untitled

Similar documents
23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

untitled

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

PDF

6. [1] (cal) (J) (kwh) ( ( 3 t N(t) dt dn ( ) dn N dt N 0 = λ dt (3.1) N(t) = N 0 e λt (3.2) λ (decay constant), λ [λ] = 1/s

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

TOP URL 1


Muon Muon Muon lif

IA

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

放射線化学, 92, 39 (2011)

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


プログラム


6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

日本内科学会雑誌第98巻第4号

QMI_10.dvi

日本内科学会雑誌第97巻第7号

抄録/抄録1    (1)V

Z: Q: R: C: sin 6 5 ζ a, b


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

研修コーナー

パーキンソン病治療ガイドライン2002

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

2000年度『数学展望 I』講義録

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

201711grade1ouyou.pdf

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

Part () () Γ Part ,

Microsoft Word - 章末問題

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

本文/目次(裏白)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

LLG-R8.Nisus.pdf

30

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.


C: PC H19 A5 2.BUN Ohm s law

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

21 KOMCEE (West) K303

03J_sources.key

untitled

H.Haken Synergetics 2nd (1978)

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

36 th IChO : - 3 ( ) , G O O D L U C K final 1

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

untitled

3/4/8:9 { } { } β β β α β α β β

4‐E ) キュリー温度を利用した消磁:熱消磁

B

K 1 mk(


main.dvi

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

keisoku01.dvi

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

25 3 4

0406_total.pdf


x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %


9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

untitled

FPWS2018講義千代

I

tokei01.dvi

総研大恒星進化概要.dvi

devicemondai

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

Untitled

日本内科学会雑誌第102巻第4号

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

β

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

newmain.dvi

Transcription:

71 7 3,000 1 MeV t = 1 MeV = c 1 MeV c 200 MeV fm 1 MeV 3.0 10 8 10 15 fm/s 0.67 10 21 s (1) 1fm t = 1fm c 1fm 3.0 10 8 10 15 fm/s 0.33 10 23 s (2) 10 22 s 7.1 ( ) a + b + B(+X +...) (3) a b B( X,...) 2 (a, b)b (4) Q Q (M a + M )c 2 (M b + M B + M X +...)c 2 =( ) ( ) (5) Q>0 Q<0 (decay) a Q >0 ( ) Q>0 (2 ) b(+...) t N(t) dn = λn(t)dt N(t) =N(0)e λt (6)

72 7. λ (decay constant) (decay rate) ( 1/e )τ ( )T λ τ = 1 log 2, T = τ log 2 = (7) λ λ 1 (Becquerel):Bq 1 (1 Bq=1 s 1 ) (Curie):Ci -226( 226 Ra)1 1 1 Ci=3.7 10 10 Bq SI τ τ (N 1 ) τ= 2 α- ( 4 He ) β- () ( ) γ- ( ) ( ) (proton/neutron-decay) () ( ) (fission) (N, Z) (N, Z) ( ) τ tot > 5 10 8 (5 =1.5 10 16 s) 1 1 2 2 2 0

7.2. (proton/neutron-decay) 73 Experimental Chart of Nuclides 2000 2975 isotopes 82 2 8 2 8 20 28 20 28 50 50 82 126 Half-life Range Unknown <0.1 s 0.1-5 s 5-100 s 100 s - 1 h 1 h - 1 y 1 y - 1 Gy Stable 1: (N) (Z) ( ) (S n,s p > 0 ) τ 1,τ 2,... τ tot ( λ tot ) 1 = 1 + 1 +..., τ tot τ 1 τ 2 (λ tot = λ 1 + λ 2 +...) (8) 7.2 (proton/neutron-decay) (N, Z) (separation energy) S p S n S p (N, Z)=[M(N, Z 1) + m p ] M(N, Z) =E B (N, Z) E B (N, Z 1) E B Z N S n (N, Z)=[M(N 1,Z)+m n ] M(N, Z)=E B (N, Z) E B (N 1,Z) E (9) B N Z E B (proton-decay) (N, Z) (N, Z 1) + p (10)

