2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2

Similar documents
ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

24 6 I., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ).,.,,. Estimate of Populatio Parameters ( ),..,,.. 6

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

(Frequecy Tabulatios)

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P.101

24 7 I., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ).,.,,. Estimate of Populatio Parameters ( ),..,,.. 7

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

renshumondai-kaito.dvi

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47

Part () () Γ Part ,

untitled

() Statistik19 Statistik () 19 ( ) (18 ) ()

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

untitled


t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

統計学のポイント整理

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

st.dvi

tokei01.dvi

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

数理統計学Iノート

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

³ÎΨÏÀ

分散分析・2次元正規分布

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

(iii) x, x N(µ, ) z = x µ () N(0, ) () 0 (y,, y 0 ) (σ = 6) *3 0 y y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y ( ) *4 H 0 : µ

統計的データ解析

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

Microsoft Word - 表紙.docx

II 2 II

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

201711grade1ouyou.pdf

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). : obata/,.,. ( )

Probit , Mixed logit

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

solutionJIS.dvi

10:30 12:00 P.G. vs vs vs 2

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

A

カテゴリ変数と独立性の検定

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Microsoft PowerPoint - statistics08_03.ppt [互換モード]


.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

waseda2010a-jukaiki1-main.dvi


ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

sec13.dvi


II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

keisoku01.dvi

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

応用数学III-4.ppt

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

untitled

untitled

I

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Part. 4. () 4.. () Part ,

統計的データ解析

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

( ) ( )

1 Tokyo Daily Rainfall (mm) Days (mm)

数学の基礎訓練I

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2

第7章

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

(pdf) (cdf) Matlab χ ( ) F t

最小2乗法

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

TOP URL 1

Excelにおける回帰分析(最小二乗法)の手順と出力

ii

Morse ( ) 2014

Transcription:

1 1 Lambert Adolphe Jacques Quetelet (1796 1874) 1.1 1 1 (1 ) x 1, x 2,..., x ( ) x a 1 a i a m f f 1 f i f m 1.1 ( ( )) 155 160 160 165 165 170 170 175 175 180 180 185 x 157.5 162.5 167.5 172.5 177.5 182.5 f 4 27 83 103 65 18 300 0.013 0.090 0.277 0.343 0.217 0.060 1.000 120 100 80 60 40 20 0 155 160 165 170 175 180 185 0.4 0.3 0.2 0.1 0 x 1, x 2,..., x 1. mea or average ( ):,. x = 1 x k k=1

2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2 = 1 k=1 x 2 k x 2 stadard deviatio ( ): σ = σ 2 = 1 (x k x) 2 x, σx, 2 σ x., σ 2 = 1 (a i x) 2 f i = (a i x) 2 f i = a 2 f i i x2 i i i 1.2 Iferetial Statistics k=1 k=1 Statistics Experimets Measuremets Data Statistical Iferece Good decisio Useful iformatio Probability Theory

1.3. What is a Radom Variable? 3 1.3 What is a Radom Variable? (radom variable)., X, Y, Z, T,.... Discrete radom variables ( ) (1) 3. (2). Cotiuous radom variables ( ) (1) 1,. (2). X. X. X,. 1.4 Distributios of Discrete Radom Variables 1.2 3, X. X {0, 1, 2, 3}., P (X = 0) = 1 8, P (X = 1) = 3 8, P (X = 2) = 3 8, P (X = 3) = 1 8,.. x 0 1 2 3 P (X = x) 1 8 X,, X ( ). X {a 1,..., a i,... }.. 3 8 3 8 1 8 x a 1 a i P (X = x) p 1 p i

4 1, P (X = a i ) (, ),. p i = P (X = a i ), p i 0, p i = 1. (p i = 0 a i, p i = 0.) i E[X] = m X = i a i p i = i a i P (X = a i ), V[X] = σ 2 X = i (a i m X ) 2 p i = i a 2 i p i m 2 X., ( ). V[X] = E[(X m X ) 2 ] = E[X 2 ] E[X] 2 1.2 ( ) E[X] = 3 2, V[X] = 3 4. 1.5 Distributios of Cotiuous Radom Variables 1.3 R 1, X. X [0, R]. a X = a P (X = a) = 0,. R x F (x) = P (X x). x < 0 F (x) = 0, x > R F (x) = 1., 0 x R. X x 1 O x, O x. 1,., F (x) = P (X x) = πx2 πr 2 = x2 R 2. 2 x, 0 x R, f(x) = R2 0,. X.

1.5. Distributios of Cotiuous Radom Variables 5 X, ( ) f(x) = f X (x). F X (x) = P (X x) f X (x),, F X (x) = P (X x) = : x f(x) 0, P (a X b) = f X (t)dt d dx F X(x) = f X (x). + b a f(x)dx = 1. f(x)dx, a < b, f (x) E[X] = m X = + + a b x xf(x)dx, + V[X] = σx 2 = (x m X ) 2 f(x)dx = x 2 f(x)dx m 2 X., V[X] = E[(X m X ) 2 ] = E[X 2 ] E[X] 2. 1.3 ( ) E[X] = 2 3 R, V[X] = 1 18 R2. HW 1 2, X,,. HW 2 2, L, S., L = S. L, S,,. HW 3 L X. (1) X. (2) (1), 2. (3) X.

