III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

Similar documents
A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

1 I

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

- II

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

body.dvi

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

Chap11.dvi

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

日本内科学会雑誌第102巻第4号

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n


2014 S hara/lectures/lectures-j.html r 1 S phone: ,

数学概論I

³ÎΨÏÀ

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2


Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

i

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

6.1 (P (P (P (P (P (P (, P (, P.

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

v er.1/ c /(21)

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

tnbp59-21_Web:P2/ky132379509610002944

6.1 (P (P (P (P (P (P (, P (, P.101

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

i 18 2H 2 + O 2 2H 2 + ( ) 3K

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

日本内科学会雑誌第97巻第7号

日本内科学会雑誌第98巻第4号

Microsoft Word - 表紙.docx

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

1

f(x) x = A = h f( + h) f() h A (differentil coefficient) f(x) f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (velo

O f(x) x = A = lim h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) * t (v

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

no35.dvi

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

基礎数学I

04.dvi

.1 1,... ( )

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

2011de.dvi

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

A

( ) Loewner SLE 13 February

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1


I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

30

−g”U›ß™ö‡Æ…X…y…N…g…‰

DVIOUT


1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2


Transcription:

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2 Nϵ ϵ > 0 Nϵ n > Nϵ = n α < ϵ 1.1.3 1

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 2 Nε 1 Nε 2 ε 1 ε 2 α ε ε 2 1 n Nϵ N ϵ ϵ- 1.1.3 n > Nϵ n α < ϵ n Nϵ n α ϵ Nϵ Nϵ Nϵ ϵ N ϵ N ϵ lim n = + 1.1.2 n n n lim n = + M NM n > NM n > M 1.1.4 lim n = + lim n = { n } 1.1.1 1.1.1 1 n n N n N

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 3 N N N = 10 4 N = 10 10 N = 10 100 N n n = 1/n n n n ϵ > 0 n n α ϵ ϵ ϵ ϵ = 10 6 ϵ = 10 14 ϵ = 10 200 N ϵ n α N ϵ 2 n α n α n n = 1/n ϵ = 0.0001 n > 100 n > 100 n α < 0.0001 ϵ = 10 6 n > 20000 n > 20000 n α < 10 6 ϵ = 10 12 n > 10 20 ϵ = 10 100 n > 10 300 ϵ > 0 lim n = α ϵ = 10 300 N lim n = α N ϵ ϵ-n N ϵ n n α n n α ϵ n α N n ϵ n α ϵ-n ϵ Nϵ ϵ N n = 1, 2, 3,... n = 1 n, b n = 1 log2 + log2 + log n, c 1 n = log2 + log2 + log n + 10 8 1.1.5 n n 1 10 100 10 3 10 4 10 5 10 6 10 8 10 16 n 1 10 1 10 2 10 3 10 4 10 5 10 6 10 8 10 16 b n 1.00938 0.80577 0.73645 0.69834 0.67321 0.65494 0.64084 0.62006 0.57692 c n 1.00938 0.80577 0.73645 0.69834 0.67321 0.65494 0.64084 0.62006 0.57692 2

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 4 n b n c n b n c n n n n 1/n b n log n c n 10 8 n n n N ϵ n α ϵ ϵ n n n α ϵ ϵ-n 1.1.2 1.1.7 1.1.3 n Nϵ n = 1, 2, 3,... n = 3, b n = 1 n, c n = 1, d n = 1 n n 2 + 1 1 n 10, 10 2, 10 3, 10 4, 10 5, 10 6,... e n = 0 1.1.6 1.1.7 1.1.5 n f n = n + 3 n, g n = sin n n, h n = n + 1 n, p n = 2n + 1 n + 1, q 1 n = logn + 1 1.1.8 ϵ-n 1.1.4 ϵ-n lim n = α, lim b n = β lim n + b n = α + β. lim n = α, lim b n = β lim nb n = αβ. lim n = α, lim b n n = β β 0 lim = α b n β. b n m b m = 0 {b n } 1.1.5 n = 1 + 1 n 1.1.6 1 1.1.6 n n lim n = α lim n = β α = β

