = P P P a a P P P a a = P P P P P P ā ā ā (.) {ā} =[P ]{a} {a} =[P ] T {ā} (.4).6. [P ]. 0 [P ]= 0 0 0 {ā} =[P ]{a} {a} =[P ] T {ā} (.5)

.. ā k = P ki a i a i = P ki ā k = 0 0 0 0 0 0 = 0 0 0 0 0 0 (.6) (.7).7.,. 0, [P ].,, (, 0), (0, ) θ (cos θ, sin θ),( sin θ, cos θ). ( sin θ, cos θ) (cos θ, sin θ).:, [R], [ ]{ } { } [ ]{ } R R cos θ R R =, 0 R R 0 sin θ R R = { } sin θ cos θ (.8) [ ][ ] R R 0 = R R 0 [ cos θ ] sin θ sin θ cos θ (.9) 0,, [P ]. [ ] [ ] cos θ sin θ = (.0) sin θ cos θ,.,,,,..

. a,,.. x c X b x.4:.,. [ ]{ } { } X X b c = (.) X X b c b, c,,.,,,... a, b X,. b = Xa (.) X(a + b) =Xa + Xb (.) X(ca) =cxa (.4). (a b) c =(b c)a (.5) b (a c) =(b a)c (.6)

...8.. a b a a b = a {b b b } = a b a b a b a b a b a b a a b a b a b,. (a b) c,. a c (a b) c = a {b b b } c = a b a b a b c a b a b a b c a c a b a b a b c a b c + a b c + a b c (b c + b c + b c )a a = a b c + a b c + a b c = (b c + b c + b c )a = b c a =(b c)a a b c + a b c + a b c (b c + b c + b c )a a X = X ij e i e j (.7). X X = a b a, b.9.,, X ij e i e j X ij e i e j = X e e + X e e + X e e + X e e + X e e + X e e + X e e + X e e + X e e.,. [X] =X 0 {, 0, 0} + X 0 {0,, 0} + X 0 {0, 0, } 0 0 0 0 0 0 + X {, 0, 0} + X {0,, 0} + X {0, 0, } 0 0 0 0 0 0 + X 0 {, 0, 0} + X 0 {0,, 0} + X 0 {0, 0, } = X 0 0 0 0 0 + X 0 0 0 0 0 + X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + X 0 0 0 0 0 + X 0 0 0 0 0 + X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + X 0 0 0 0 0 0 + X 0 0 0 0 0 0 + X 0 0 0 0 0 0 0 0 0 0 0 0

4.0., a b a b = a b e e + a b e e + a b e e + a b e e + a b e e + a b e e + a b e e + a b e e + a b e e. X X ij a i b j. (.8),. b X X X a X a + X a + X a b b = X X X a X X X a = X a + X a + X a (.8) X a + X a + X a b = b i e i = b i e i i= = Xa =(X ij e i e j ) (a k e k )= i= j= k= (X ij e i e j ) (a k e k ) (.9)..,.. Xa =(X ij e i e j )(a k e k ) = X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e + X a (e e ) e. Xa = X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e + X a (e e )e

.. 5, e i e j =0(i j), Xa =(X a + X a + X a )e. +(X a + X a + X a )e +(X a + X a + X a )e Xa = X ij a j e i (e i e j ) e k = δ jk e i,(x ij e i e j ) (a k e k )=X ij a k δ jk e i = X ij a j e i. δ ij Kronecker i = j δ ij = δ ij =0.,. X e l = X ij (e i e j ) e l = X ij e i δ jl = X il e i (.40) e k X e l = e k (X il e i ) = X il δ ki,. = X kl (.4) b (X a) =a (X T b) (.4),,. X T =(X ij e i e j ) T = X ij e j e i (.4) X T = X ji e i e j,.. X = X ij e i e j = X kl ē k ē l (.44) P ij = ē i e j. X ij = e i X e j = e i ( X kl ē k ē l ) e j (.45) = X kl (e i ē k )(ē l e j ) (.46) = X kl P ki P lj (.47) = P ki Xkl P lj (.48)

6 kl lj ki kl,. X kl = ē k X ē l = ē k (X ij e i e j ) ē l (.49) = X ij (ē k e i )(e j ē l ) (.50) = X ij P ki P lj (.5)... [X] =[P ] T [ X][P ], [ X] =[P ][X][P ] T X X X X X X = P P P X X X P P P X X X P P P P P P X X X P P P X X X P P P X X X X X X = P P P P P P X X X X X X P P P P P P X X X P P P X X X P P P X Y =(X ij e i e j ) (Y kl e k e l ) (.5) = X ij Y kl (e i e j ) (e k e l ) (.5) = X ij Y kl δ jk e i e l (.54) = X ij Y jl e i e l (.55) = X ik Y kj e i e j (.56) X Y T =(X ij e i e j ) (Y kl e l e k ) (.57) = X ij Y kl (e i e j ) (e l e k ) (.58) = X ij Y kl δ jl e i e k (.59) = X ij Y kj e i e k (.60) = X ik Y jk e i e j (.6).,,.,., λ