7 第 2 章 基本的な離散分布 Sime o-deis Poisso (1781 1840) 2.1 Biomial Distributio (二項分布) 表が出る確率が p であるコインを 回投げたとき, 表の出る回数 X の分布 ( ) k P (X = k) = p (1 p) k, k = 0, 1, 2,..., k を二項分布といい, B(, p) で表す. 特に, B(1, p) を成功確率 p のベルヌーイ分布という. 例 題 2.1 B(4, 1/2) と B(4, 1/4) を図示せよ. k 0 1 2 3 4 k 0 1 2 3 4 P (X = k) 1 24 4 24 6 24 4 24 1 24 P (X = k) 81 44 108 44 54 44 12 44 1 44 定 理 2.2 二項分布 B(, p) の平均値と分散は m = p, σ 2 = p(1 p) 確率母関数 {0, 1, 2,... } に値をとる確率変数に対して pk = P (X = k) (k = 0, 1, 2,... ) とお く. このとき, pk xk f (x) = k=0 を X のまたは確率分布 {p0, p1,... } の母関数という. 補 題 2.3 確率母関数について次が成り立つ. (1) f (0) = p0, f (1) = 1. (2) E[X] = f (1). (3) V[X] = f (1) + f (1) {f (1)}2.

8 2 2.2 Geometric Distributio ( ) p, X P (X = k) = p(1 p) k, k = 0, 1, 2,.... p. ( ) 2.4 p m = 1 p p, σ 2 = 1 p p 2. 2.3 Poisso Distributio ( ) X λ > 0, P (X = k) = λk k! e λ, k = 0, 1, 2,.... 2.5 λ m = λ, σ 2 = λ. 2.6 ( ) B(, p) p = λ ( ),, p 0, λ. 2.7 ( ) 1 3,., 1, (1) 1. [0.05] (2) 5. [0.18] HW 4 3 000 999 1. 200,. 5, ( ). [199.8 ] HW 5, 20., 1 3. HW 6 50 5 5? 1 365,, 5 5 X B(50, 1/365)., P (X = k) (k = 0, 1, 2, 3, 4). [0.87198, 0.11945, 0.00818, 0.00037, 0.00001; : 0.87182, 0.11976, 0.00806, 0.00035, 0.00001]

2.3. Poisso Distributio ( ) 9 HW 7 X λ. (1) P (X = 0) P (X = 1) λ. (2) X, P (X = k) k.

11 第 3 章 基本的な連続分布 Joha Carl Friedrich Gauss (1777 1855) 3.1 Uiform Distributio (一様分布) 区間 [a, b] からどの点も同等な確からしさで 1 点を選ぶときのモデルとして現れる. 1, a x b f (x) = b a 0, その他 定 理 3.1 [a, b] 上の一様分布の平均値と分散は, m= 3.2 a+b, 2 σ2 = (b a)2 12 Expoetial Distributio (指数分布) ランダム到着の待ち時間をモデル化するときに現れる. λ > 0 を定数として { λe λx, x 0 f (x) = 0, x<0 定 理 3.2 パラメータ λ の指数分布の平均値と分散は, m= 3.3 1, λ σ2 = 1 λ2 Normal Distributio (正規分布) N (m, σ 2 ): 平均 m, 分散 σ 2 の正規分布 (またはガウス分布) { } (x m)2 1 exp f (x) = 2σ 2 2πσ 2 定 理 3.3 (de Moivre Laplace の定理) 二項分布は, 同じ平均と分散をもつ正規分布で近似 できる. B(, p) N (p, p(1 p)), 0 < p < 1,.

12 3 3.4 B(100, 0.4) N(40, 6.197 2 ) 0.10 0.08 0.06 0.04 0.02 0 0 10 20 30 40 50 60 70 80 90 100 3.4 Stadard Normal Distributio ( ) N(0, 1) 0.4 0.3 0.2 0.1-4 -3-2 -1 0 1 2 3 4 3.5 ( ) X N(m, σ 2 ), ax + b N(am + b, a 2 σ 2 ),, Z = X m N(0, 1) σ 3.6 Z N(0, 1). (1). P (Z 1.15), P (Z 1.23) [0.8749, 0.1093] (2) a. P (Z a) = 0.33, P (Z < a) = 0.75 [0.44, 0.67] (3) X N(2, 5 2 ), P (X 0). 3.7 400, 225 ( ( ) ). HW 8 500, 250. HW 9 ( ) m, σ, ( ) = 50 + 10 x m σ,., 20 80,. HW 10, 4%. 1000 1050,. [0.0901]

3.4. Stadard Normal Distributio ( ) N(0, 1) 13 I(z) = 1 2π z 0 e x2 /2 dx z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 2.0 0.4773 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 2.9 0.4981 0.4982 0.4983 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990