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 5 ϵ-n 1.1.7 n b n = 1 n n k=1 k lim n = α lim b n = α ϵ-n 1.1.8 1.1.7 lim 1 + 2 + + n n = α = lim = α n 1 n ρ 1, ρ 2, ρ 3,... n / n b n := ρ j j ρ j j=1 lim n = α lim b n = α ρ 1, ρ 2, ρ 3,... 1.1.7 ρ 1 = ρ 2 = ρ 3 =... = 1 j=1 1.2 ϵ-δ n n x x fx 1.2.1 fx, b fx x b lim x fx = b ϵ δϵ 0 < x < δϵ x fx b < ϵ 1.2.1 ϵ > 0 δϵ > 0 0 < x < δϵ = fx b < ϵ 1.2.2 x > 0 x = fx f b f = b x

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 6 δε 2 b ε 2 ε 2 ε 1 ε 1 x δε 1 ϵ-n 0 < x < δϵ fx b < ϵ 0 < x δϵ fx b ϵ 0 < x ϵ-n ϵ, δ ϵ, δ x fx b ϵ-n ϵ δ ϵ-n α fx b < ϵ δϵ 1.2.2 δϵ 1 lim x 0 x, > 0 2 lim x 2 2x + 3 x 0, 3 lim x 2 2x + 3. 1.2.3 x 1 1 x 2 1 4 lim, 5 lim x 0 1 + x x 1 x 1, 6 lim sin 1 x 0 x, 1.2.4 x 3 3 7 lim x x 1 + x 1 x 8 lim x 0 x 9 lim x 0 x 1.2.5 1.2.3 fx lim fx x 0 ϵ-δ 0.001 x = 10 1, 10 2, 10 3, 10 4,... fx := x { } { } 1.2.4 lim fx = α lim gx = β lim fx + gx = α + β lim fxgx = αβ x x x x ϵ-δ

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 7 1.3 1.4 1.3.1 1, 2, 3,... { n } { n } { n } 1, 2, 3, 4, 5, 6,... 1, 3, 5, 7, 9,... 1, 4, 9, 16, 25,... 1, 2, 5, 10, 100, 10032, 2323445,... 1.3.2 { n } L n n < L K n n > K K, L { n } n n L n K 1.3.3 { n } {b n } {b n } 1, 2, 3,... K L ccumultion point 11 23 K 1 4 2 3 5 8 15 9 100 12 L

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 8 n 2 n 1.3.1 1 = 1.4, 2 = 1.41, 3 = 1.414,... 2 II Bolzno-Weiertrss 1.4 lim n = α n α ϵ > 0 Nϵ n > Nϵ n α < ϵ 1.4.1 α e e = lim 1 + 1 n 1.4.2 n e x = 1 + x + x2 2! + x3 3! + = lim N N n=0 x n n! 1.4.3 x e x e x 3 lim N N n=0 x n n n! lim N N n=0 x n n n! 1.4.4 3 e x

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 9 1.4.1 1 2 3... n... n monotone incresing monotone decresing monotone non-decresing monotone non-incresing. strictly incresing n n 1.4.2 { n } lim n { n } lim n { n } lim n = + { n } lim n = + ± lim n 1.4.2 n 2 n n 2

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 10 n 1.4.2 n ϵ-δ α 1.3.3 { n } {b k } α { n } α α {b k } α k b k α 1.4.5 {b k } { n} {b k } k 1 b k1 > α n 1 k b k b k1 > α b k α {b k } { n } k n b k = n 1.4.5 n = b k n n α n n n α n m m n α {b k } k n = b k n n n α 1.4.6 { n }, {b k } {b n } α ϵ > 0 Kϵ > 0 k > Kϵ = b k α < ϵ 1.4.7 k > Kϵ α ϵ < b k 1.4.8 n = b k n α ϵ < n { n } n 1 α ϵ < n1 n > n 1 α ϵ < n1 n ϵ > 0 1.4.7 Kϵ Kϵ k 1 n1 = b k1 n 1 n > n 1 α ϵ < n 1.4.9