.4. 7., λ, φ. Xφ = λφ (.6), Cauchy, ē i Xē i = λ i (.6) ē i Xē j =0 (i j) (.64). X φ i = λφ i e i,. X X X φ i φ i X X X φ i X X X φ = λ φ i (.65) i φ i. φ φ φ X X X φ φ φ φ φ φ X X X φ φ φ = λ λ φ φ φ X X X φ φ φ λ (.66),. [P ] P ij P ij = ē i e., φ i. P ij = φ i e j., P = φ e = φ P = φ e = φ P = φ e = φ (.67) P = φ e = φ P = φ e = φ P = φ e = φ (.68) P = φ e = φ P = φ e = φ P = φ e = φ (.69), [P ][X][P ] T =[ X]..4,.

8,,.,,.,,,,.,,, T T T T 0 0 T T T = 0 T 0 (.70) T T T 0 0 T,, T ij e i e j = T i ē i ē i (.7) = T ē ē + T ē ē + T ē ē (.7),,,,,.

9 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.? l, l (l l) ε ε = l l l (4.) F l l F

0 4 Green-Lagrange Δz Δδ γ = Δδ (4.) Δz π/ φ γ = π φ (4.) γ tan γ γ,sin γ γ ( π ) γ tan γ =tan = Δδ (4.4) Δz Δδ X Δz γ X 4.: 4..,,.,.,.

4.. 4.:. t 0, X, X t x, X t 0 t u. u = x X (4.5) t 0 X u x t O 4.:,,. X, (, 0) (a, 0) (X,X ) (x,x ) u,u. (b), (c). x = X + ax (4.6) x = X (4.7) u = ax (4.8) u =0 (4.9)

4 Green-Lagrange x X u X X X X (a) X +a x X u X X X (b) (c) 4.4: x u X, (0, ) (a, ) (X,X ) (x,x ) u,u. (b), (c). x = X + ax (4.0) x = X (4.) u = ax (4.) u = 0 (4.) x X u X X X X X x X u X a (a) X X (b) (c) 4.5: x u

4.. X X, (0, ) (a, b), (X,X ) (x,x ) u,u. (b), (c). x = X + ax (4.4) x = X bx (4.5) u = ax (4.6) u = bx (4.7) x X u X X b X X a X x X u X (a) X X (b) (c) 4.6: x u.,, t 0. {(X,X ) 0 X, 0 X }., X,X..,,,,..

4 4 Green-Lagrange 4.,,,,. M 4.7:,,,.,.,. 4.8:,,,,.,.,. dx, X = X (4.8) X = X + dx (4.9)

4.. 5,. x = X + u(x )=X + u(x) (4.0) x = X + u(x )=X + dx + u(x + dx) (4.) X + dx + u(x)+ u dx j X j (4.) dx = x x dx = dx + u X j dx j (4.) dx dx = dx i dx i (4.4) ( = dx i + u )( i dx j dx i + u ) i dx k (4.5) X j X k, u i X j = dx i dx i + u i X j dx j dx i + u i X k dx k dx i + u i X j u i X k dx j dx k (4.6) u i X k, dx dx dx i dx i + u i dx j dx i + u i dx k dx i (4.7) X j X k ( ui = dx dx + + u ) j dx i dx j (4.8) X j X i ε ij. ε ij = ( ui + u ) j X j X i (4.9). dx dx dx dx =ε ij dx i dx j (4.0) 4.. u = ax, u =0 ε = ( u + u ) X X = (a + a) =a

6 4 Green-Lagrange u = ax, u =0 ε = ( u + u ) X X = (a) =a γ γ =ε (4.) 4.., u X,,., +,., ε = ε. u = ax (4.) u = bx (4.) ε = (0 + 0) = 0 (4.4) ε = (a +0)= a ε = (0 + a) = a (4.5) (4.6) ε = ( b b) =b (4.7),, u = ax (4.8) u = 0 (4.9) ε = (ax +ax )=ax (4.40) ε = (0 + 0) = 0 (4.4) ε = (0 + 0) = 0 (4.4) ε = (0 + 0) = 0 (4.4)., ε ij, t 0 X.,., ε ij., u X, u = a,u = a, u i X j =0 ε ij =0.