14 1 3 1,. 30cm 40cm, 5cm. [1/2] 2 2 0 0 50, 10.,. 2.,. [9/25] 3 3 3, 4, 5 1 P, P ( 5 ) 1. [95/144] 4 ( ) X, F (x) = F X (x) = P (X x)., x. 3, X. X,. 5 L Y. Y,,,. [F Y (x) = 0 (x < 0); = 2x/L (0 x L/2); = 1 (x > L/2). f Y (x) = 2/L (0 x L/2); = 0 (otherwise). E[Y ] = L/4. V[Y ] = L 2 /48.] 6 R 1, X. X. [E[X] = R/3. V[X] = R 2 /18.] 7 O R 1, O X. X,,,. 8 (, ) λ. [.] 9 N 4. 1 N N, 4, X. 4 k N, P (X = k), E[X]. [4(N + 1)/5] 10 (1) X N(20, 4 2 ), P (X > 17.8). [0.7088] (2) X N(50, 10 2 ), P (X > a) = 0.985 a. [28.3] 11 60, 1 12., 600, 1 120,. [.] 12, 5%., 68, 8.,. [81.12 82 ]

15 4 I Jacob Beroulli (1654 1705) 4.1 Samplig ( ) ( ),, ( ). 1, x 1.,, x., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ). Estimate of Populatio Parameters ( ),..,,.. X 1, X 2,..., X,.,,.

16 4 I 4.2 Poit Estimatio, f(x 1, X 2,..., X ) (poit estimatio)., X = 1 k=1 X k ( ). 2. 4.1 ( ) E[ X] = m. 4.2 ( ) X, ( ) P X = m = 1. lim 4.3 (Strog law of large umbers ( )) X 1, X 2,..., m., ( P lim 1 k=1 ) X k = m = 1 4.4 ( ), 1, 0., x 1, x 2,... t = 1 k=1 x k. t,. 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0 200 400 600 800 1000 0.3 0 2000 4000 6000 8000 10000

4.3. Biomial Populatio 17 4.3 Biomial Populatio E, 2, E p..,, E 1, E 0. m = p. X 1, X 2,..., X. k, X k = { 1, k E, 0, k E,..,,, ˆp = 1 X k., ˆp. 4.5 (Audiece Ratig Survey ( )).,? 2016 4 25 ( ) 5 1 ( ) ( ) 10 (%) 16/04/27( ) 8:00-15 24.6 16/05/01( ) 20:00-45 17.0 16/05/01( ) 21:00-54 16.2 16/04/27( ) 22:00-60 13.1 16/04/27( ) 21:00-54 12.0 16/04/30( ) 21:00-126 11.4 16/04/25( ) 21:00-114 10.4 16/04/30( ) 20:15-30 10.1 16/04/28( ) 21:00-54 9.9 16/04/25( ) 21:00-54 9.4 16/04/29( ) 12:45-15 9.4 k=1 32,., 27, PM.,, PM 600, 200. (. 2016.5 ) : ( )

18 4 I 4.4 Iterval Estimatio of Biomial Parameter ˆp, (!),., ˆp p., ˆp,. (iterval estimatio). ˆp. (1) X k B(, p). k=1 (2), B(, p) N(p, p(1 p)) ( ). p 5, (1 p) 5. (3), ˆp = 1 X k N k=1 ( p, ) p(1 p) ˆp p p(1 p)/ N(0, 1) (4) 2 ( ), p ˆp : ˆp p ˆp(1 ˆp)/ N(0, 1). α = α/2 α, Z N(0, 1) ( ) P ( z Z z) = 1 α z N(0, 1) α. z 1.00 1.64 1.96 2.00 2.58 3.00 3.29 α 0.317 0.100 0.050 0.045 0.010 0.003 0.001 1 α 0.683 0.900 0.950 0.955 0.990 0.997 0.999 N(0,1) 1 α α/2 α/2 -z 0 z

4.4. Iterval Estimatio of Biomial Parameter 19 p 1 α [ ] ˆp(1 ˆp) ˆp(1 ˆp) ˆp(1 ˆp) ˆp z, ˆp + z ˆp ± z. 90% (α = 0.1, z = 1.64) 95% (α = 0.05, z = 1.96) 99% (α = 0.01, z = 2.58). α 1 0 (1 α) 0% 100% 0 ( ) ( ) ( ), x 1..., x (, x k = 0 = 1). ˆp,.,.., 1 α, α.,. 4.6 ( ) 600 14.1%. 95%, 0.141(1 0.141) 0.141 ± 1.96 0.141 ± 0.0278 600 4.7, 95% 0.01,? [38416] HW 11 952, 51% (NHK 2017 3 10 12 ). 90%. [0.51 ± 0.027] HW 12, 90% 0.02,? [6724] HW 13,.