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 11 1.4.6 ϵ > 0 n 1 > 0 n > n 1 α ϵ < n < α 1.4.10 lim n = α ϵ-δ { n } α α 1.5 1.5.1 n Cuchy sequence ϵ > 0 Nϵ m, n Nϵ m n < ϵ 1.5.1 ε 1 ε 2 Nε 1 Nε 2 n n n m m, n 1.5.2 n n lim sup lim inf

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 12 1.5.3 1.5.2 Nϵ n := 1 n b n := 1 n 2 c n := 1n n d n := 1n n 1.5.4 { n }, {b n }, {c n } α c n n := log n + n k=1 1 k b n := c 1 := 1, n 1 c n+1 := 1 2 n 1 k 1 k=1 k c n + α c n c n n, b n 1.5.5 1.4.4 e x e x = n=0 x n n! x x > 0 x sin x = x x3 3! + x5 5! x7 7! + x 0 < r < 1 { n } n+2 n+1 r n+1 n n = 1, 2, 3,... n x 1.5.6 lim x fx fx C ϵ > 0 δϵ > 0 0 < x < δϵ 0 < y < δϵ x, y fx fy < ϵ 1.6

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 13 1.6.1 A N A N A bounded from bove N A upper bound M A M A bounded from below M A lower bound A A bounded A [0, 1] 1 10 2345 A 1 123 33556 A A A 1.6.2 A A A A supremum sup A A A A infimum inf A A A A inf A sup A A A 1.6.3 1.6.3 S S [ ] [ ] S S [ ] n 1.6.4 { n } lim sup k k n 1.6.1 { n } { n } lim sup n lim n 1.6.2 lim inf k k n 1.6.3 lim inf n lim n 1.6.4 sup k n k n +

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 14 α α α 1.6.5 { n } n α ϵ > 0 Nϵ/2 n > Nϵ/2 n α < ϵ/2 m, n > Nϵ/2 m α < ϵ 2, n α < ϵ 2 1.6.5 m, n m n = m α + α n m α + α n < ϵ 2 + ϵ 2 = ϵ 1.6.6 1.5.1 β := lim inf n, γ := lim sup n 1.6.7 β γ b N := inf m N m, c N := sup n 1.6.8 n N 1.6.5 β = γ { n } ϵ > 0, N l, m N = l m < ϵ 1.6.9 ϵ > 0, N l, m N = l m < ϵ 1.6.10 N, m l N sup sup l = c N l N ϵ > 0, N m N = c N m ϵ 1.6.11

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 15 m N inf inf m N l = b N ϵ > 0, N c N b N ϵ 1.6.12 c n b n {b n } {c n } {c n b n } N c N b N ϵ n N c n b n ϵ 1.6.12 ϵ > 0, N n N = c n b n ϵ 1.6.13 lim c n b n = 0 ϵ-n β = γ

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 16 2 2.1 2.1.1 [, b] f n x n = 1, 2, 3,... i {f n x} [, b] fx x lim f nx = fx ϵ > 0 x [, b] Nϵ, x n > Nϵ, x = f n x fx < ϵ 2.1.1 ii {f n x} [, b] fx ϵ > 0 Nϵ x [, b] n > Nϵ = f n x fx < ϵ 2.1.2 lim f nx = fx N x x N N x I = [, b] f n x n = 1, 2, 3,... 2.2 f n x n 0 < x < 1/n f n x = 0 2.2.1 [ 1 ] lim f n xdx = 0 1 0 lim f nx dx 2.2.2 4 lim 1 0 1 0 < x < 1/n g n x = 2.2.3 0 4