74 7. Q p Q p M (N, Z)c 2 [M 1 (N, Z 1) + m p ] c 2 = [Nm n + Zm p M (N, Z)]c 2 +[Nm n +(Z 1)m p M 1 (N, Z 1)]c 2 }{{}}{{} E B (N,Z) E B (N,Z 1) = S p (N, Z) (11) S Q () B-W EB BW (N, Z)=a V a S 2/3 Z 2 a C 1/3 a (N Z) 2 a (12) 2 N Z 2 S p (N, Z)=a V a S 3(N + Z) 1/3 a Z(6N +5Z) C 3(N + Z) 4/3 + a (N Z)(3N + Z) a 2(N + Z) 2 2 S n (N, Z)=a V a S 3(N + Z) 1/3 + a C 3(N + Z) 4/3 a (N Z)(N +3Z) a 2(N + Z) 2 Z 2 (13) S p < 0 S n < 0( Q>0 ) (N, Z) S p (N, Z) =0, S n (N, Z) = 0 (14) Z N (N, Z) Z- N- (drip line) ( (drip )) 10 22 10 20 s 2: (S p =0 S n =0 ) = N + Z ( ) Z 2 / =45

7.3. γ- 75 S p < 0 S p α- 7.3 γ- γ- (N, Z) MeV X γ- γ- (electro-magnetic transition) τ( ) 10 10 10 15 s (100 ps 1 fs) (15) (isomer) 3: γ β 60 Co E max =0.31 MeV β β 1.17 MeV 1.33 MeV 2 γ 60 Ni β γ 7.4 β- β- ( ) β - n p + e + ν e Q =+0.782 MeV β + - p n + e + + ν e Q = 1.804 MeV p + e n + ν e Q = 0.782 MeV ν e ν e (neutrino) (antineutrino) 0 ( Q

76 7. 0 ) 3 β- β - (N, Z) (N 1,Z+1) β + - (N, Z) (N +1,Z 1) β + (Q 1.293 MeV ) β + β- β- (m e ) (m n m p ) β- β- = N + Z =0 N = Z (16) β - Q β = E B (N 1,Z+1) E B (N, Z) E B N β + - Q β + = E B (N +1,Z 1) E B (N, Z) E B Z =+ E B Z =+ E B N β ± - β- E B Z = 0 (17) B-W E B 2Z Z = a C 1/3 +2a ( 2Z) a = 0 (18) Z Z = ) 2+( ac aa 2/3 2+0.015 2/3 (19) (N, Z) β- β- (Fermi) (10 3 10 8 s) 4 β- ( ) β- γ- 3 4 885.7 s( 9 ) 14 C 5,730

7.4. β- 77 (m e ) (m n m p ) β- β - Q β E B N + Q 0, Q β 0 =(m β n m p m e )c 2 β + - Q β + E B Z + Q 0 β, Q 0 + β =(m + p m n m e )c 2 β- β- M(N, Z) (N, Z) β- ( = N + Z ) β- (Heisenberg) 4: (a) (N, Z) 3 ( ) (b) 56 Fe β- [N : (even),z : (odd)] [N : (odd),z : (even)] (20) [N : (even),z : (even)] [N : (odd),z : (odd)] β- β-

78 7. β- 1 (even-odd/odd-even) 1 ( ) β- 2 (even-even) 1 3 β- 3 (odd-odd) ( M(N, Z) 5 ) β- 4 (odd-odd) β ± N + Z = (even-odd/odd-even) ( β ± ) (even-even/odd-odd) 2 (β ± 2 ) 5 5: Z ( ) β ± 1 N = Z 2 ( ) β ± 2 2 ( ) 5 2 H, 6 Li, 10 B, 14 N 4 60%

7.5. α- 79 7.5 α- α 28 MeV 8 MeV α : 28 MeV < 4 8 MeV = 32 MeV (21) α (N, Z) (N 2,Z 2) + α (22) Q α =[E B (N 2,Z 2) + E B (α)] E B (N, Z) (23) E B (α) Q α > 0 β- (U) (Th) α- β- (decay chain) 6: ( ) ( ) α- β- α, β, γ ( ) ( MeV) α- 1928 (G.Gamov)