21 5 II William Sealy Gosset (1876 1937) 5.1 5.1 ( ) X, Y, E[XY ] = E[X]E[Y ], V[X + Y ] = V[X] + V[Y ] 5.2 ( ) N(m, σ 2 ) X 1, X 2,..., X X = 1 X k, X N ) (m, σ2 k=1 X m σ/ N(0, 1) m, σ 2,,. ( ) ( ) P X = m = 1. lim 5.3 ( ) X 1, X 2,..., m = 0, σ 2 = 1., ( ) lim P 1 X k x = 1 x e t2 /2 dt. 2π,, k=1 1 X k N(0, 1). k=1 5.2 ( ) X 1, X 2,..., X : m ( ), σ 2 ( ) m 1 α, X ± z σ z N(0, 1) α (= α/2 ) (5.1)

22 5 II p 1 α, ˆp ± z ˆp(1 ˆp) (5.2)., (5.1)., p p(1 p). (5.2), (5.1), σ 2 ˆp σ 2 = ˆp(1 ˆp). 5.4, 200, 2.2 g., 1.5 g., g?. [95% 2.2 ± 0.208] HW 14 1. 40 156g., 8g. 1. [95% 156 ± 2.48] HW 15 HW14, 95% 1g? [984] 5.3 ( ) X 1, X 2,..., X : m ( ), σ 2 ( ) U 2 = 1 1 (X i X) 2, S 2 = 1 i=1 (X i X) 2 i=1,. (,, ) : E[S 2 ] σ 2. 5.5 U 2 : E(U 2 ) = σ 2.,, S 2 U 2. 5.6 N(m, σ 2 ) X 1,..., X, T = X m U/ t 1 ( 1) t-,.

5.3. ( ) 23 t- 1 B ( 2, 1 2) ( ) +1 1 + t2 2 = Γ( +1 2 ) Γ( 2 )Γ( 1 2 ) ( ) +1 1 + t2 2 (5.3) (1) Γ. Γ(x) = 0 t x 1 e t dt, x > 0. (2) B. B(x, y) = 1 (3) N(0, 1),. 0 t x 1 (1 t) y 1 dt = Γ(x)Γ(y), x > 0, y > 0. Γ(x + y) (4) = t- N(0, 1). (5), 30 N(0, 1). m 1 α, X ± t U t t 1 α 5.7 8,. 90%. 32.5 31.8 33.0 32.4 32.2 31.3 32.9 32.1 [ x = 32.275, u 2 = 0.3135 = 0.56 2, t 7 = 1.895 32.275 ± 0.375] HW 16,. 95%. [33 ± 4.17] 23 42 33 29 34 41 30 36 34 28 HW 17 (5.3), = t- N(0, 1). [Γ(1/2) = π.]

24 5 II t ( α P ( T t (α)) = α) \α 0.100 0.050 0.020 0.010 1 6.314 12.706 31.821 63.657 2 2.920 4.303 6.965 9.925 3 2.353 3.182 4.541 5.841 4 2.132 2.776 3.747 4.604 5 2.015 2.571 3.365 4.032 6 1.943 2.447 3.143 3.707 7 1.895 2.365 2.998 3.499 8 1.860 2.306 2.896 3.355 9 1.833 2.262 2.821 3.250 10 1.812 2.228 2.764 3.169 11 1.796 2.201 2.718 3.106 12 1.782 2.179 2.681 3.055 13 1.771 2.160 2.650 3.012 14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.567 2.898 18 1.734 2.101 2.552 2.878 19 1.729 2.093 2.539 2.861 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.787 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.462 2.756 30 1.697 2.042 2.457 2.750 1.645 1.960 2.326 2.576 α 0 t ( α)

25 6 Testig Hypotheses 6.1 Sir Roald Aylmer Fisher (1890 1962) 1. (ull hypothesis) H 0 (alterative hypothesis) H 1. 2. T ( ), H 0,. 3. (sigificace level) 0 < α < 1 (critical regio)., H 0., 10%, 5%, 1%., T, T α (P (T W ) = α). ( H 1. ),. 4. T t, W (t W ). t W. T, H 0. α, H 0 (reject), H 1 (accept). t W. T, α, H 0 (, ). 6.1 400, 223.? 1. p. H 0 : p = 1 2 H 1 : p 1 2 2. 400 X. H 0, X B(400, 1/2) N(200, 10 2 )., Z = X 200 N(0, 1) 10.

26 6 Testig Hypotheses 3. α = 0.05., 5% ( ). 5% (= 2.5% ) 1.96, 4. x = 223 Z z = W : z 1.96 223 200 10 = 2.3., H 0., 5% H 0.,. 5. 1%, 1% 2.58, z = 2.3. 1% H 0.. α α α W W W W N(0, 1) α α 0.317 0.100 0.050 0.045 0.010 0.003 0.001 z 1.00 1.64 1.96 2.00 2.58 3.00 3.29 1 α 0.683 0.900 0.950 0.955 0.990 0.997 0.999 6.2 ( ) m, σ 2, X = 1 ) X k N (m, σ2 X m σ/ N(0, 1) k=1,, (. N(m, σ 2 ) ). 6.2 ( ) 25 mm.,.,, 0.8 mm. 16 25.45 mm.? [ 5% H 0 : m = 25 ( 2.25 1.96). 1%.]

