³ÎΨÏÀ

Similar documents
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Part () () Γ Part ,

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

koji07-02.dvi

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t


II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1

- 2 -


1 (1) (2)

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

6.1 (P (P (P (P (P (P (, P (, P.


「産業上利用することができる発明」の審査の運用指針(案)

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (


II 2 II

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )


6.1 (P (P (P (P (P (P (, P (, P.101

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1 I

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

( ) Loewner SLE 13 February

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

201711grade1ouyou.pdf

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Untitled

A

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi


Gmech08.dvi

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

: , 2.0, 3.0, 2.0, (%) ( 2.

Chap11.dvi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

² ² ² ²

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

untitled

chap10.dvi

i 18 2H 2 + O 2 2H 2 + ( ) 3K

Chap9.dvi

Microsoft Word - 触ってみよう、Maximaに2.doc

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

lecture

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

Gmech08.dvi

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

(note-02) Rademacher 1/57

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

meiji_resume_1.PDF

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

2007年08月号 022416/0812 会告

ε

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

2000年度『数学展望 I』講義録

Transcription:

2017 12 12 Makoto Nakashima 2017 12 12 1 / 22

2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22

. (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22

. (,, L p - )... Makoto Nakashima 2017 12 12 3 / 22

(Ω, F, P ):. X, {X : 1}: Ω,. X X : X X P ({ }) ω : lim X (ω) = X(ω) = 1 ε > 0 lim P ({ω : X (ω) X(ω) > ε}) = 0 1 p < X, X L p (P ). X X L p lim X X p = 0. X L p (P ). X p = E[ X p ] 1/p Makoto Nakashima 2017 12 12 4 / 22

Figure:. L p -. Makoto Nakashima 2017 12 12 5 / 22. 3.1 X, {X : 1} Ω.. (i) X X, P -a.s. X P X. (ii) X L p X X P X. (iii) X P X {Xk : k 1} X k X, P -a.s..

3.1 ([0, 1], B([0, 1]), dx). [0, 1] X. X (x) = 1 I (x)., I = [ k 1 2 l, k ] 2 l, = 2 l + k, 0 k 2 l 1. x [0, 1] X (x) = 1 X 0, P -a.s., 0 < ε < 1 P ( X > ε) = 2 l ( ) Makoto Nakashima 2017 12 12 6 / 22

3.2 L p -, L p - ([0, 1], B([0, 1]), dx). [0, 1] X. X (x) = 1/p 1 I (x)., I = [ 0, 1 ]. X 0,., E [ X p ] = 1 0 L p -. 0 ( 1/p 1 I ) p dx = 1 Makoto Nakashima 2017 12 12 7 / 22

. 3.1 X:. {X : 1}:. (i) ( ) {X : 1}, X X P -a.s.. lim E[X ] = E[X]. (ii) ( ) {X : 1}. lim E[X ] E[ lim X ]. (iii) ( ) X X, P -a.s.. Y E[Y ] < X Y, P -a.s.. lim E[X ] = E[X] Makoto Nakashima 2017 12 12 8 / 22

Figure:. Makoto Nakashima 2017 12 12 9 / 22

1. S 1 6.? (3.1) Makoto Nakashima 2017 12 12 10 / 22

1. S 1 6.? 3.2 ( ) {X : 1}: R- i.i.d.. m = E[X 1 ], σ 2 = V (X 1 ) <. [ (i) lim E X 1 + + X ] 2 m = 0. X 1 + + X L 2 m. (ii) ε > 0 lim P ( ) X 1 + + X m > ε = 0. (3.1) (iii) R f x = m [ ( )] lim E X1 + + X f = f(m). 3.2 (3.1) L 2 -. Makoto Nakashima 2017 12 12 10 / 22

(i), (ii) (i) 2.1 [ X 1 + + X E ] 2 m = V (X 1) = σ2 L 2 -. (ii) L 2 -. Makoto Nakashima 2017 12 12 11 / 22

(iii) (iii) ε > 0 ( )] [f E X1 + + X f(m) ( ) = [f E X1 + + X f(m)] ( ) ] [f E X1 + + X f(m) : X 1 + + X m > ε ( ) ] + [f E X1 + + X f(m) : X 1 + + X m ε ( ) X 1 + + X sup f(x) f(m) + 2 f P m x m ε > ε σ 2 sup f(x) f(m) + 2 f x m ε ε 2., f x = m. Makoto Nakashima 2017 12 12 12 / 22

. 3.3 ( ) [0, 1] f. f (x) = m=0 ( ) ( m ) x m (1 x) m f m f.. lim sup x [0,1] f (x) f(x) 0 Makoto Nakashima 2017 12 12 13 / 22

3.3 {X : 1} P (X = 1) = p = 1 P (X = 0) (p [0, 1]). E[X ] = p, V (X ) = p(1 p). S = k=1 X k., P (S = m) = [ E f ( ) p m (1 p) m m ( )] S = f (p). Makoto Nakashima 2017 12 12 14 / 22

[0, 1] sup f(x) f(y) ε x,y [0,1], x y <δ δ. δ > 0 3.2(iii) σ 2 [f (p) f(p)] sup f(x) f(p) + 2 f x p δ δ 2 ε + 2 f σ 2 δ 2. p. lim sup p [0,1] f (p) f(p) ε Makoto Nakashima 2017 12 12 15 / 22

3.2 {X : 1}. E[ X ] < 1 X <, P -a.s. 1, E X = E[X ] 1 1. Makoto Nakashima 2017 12 12 16 / 22

E[ X ] = E X 1 1. X <, P -a.s.. ( 1 ). Makoto Nakashima 2017 12 12 17 / 22

. 3.3 X, X ( 1).. (i) ( ) {X : 1}. X P X.. lim E[X ] E[X] (ii) ( ) X P X. Y E[Y ] <.. X Y, P -a.s. lim E[X ] = E[X] Makoto Nakashima 2017 12 12 18 / 22

{X : 1} Ω ( ). X (ω) X(ω) lim X (ω)p (dω) X(ω)P (dω). Ω Ω Makoto Nakashima 2017 12 12 19 / 22

{X : 1} Ω ( ). X (ω) X(ω) lim X (ω)p (dω) X(ω)P (dω)., lim E[X ]. Ω Ω Makoto Nakashima 2017 12 12 19 / 22

3.4 R- {X : 1} R- X. f C(R). f(x ) P f(x) Makoto Nakashima 2017 12 12 20 / 22

3.4 R- {X : 1} R- X. f C(R). f(x ) P f(x) 3.2, 3.3.. Makoto Nakashima 2017 12 12 20 / 22

3.5 d {X : 1}. λ > 0 X Poi(λ ). 1 X 1 λ Makoto Nakashima 2017 12 12 21 / 22

3.5 d {X : 1}. λ > 0 X Poi(λ ). 3.2 1 X 1 λ Makoto Nakashima 2017 12 12 21 / 22

3.6 {X : 1} R- X d Exp(1). lim X log = 1, P -a.s.. Makoto Nakashima 2017 12 12 22 / 22

3.6 {X : 1} R- X d Exp(1). lim X log = 1, P -a.s.. ε > 0 P (X > (1 + ε) log ) = 1 P (X > (1 ε) log ) = 1 ( ). - ( 1.1 2.6.) Makoto Nakashima 2017 12 12 22 / 22

( ).,.(4 ) Makoto Nakashima 2017 12 12 23 / 22