80 7. α ( ) ( ) α V α (r) V α (r) ( V 0 ) α (1/r) V α (r) ( ) α-e α > 0 α α ( ) ( ) 1928 α- 7: α- α ( ) α ( ) Q 7.6 (WKB ) 1 WKB WKB λ [ ] 2W (E) λ(e)=λ 0 (E) exp = λ 0 (E)P (E), P(E) exp [ ] 2W (E) (24)

7.6. (WKB ) 81 λ 0 (E) E 1 P (E) (transmission coefficient) (penetration factor) W (E) (action integral) W (E)= xf (E) x i (E) p(x, E)dx, p(x, E)= 2M(V (x) E) (25) x i (E) x f (E) V (x) =E (26) (turning point) (imaginary time) H H = p2 2M + V (x) =E( ) (27) V (x) E (28) p 2 =2M(E V (x)) 0 (29) τ τ it p M dx dτ (30) p WKB E τ =1/λ + :α- 6 α ( R) V 0 r<r V (r) = BR (31) r R r α- BR =2(Z 2)e 2 2Ze 2 (Z 1 ) (32) 6 G.Gamov,1928.

82 7. α S ( l =0) α- α 5 MeV B (E α B) ( ) µb B W (E α )=R π 4 = const. + π 2µ 2 E α 2 BR (33) E α µ α E α α α µ 4 ( 4) 4+( 4) m Nc 2 4m N c 2 m α (34) α m α BR =2Ze 2 ( ) log τ = log λ const. + 2πe2 Z 2mα Eα (35) (WKB λ 0 (E) ) τ Z/ E α α- α 2πe 2 ( ) Z 2mα Eα 2π e2 c 2mα c 2 Z Eα 2π 1 Z 2 3, 700 Eα 4.0 Z (36) 137 Eα U(Z = 92) E α =5 MeV 10 MeV 163 115 log 10 τ =0.434 logτ 21 (α- Z) : 1 V (r) =B 1 2 µω2 x 2 (37) ( ) () W (E)= π(b E) ω ( (barrier) )(B E) (38)

7.7. (fission) 83 7.7 (fission) E B / (parent nucleus) (daughter nucleus) (N, Z) (N 1,Z 1 ) (N N 1,Z Z 1 ) 7 (N, Z) (N 1,Z 1 )+(N N 1,Z Z 1 ) (39) Q fission =[E B (N 1,Z 1 )+E B (N N 1,Z Z 1 )] E B (N, Z) (40) (symmetric fission) N 1 N 2, Z 1 Z 2 (41) 200 100 2 E B / 1 MeV 200 MeV ev/1 10 8 B-W ( N Q fission =2 E B 2, Z ) E B (N, Z) 2 ( ) ] [ 2/3 a S [ 2/3 2 + a C 2 = a S 2/3 (1 2 1/3 )+a C Z 2 Z 2 1/3 2 1/3 (1 2 2/3 ) ( Z 2 ) 2 / ( ) ] 1/3 2 (42) Q fission > 0 (43) f Z2 > 21/3 1 as 17.4 (44) 1 2 2/3 a C f ( ) (fissility parameter) β- >92.5 200 7 2 2 (binary fission) 3

84 7. 238 92 U 146 Q 177 MeV, f = Z2 35.6 (45) 200 8 ( R)[] (a = R(1 + ɛ),b= R(1 ɛ/2))[b] E B = a S (1+ 2/3 2 ) 5 ɛ2 +... (46) E B = a C Z 2 1/3 ( 1 1 ) 5 ɛ2 +... ɛ E B = (2a ɛ2 S 2/3 Z 2 ) a C 5 1/3 (47) (48) E B > 0 ( ) Z 2 > 2a S a C 49 (49) 35.6 2 [D] E B 170 MeV (Ze/2) 2 /r

7.7. (fission) 85 8: WKB log τ = log λ const. + 2π B E ω (50) ω ( ω 1 MeV ) (fission barrier) (B E) MeV ( ) U Th MeV α, β-

86 7. 7 1. ( ) ( ) µb B W (E α )=R π 4 2 E α (51) E α B ( ) 2. ( ) W (E) = π(b E) ω (52) ( ) 3. β- Z = ) 2+( ac aa 2/3 2+0.015 2/3 (53) 4. f Z2 > 21/3 1 1 2 2/3 as a C 17.4 (54)