6.3. 2 (Two Types of Error) 27 6.3 ( ) 120,., 25, 120.8., 2.2... [ m. 5% H 0 : m = 25 ( 1.82 1.64).] HW 18 ( ), 100 63.. [ 5% H 0 : p = 1/2 ( 2.6 1.96). 1%..] HW 19 ( ), m = 60 (g).,, m 50 70, σ = 3 ( )., 25,, 61.43. m = 60? [ 5% m = 60 ( 2.38 1.96). 1%.] HW 20 ( ), 100g 2g., 2g. 200, 2.2g.,, 1.5g.. [ 5% ] 6.3 2 (Two Types of Error) H 0, 4. \ H 0 H 0 H 0 2 H 0 1 α: 1 (Type I error) = β: 2 (Type II error) 1 = = 2 = = 6.4 100, 58.?

28 6 Testig Hypotheses. H 0 : p = 0.5 H 1 : p 0.5, α = 0.05. B(100, 0.5) N(50, 5 2 ), B(100, 0.5). α p = 0.50 5 50 58, H 0,. 2., p, 2., p = 0.6. B(100, 0.6) N(60, 24) N(60, 5 2 ), B(100, 0.6) B(100, 0.5) 10..,, 2 β. β = 0.5. p = 0.50 p = 0.60 β 50 60 (1) α β (2) α, β,. (3) H 0,. H 0.

29 7 Jerzy Neyma (1894 1981) Ego Sharpe Pearso (1895 1980) 7.1 ( ) m, σ 2,, X = 1 ) X k N (m, σ2 k=1 X m σ/ ( ).. N(0, 1) 7.2 ( : T - ) N(m, σ 2 ) X 1,..., X, U 2 = 1 (X i 1 X) 2,. X, i=1 T = X m U/ t 1 1 t- 7.1 500(g) 9 494, 8 2.,? [ α = 0.05, t = 2.25 > 2.306 H 0., N(0, 1), 2.25 < 1.96 H 0.] 7.2 ( ),. 50kg, 50kg. 12 (kg), x = 48.6, u 2 = 1.6 2.. [ 5% H 0 : m = 50 ( 3.03 1.796)]

30 7 HW 21 66. A 10. 78 72 65 86 58 64 76 88 74 59, 72 66 A. A. [ 5% ] 7.3 P (P-value), α H 0.,, H 0. t, H 0, P = t, t P.,,. 7.3 A. 80 32.. P. [0.0734] HW 22 250.,, 2.25. 25 248.8.? P. [0.0076] 7.4 7.4 ( ) X, Y a, b, E[aX + by ] = ae[x] + be[y ]. 7.5 ( ) X, Y a, b, V[aX + by ] = a 2 V[X] + b 2 E[Y ]. 7.6 ( ) 2 X N(m 1, σ1) 2 Y N(m 2, σ2) 2, a, b, ( ax + by N am 1 + bm 2, a 2 σ1 2 + b 2 σ2) 2

7.5. 31 7.5 7.7 2 N(m 1, σ1), 2 N(m 2, σ2) 2 1, 2 X 1, X2, ( ) X 1 X 2 N m 1 m 2, σ2 1 + σ2 2. 1 2 7.8 ( ). A 5 1264.6. B 8 1263.9. A 0.7, B 0.6. 2. 2. [H 0 : m 1 = m 2, H 1 : m 1 m 2. z = 1.85. 5% H 0.] HW 23 A 36, B 40, A x A = 64.5, B x B = 61.2. A B., 11 2. 7.9 2 N(m 1, σ 2 ), N(m 2, σ 2 ) 1, 2 X 1, X2, U 2 1, U 2 2. U 2 = ( 1 1)U 2 1 + ( 2 1)U 2 2 1 + 2 2, T = X 1 X 2 ( 1 + 1 ) U 1 2 2 1 + 2 2 t. 7.10 ( ) 2 A, B. A 6, B 8. A : 6.2 6.0 5.9 6.2 6.1 5.8 B : 6.0 5.8 5.7 6.2 6.4 5.9 5.8 6.3. A,B. [ x A = 6.0333, u 2 A = 0.16332, x B = 6.0125, u 2 B = 0.22072, u 2 = 0.1987 2, t = 0.1937., t 12-2.5% 2.179. 5%.]

33 8 Thomas Bayes (1702 1761) 8.1 Coditioal Probability 8.1 A, B 2. P (A) > 0, P (B A) = P (A B) P (A) A B. A, B. 8.2 (Drawig lots) 10, 2. 2 1,,? [,.] 8.3 2 X, Y ( X = Y ). P (X 5 Y = 2) P (X + Y 8 X 4). [4/9, 5/9] HW 24 2 E, F, P (E) = 1 3, P (F ) = 1 2, P (E F ) = 1. 4. [2/3, 1/12, 1/4, 1/2, 1/6, 3/7] P (E c ), P (E F c ), P ((E F c ) c ), P (E F ), P (E F c ), P (E F E F ) 8.2 Idepedece of Evets 8.4 2 A, B, P (A B) = P (A)P (B). A 1, A 2,..., A i1, A i2,..., A i (i 1 < i 2 < < i ). P (A i1 A i2 A i ) = P (A i1 )P (A i2 ) P (A i )