4.. 7. X,X θ, { } [ ]{ } { } x cos θ sin θ X X cos θ X sin θ = = (4.44) x sin θ cos θ X X sin θ + X cos θ u i = x i X i { } { } u X (cos θ ) X sin θ = X sin θ + X (cos θ ) u [ ] cos θ 0 [ε] = 0 cosθ (4.45) (4.46),,,.,,. θ 0 cos θ,. [ε] = [ ] [ cos θ 0 0 cosθ 0 0 0 0 ] (4.47),,., = Δt (4.48).,, Δt,. n x X u θ u X 4.9:

8 4 Green-Lagrange θ cos θ, sin θ θ (4.49), X. X (X,X ). n,.,, x = X + u = X + θn X (4.50) u = θn X (4.5) u = θ(n X n X ) (4.5) u = θ(n X n X ) (4.5) u = θ(n X n X ) (4.54) u u u =0, = n, = n X X X (4.55) u u u = n, =0, = n X X X (4.56) u u u = n, = n, = 0 X X X (4.57) u X = u X, u X = u X, u X = u X (4.58) ε ij = 0 (4.59), ε ij =0.,, ε ij =0. 4.4 Green-Lagrange, θ ε ij =0..,

4.4. Green-Lagrange 9 dx, X = X, X = X + dx,. x = X + u(x )=X + u(x) (4.60) x = X + u(x )=X + dx + u(x + dx) (4.6) X + dx + u(x)+ u dx j X j (4.6) dx = x x dx = dx + u X j dx j (4.6), u i X j. u i X k dx dx = dx i dx i (4.64) ( = dx i + u )( i dx j dx i + u ) i dx k (4.65) X j X k = dx i dx i + u i X j dx j dx i + u i X k dx k dx i + u i X j u i X k dx j dx k (4.66).,, (4.66),,4 ( ui dx dx = dx dx + + u j + u ) k u k dx i dx j (4.67) X j X i X i X j ε ij E ij. E ij = ( ui + u j + u ) k u k X j X i X i X j (4.68) dx dx dx dx =E ij dx i dx j (4.69), dx dx dx dx ε ij dx i dx j (4.70). E ij =0, ε ij..

40 4 Green-Lagrange { u u } { = X (cos θ ) X sin θ X sin θ + X (cos θ ), (4.68), E ij. E = ( u + u + u ) k u k X X X X = ( u + u + u u + u u + u ) u X X X X X X X X } (4.7) (4.7) (4.7) = { (cos θ ) + (cos θ ) + (cos θ ) +sin θ +0 } (4.74) = 0 (4.75) E = ( u + u + u ) k u k X X X X = ( u + u + u u + u u + u ) u X X X X X X X X (4.76) (4.77) = { (cos θ ) + (cos θ ) + ( sin θ) +(cosθ ) +0 } (4.78) = 0 (4.79) E = ( u + u + u ) k u k X X X X = ( u + u + u u + u u + u ) u X X X X X X X X (4.80) (4.8) = { sin θ +sinθ +(cosθ )( sin θ) sin θ(cos θ ) + 0} (4.8) = 0 (4.8) E = E.,. Green-Lagrange. 4.5 Green- Lagrange.

4.5. 4, u = ax, u =0, u = 0 (4.84).,,.,,, 0. u = ax, u = νax,u = νax (4.85). ν Poisson. ε,e ε = (a + a) =a (4.86) E = ( ) a + a + a = ( ) a + a (4.87)., L l. u = l L ε = u L E = ( ) l L (4.88) (4.89).. l =.0L, E =0.0005,ε =0.0,. l =.L, E =0.05,ε =0.. l =L, E =.5,ε =.,,.,. u X = γ 0 (4.90) 0. u = γx (4.9) 0.,.. u / X = γ.

4 4 Green-Lagrange X X 4.0: [ ] ε = 0 γ γ 0 (4.9),, Green-Lagrange E 0. [ ] E = (F T F I) = 0 γ, (4.9) γ γ 4.6 Green-Lagrange X a θ Green-Lagrange. X θ a X 4.: (X,X ) (x,x ) { } { } x ( + a)x = X x (4.94)

4.6. Green-Lagrange 4 (x,x ) θ (x,x ) { } [ ]{ } { } { } x cos θ sin θ x x = = cos θ x sin θ ( + a)x cos θ X sin θ x sin θ cos θ x x sin θ + x cos θ = ( + a)x sin θ + X cos θ (4.95) u,u { } { } u X (( + a)cosθ ) X sin θ = (4.96) X ( + a)sinθ + X (cos θ ) u. Green-Lagrange E = ( u + u + u ) k u k (4.97) X X X X = ( u + u + u u + u u + u ) u (4.98) X X X X X X X X = { (( + a)cosθ ) + (( + a)cosθ ) + (( + a)cosθ ) +(+a)sin θ +0 } (4.99) = (a + a ) (4.00) E = ( u + u + u ) k u k X X X X = ( u + u + u u + u u + u ) u X X X X X X X X (4.0) (4.0) = { (cos θ ) + (cos θ ) + ( sin θ) +(cosθ ) +0 } (4.0) = 0 (4.04) E = ( u + u + u ) k u k X X X X = ( u + u + u u + u u + u ) u X X X X X X X X (4.05) (4.06) = { sin θ +(+a)sinθ + (( + a)cosθ )( sin θ)+(+a)sinθ(cos θ ) + 0} (4.07) = 0 (4.08)

44 4 Green-Lagrange, Green-Lagrange.,., Green-Lagrange,. Green-Lagrange.