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 17 [ 1 ] lim g n xdx = 0 fx = lim f nx 2.2.2 1 [ 1 ] lim f n xdx = 0 lim [ 1 0 0 lim g nx dx 2.2.4 1 0 fxdx 2.2.5 { } ] f n x fx dx = 0 2.2.6 g n x = f n x fx [, b] g n x x lim g nx = 0 lim g n x = 0 lim g nx = 0 ϵ > 0 Nϵ, x n > Nϵ, x = g n x < ϵ 2.2.7 x g n x < ϵ g n xdx g n x dx b ϵ 2.2.8 lim g nx = 0 2.2.7 N x x g n x < ϵ n 2.2.1 f n x g n x = f n x 0 f n x n n x g n x < ϵ 2.2.8 2.2.1 [, b] f n x n = 1, 2, 3,... fx lim f n xdx = { } lim f nx dx = fxdx 2.2.9 2.2.9 2.2.9 α f n x fx f fx

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 18 ϵ > 0 Nϵ x [, b] n > Nϵ = f n x fx < ϵ 2.2.10 ϵ f n xdx f n xdx fxdx = fxdx f n x fx dx {f n x fx}dx 2.2.11 ϵ dx = ϵb 2.2.12 ϵ n n n f n x 2.2.2 i I = [, b] n=0 f nx F x f n x [ n=0 ] f n xdx = [ n=0 ] f n x dx = F xdx. iii n=0 nx n R fx n=0 nx n R, R [, b] [ ] fxdx = n x n dx = 0, b = x x < R x 0 ftdt = n=0 n=0 n n + 1 xn+1. 2.2.3 Arzelà 5.10, 5.11 I =, b {f n x} n n, x M n 0 x I fx M fx := lim f nx I dx n lim fxdx = lim f nx dx = fxdx 2.2.13 2.2.4 5.12

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 19 I =, {f n x} gx g f n n 0 x I f n x gx gxdx < fx := lim f nx I dx n lim fxdx = lim f nx dx = fxdx 2.2.14 5.4 2.2.4 2.3 I = [, b] f n x n = 1, 2, 3,... x I lim f nx = fx n f n x x fx x [ 1, 1] 0 1 x 0 f n x = nx 0 < x 1/n 1 1/n < x 1 2.3.1 n fx = lim f 0 1 x 0 nx = 1 0 < x 1 2.3.2 x = 0 2.3.1 I {f n } fx f n x fx

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 20 fx I = [, b] c lim fx = fc, ϵ > 0, δ > 0 x c < δ = fx fc < ϵ 2.3.3 x c f n x fx fc f n x f n c fx fc = fx f n x + f n x f n c + f n c fc 2.3.4 fx fc fx f n x + f n x f n c + f n c fc 2.3.5 f n x fx f n c fc f n f n f n x f n c f n x c x c n 2.3.5 c n x n x n x c n n x c n 2.3.1 c = 0 2.3.5 n x > 0 0 1 0 = 1 x > 0 n 1 0 = 1 x c n ϵ > 0 2.3.5 ϵ Nϵ x n Nϵ ϵ n Nϵ 2.3.5 ϵ x f Nϵ x δϵ, Nϵ > 0 x c < δϵ, Nϵ 2.3.5 ϵ ϵ, Nϵ, δϵ, Nϵ 2.3.5 ϵ 2.3.5 3ϵ ϵ x c fx fc < 3ϵ fx x = c 2.4 f n x fx 2.4.1 i f n x I = [, b] C 1 - { d dx f nx} I {f n x} x 0 I {f n x} I C 1 - ii f n x I C 1 - n [ ] d lim dx f nx = d [ ] lim dx f nx = d dx fx. d dx f nx I n f nx

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 21 x 0 I n f nx I C 1 - [ ] d dx f nx n=0 = d [ ] f n x. dx n=0 iii n nx n R fx n nx n R, R d dx fx = n n x n 1 n=1 2.5 R {x, y x [, b], y [c, d]} fx, y fx, y x y Iy y Iy fx, ydx. 2.5.1 fx, y R y [c, d] Iy R fx, y y [c, d] Iy y y d dy Iy = d [ ] fx, ydx = dy [ ] fx, y dx y 2.6 fx = n x n f x = n nx n 1?? 2.6.1 n=0 n=1 2.2.1 2.2.2 2.4.1 Newton, Leibnitz x

III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 22