34 8 8.5 P (A) > 0, 2 A, B P (B) = P (B A). 8.6 112, 121, 211, 222 4. 1, 1 1 A 1, 10 1 A 2, 100 1 A 3. A 1, A 2, A 3 2, 3. HW 25 A, B, C, P (A) = a, P (B) = b, P (C) = c. a, b, c. [a(1 b), a + b ab, a + b + c ab bc ca + abc, a] P (A B c ), P (A B), P (A B C), P (A B C) 8.3 Bayes Formula 8.7 (Bayes formula) Ω = A 1 A 2, A 1 A 2 =, B, P (A 1 B) =. P (A 1 )P (B A 1 ) P (A 1 )P (B A 1 ) + P (A 2 )P (B A 2 ) 8.8 (1), A 500 2. B, 95%, 2%... [0.160] (2), 100p %,. p? [1.9/(1.9 + 498p)] HW 26, A 1000 2. B, 90%, 5%. (1). [0.0348...] (2). [0.9997...] HW 27 ( ) 1 10 10. 1 2. 4. (1) 1, 6. [2/3] (2) 1, 6. [4/5]

35 4 8 13 X 1, X 2 [0, 1]., [0, 1]. X = (X 1 + X 2 )/2. a 0 < a < 1, A = ax 1 + (1 a)x 2. (1) E[A] = 1/2., A. (2) V[A] V[ X]., X A. 14 X 1, X 2 [0, 1]., [0, 1]. Y = X 1 X 2. E[Y ] = 4/9., Y. 15 500,?. 16 m, σ = 3, 10. 12 14 16 13 12 19 15 11 17 16 90%, 95%. [14.5 ± 1.56, 14.5 ± 1.86] 17 4000. 100, 38, 62. [ 5% ] 18 44.5, 23.5 ( 22 10 ). 25 32.?. 2500 2000 1500 1000 500 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

36 8 19 1000 200 157.7 cm. 158.6 cm, 4.63 cm. [ 1% ] 20 8%., 177, 23.. [ 5% 5% ] 21 10 (kg), 53.2 61.5 48.1 51.3 55.7 47.2 54.5 57.9 53.8 49.2. 50kg, [ x = 53.24, u 2 = 20.10, t = 2.285. 5% ] 22, A 1000 4. B, 90%, 5%. (1).. [0.0674] (2).. [0.9938] 23, 100x % A (0 x 1). B, 90%, 5%.. x, x. 1. 7 19 ( )1 3.. 2... 3. 1,. 4. ( ),. 5.,.,.

37 9 χ 2 - Karl Pearso (1857 1936) 9.1 χ 2-1 ( ) x 2 1 e x 2, x > 0, f (x) = 2 /2 Γ 2 0, x 0, 2 (χ 2 - ). (χ 2.), χ 2., Γ(t). = = = = = χ 2 - (1) X 1, X 2,..., X, N(0, 1), χ 2 = χ 2 -. (2) X 1, X 2,..., X, N(m, σ 2 ), χ 2 1 = 1 σ 2 i=1 i=1 X 2 i (X i X) 2, X = 1 i=1 X i ( ) 1 2. χ 2 1.

38 9 χ 2-9.1 χ 2 - χ 2, m =, σ 2 = 2. 9.2 (Goodess of Fit Test) A 1, A 2,..., A k k., X 1, X 2,..., X k. A 1 A 2 A k p 1 p 2 p k 1 X 1 X 2 X k, p 1, p 2,..., p k. 9.2 (Pearso χ 2 - ) m i = p i, χ 2 k 1 = k (X i m i ) 2 m i=1 i, m 1,..., m k (m i = p i 5), k 1 2. 9.3, 120.? 1 2 3 4 5 6 24 18 16 22 23 17 120 [χ 2 = 2.9. χ 2 5-5% 11.07. 5%.] 9.4,, 1 1 (2013 J 34 18 306 ). 0 1 2 3 4 5 6 7 132 227 154 66 23 6 4 0 612 0.2379 0.3416 0.2453 0.1174 0.042 0.0121 0.0029 0.0006 1 145.6 209.1 150.1 71.8 25.8 7.4 1.8 0.4 612 1 1, 1.436, 1.367. λ = 1.436. (i) m i = p i 5 0, 1,..., 5 6. (ii), 6 1 1 = 4 2.

9.3. 39 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 1 2 3 4 5 6 7 HW 28,. 4 : 3 : 2 : 1.,? [χ 2 = 3.01. χ 2 3(0.05) = 7.815..] A O B AB 47 23 21 9 100 HW 29, 45, 55.? (1) (2), 2. 9.3 9.5 2 A = {A 1,..., A r }, B = {B 1,..., B s }, χ 2 = r i=1 s j=1 ( Xij X i X i X j ) 2 X j, (X ij 5), (r 1)(s 1) 2. B 1 B 2 B s A 1 X 11 X 12 X 1s X 1 A 2 X 21 X 22 X 2s X 2. A r X r1 X r2 X rs X r X 1 X 2 X s.