45 5 Green-Lagrange

46 6 Cauchy.,,,,., σ.,,,,. 6.?,,,,,,,.,,,. 6.:,,.,,,

6.. Cauchy 47.,,,,,.,,,,,.,,,,,,.,.,,,,.,.,, (a) (b),,,.,,,,,. (a) (b) (c) 6.: 6. Cauchy.,.

48 6 Cauchy.,,,.,, F., Q,.,,.,,., Newton,. F F F Q F Q 6.:, n. n., ds df n ( 6.). df n n df(n), df n., t n. t n = df n (6.) ds

6.. Cauchy 49 t l n mds df n 6.4:,,,,.. t n n.,,,. x. x x x e, t = F /A., x x, x e, t =0. : n = e t = e +0 e +0 e : n = e t =0 e +0 e +0 e : n = e t =0 e +0 e +0 e (6.) x x F A x n t = F /A n t =0 6.5:

50 6 Cauchy, n e, e, e, t, t, t. t, t, t T ij. t = T e + T e + T e (6.) t = T e + T e + T e (6.4) t = T e + T e + T e (6.5) t i = T ij e j (6.6) T ij,, T,T,T, T,T,T,T,T,T. 6.. 6.0,,, (6.)., 0,,,. : n = e t =0 e + e +0 e : n = e t =0 e +0 e +0 e? : n = e t =0 e +0 e +0 e? (6.7) T ij e i e j T = T ij e i e j (6.8) Cauchy. Cauchy. Cauchy,,,.,. 6. Cauchy 4 Cauchy,,, Cauchy t n = T T n (6.9)

6.. Cauchy 4 Cauchy 5. (6.5), T t i = T ij e j (6.0). (6.0), (6.5). 4 (Cauchy 4 ),. ABC n, t n. t n ABC,. Δs, t n ds = t n Δs (6.) ABC., e, e, e ABC t, t, t., OCB, OAC, OBA, OCB, OAC, OBA Δs, Δs, Δs t ds = t Δs, t ds = t Δs, t ds = t Δs (6.) OCB OAC OBA x x C B t n t Δs Δs O Δs Δs A x t t ρ, Δv, a, g, Cauchy 4. ρ(a g)δv = t n Δs t Δs t Δs t Δs (6.)

5 6 Cauchy,., 4, 4. Δs, Δv/Δs 0. 6.. Δs i /Δs = n i (6.4), n = n i e i Δs t n = t Δs + t Δs Δs + t Δs Δs = t i n i = T ij e j n i = T ij (e j e i )n k e k = T T n (6.5) Cauchy., T T n t n. Cauchy. 6.. (6.5), (e i e j ) e k = δ jk e i t n = t i n i = T ij e j n i = T ij e j δ ik n k = T ij (e j e i )n k e k = T T n 6.. A, B, C {a, 0, 0}, {0,b,0},{0, 0,c} CA = a, CB = b n a, b a 0 bc a b = 0 b = ca, n = bc ca (6.6) c c ab b c + c a + a b ab Δs = bc, Δs = ca, Δs = ab, Δs = a b, Δs = b c + c a + a b (6.7) n = Δs Δs, n = Δs Δs, n = Δs Δs (6.8)

6.4. 5,, n a, b ΔS(= Δs. a, b θ, a b sin θ ΔS = a b sin θ = a b cos θ (6.9) { } a b = a b = a a b b (a b) (6.0) = (a + c )(b + c ) c 4 = a b + c a + b c (6.) 6.4,.. T T T T T T (6.) T T T,, e i e j,,,,.. T, T, T, ē i, T T T T 0 0 T T T = 0 T 0 T T T 0 0 T (6.),, T ij e i e j = T i ē i ē i (6.4) = T ē ē + T ē ē + T ē ē (6.5),. T ε x ε T ε y = ε T γ xy ε (6.6)

54 6 Cauchy,. {ε x,ε y,γ xy },...,,,,. 6.5,, 9.,.., σ y,, σ y.., σ ij σ = ( ) σ ij σ ij (6.7) σ ij = σ ij σ kkδ ij (6.8) = σ ij (σ + σ + σ )δ ij (6.9),,,.,.