40 9 χ 2-9.6.? [χ 2 = 10.34. 1%, χ 2 1(0.01) = 6.6349..] 22 102 124 29 47 76 51 149 200 24 150, 5 3868, 5., 5 1:1?. [χ 2 = 17.58. χ 2 5(0.01) = 15.0863. 1 1:1. 51:49, χ 2 = 7.97, 5.] : 0:5 1:4 2:3 3:2 4:1 5:0 92 603 1137 1254 657 125 3868 25, 1 (2016 143 ). 1.448, 1.786. λ = 1.448.. 0 1 2 3 4 5 6 7 40 42 36 14 6 3 2 0 143 0.2350 0.3403 0.2464 0.1189 0.0431 0.0125 0.0030 0.0006 0.9999 33.61 48.67 35.24 17.01 6.16 1.78 0.43 0.09 142.98 26 1.? 24 25 35 36 2 37 155 78 270 2 3 24 59 25 108 3 29 56 77 162 90 270 180 540

9.3. 41 : P (χ 2 χ 2 (α)) = α α χ α \α 0.995 0.99 0.975 0.95 0.05 0.025 0.01 0.005 1 0.0 4 393 0.0 3 157 0.0 3 982 0.0 2 393 3.841 5.024 6.635 7.879 2 0.010 0.020 0.051 0.103 5.991 7.378 9.210 10.597 3 0.072 0.115 0.216 0.352 7.815 9.348 11.345 12.838 4 0.207 0.297 0.484 0.711 9.488 11.143 13.277 14.860 5 0.412 0.554 0.831 1.145 11.070 12.833 15.086 16.750 6 0.676 0.872 1.237 1.635 12.592 14.449 16.812 18.548 7 0.989 1.239 1.690 2.167 14.067 16.013 18.475 20.278 8 1.344 1.646 2.180 2.733 15.507 17.535 20.090 21.955 9 1.735 2.088 2.700 3.325 16.919 19.023 21.666 23.589 10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188 11 2.603 3.053 3.816 4.575 19.675 21.920 24.725 26.757 12 3.074 3.571 4.404 5.226 21.026 23.337 26.217 28.300 13 3.565 4.107 5.009 5.892 22.362 24.736 27.688 29.819 14 4.075 4.660 5.629 6.571 23.685 26.119 29.141 31.319 15 4.601 5.229 6.262 7.261 24.996 27.488 30.578 32.801 16 5.142 5.812 6.908 7.962 26.296 28.845 32.000 34.267 17 5.697 6.408 7.564 8.672 27.587 30.191 33.409 35.718 18 6.265 7.015 8.231 9.390 28.869 31.526 34.805 37.156 19 6.844 7.633 8.907 10.117 30.144 32.852 36.191 38.582 20 7.434 8.260 9.591 10.851 31.410 34.170 37.566 39.997 21 8.034 8.897 10.283 11.591 32.671 35.479 38.932 41.401 22 8.643 9.542 10.982 12.338 33.924 36.781 40.289 42.796 23 9.260 10.196 11.689 13.091 35.172 38.076 41.638 44.181 24 9.886 10.856 12.401 13.848 36.415 39.364 42.980 45.559 25 10.520 11.524 13.120 14.611 37.652 40.646 44.314 46.928 26 11.160 12.198 13.844 15.379 38.885 41.923 45.642 48.290 27 11.808 12.879 14.573 16.151 40.113 43.195 46.963 49.645 28 12.461 13.565 15.308 16.928 41.337 44.461 48.278 50.993 29 13.121 14.256 16.047 17.708 42.557 45.722 49.588 52.336 30 13.787 14.953 16.791 18.493 43.773 46.979 50.892 53.672 40 20.707 22.164 24.433 26.509 55.758 59.342 63.691 66.766 50 27.991 29.707 32.357 34.764 67.505 71.420 76.154 79.490 60 35.534 37.485 40.482 43.188 79.082 83.298 88.379 91.952 70 43.275 45.442 48.758 51.739 90.531 95.023 100.425 104.215 80 51.172 53.540 57.153 60.391 101.879 106.629 112.329 116.321 90 59.196 61.754 65.647 69.126 113.145 118.136 124.116 128.299 100 67.328 70.065 74.222 77.929 124.342 129.561 135.807 140.169 4 ( = 1 ).

43 第 10 章 多変量の統計 Sir Fracis Galto (1822 1911) 10.1 2 変量データの記述 2 変量データ (2 次元データ): (x1, y1 ), (x2, y2 ),..., (x, y ) scatter diagram (散布図) データを xy-座標平面に図示したもの 例 題 10.1 身長 (x) と体重 (y) の散布図. クラス (A) とクラス (B) に対する結果. 100 100 (B) (A) 90 90 80 80 70 70 60 60 50 50 40 40 30 140 150 160 170 180 190 30 140 150 160 170 180 190 covariace (共分散) 個の 2 変量データ (x1, y1 ), (x2, y2 ),..., (x, y ) に対して, 変数ご との平均値と分散 1 x = xi, i=1 1 = (xi x )2 ; i=1 σx2 1 y = yi, i=1 1 = (yi y )2 i=1 σy2 を用いて共分散が定義される: 1 1 = (xi x )(yi y ) = xi yi x y i=1 i=1 σxy (注意) σxy = σyx. σxx = σx2 (したがって, 分散を σxx と書く流儀もある). correlatio coefficiets (相関係数) r = rxy = (注意) rxy = ryx. 正の相関 負の相関 強い相関 弱い相関 無相関 σxy σxy = σx σy σxx σyy

44 10 10.2 ( ( )) x i = x i x σ x, ỹ i = y i ȳ σ y 10.3 2 x, y, x, ỹ, r xy = σ xỹ = r xỹ (10.1)., x, y, x, ỹ. 10.4 1 r xy 1. {t(x i x) + (y i ȳ)} 2 0 t. 10.5. (A) (B) A 20.15 0.45 B 20.23 0.65 HW 30 2 (x 1, y 1 ), (x 2, y 2 ),..., (x, y ) σ x > 0, σ y > 0., r = 1., r = 1. [ 10.4.] 10.2 Radom Vectors 10.6 2 X, Y, covariace ( ) σ XY = Cov (X, Y ) = E[(X E[X])(Y E[Y ])] = E[XY ] E[X]E[Y ]., correlatio coefficiet ( ) : r XY = σ XY σ = XY σ X σ Y σxx σy Y

10.3. Regressio Models 45 10.7 1 r XY 1. 10.8 2 ( ) X, ( ) Y. X, Y. E[X] = 161 36 X\Y 1 2 3 4 5 6 1 1/36 0 0 0 0 0 1/36 2 2/36 1/36 0 0 0 0 3/36 3 2/36 2/36 1/36 0 0 0 5/36 4 2/36 2/36 2/36 1/36 0 0 7/36 5 2/36 2/36 2/36 2/36 1/36 0 9/36 6 2/36 2/36 2/36 2/36 2/36 1/36 11/36 11/36 9/36 7/36 5/36 3/36 1/36 1, E[Y ] = 91 36 2555 1225, V[X] = V[Y ] =, Cov (X, Y ) = 362 36, r = 35 2 73 HW 31 4, 1 X, 6 Y. X, Y. [r XY = 1/5] 10.3 Regressio Models 2 (x i, y i ) y = f(x) (x, y )., 1 y = ax + b liear regressio model ( ) y x. Method of least squares ( ) 1 y = ax + b, x = x i y i, (x i, y i ) ϵ i y i = ax i + b + ϵ i. Q = ϵ 2 i = i=1 (y i ax i b) 2 i=1 a, b. Q a, b 2,., Q a = 2a(σ2 x + x 2 ) 2(σ xy + xȳ) + 2b x, Q = 2b 2ȳ + 2a x b

46 10. Q a = Q b = 0, 1, a 0 = σ xy σ 2 x y = a 0 x + b 0., b 0 = ȳ a 0 x (10.2) 10.9 2 (x 1, y 1 ), (x 2, y 2 ),..., (x, y ), x, y y ȳ = σ xy (x x) = σ y r(x x) σx 2 σ x y ȳ σ y., y, x x x = σ xy (y ȳ) = σ x r(y ȳ) σy 2 σ y., r. x x σ x = r x x σ x (10.3) = r y ȳ σ y (10.4) ( ) 2, ( x, ȳ), ( ). 10.10 A,B (x) (y). A, x = 171.45, ȳ = 63.59, σ 2 x = 27.7557, σ 2 y = 73.3508, σ xy = 20.1530., x,., y y = 0.73x 61.57 (10.5) x = 0.27y + 154.28 (10.6). (10.6) 1/0.27 3.70, (10.5)., B,, x,, y. x = 157.98, ȳ = 51.05, σ 2 X = 28.1218, σ 2 Y = 34.6541, σ XY = 20.2323 y = 0.72x 62.70 x = 0.58y + 128.18

10.3. Regressio Models 47 100 90 (A) 100 90 (B) 80 80 70 70 60 60 50 50 40 40 30 140 150 160 170 180 190 30 140 150 160 170 180 190 HW 32 4 (0, 1), (1, 3), (3, 6), (4, 6) x. [y 4 = 1.3(x 2)] 27 x, y, σ xy σ x σ y. 28 Galto, (1886).. Galto.,? ( ). Mid-height parets (x) Adult Childre (y) below 64.5 65.5 66.5 67.5 68.5 69.5 70.5 71.5 72.5 above sum above 5 3 2 4 14 73.2 3 4 3 2 2 3 17 72.2 1 4 4 11 4 9 7 1 41 71.2 2 11 18 20 7 4 2 64 70.2 5 4 19 21 25 14 10 1 99 69.2 1 2 7 13 38 48 33 18 5 2 167 68.2 1 7 14 28 34 20 12 3 1 120 67.2 2 5 11 17 38 31 27 3 4 138 66.2 2 5 11 17 36 25 17 1 3 117 65.2 1 1 7 2 15 16 4 1 1 48 64.2 4 4 5 5 14 11 16 59 63.2 2 4 9 3 5 7 1 1 32 62.2 1 3 3 7 below 1 1 1 1 1 5 sum 14 23 66 78 211 219 183 68 43 19 4 928