Kullback-Leibler

Similar documents
Kullback-Leibler

Kullback-Leibler

Kullback-Leibler

第5章 偏微分方程式の境界値問題

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

newmain.dvi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

30

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

untitled

数学概論I

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

all.dvi

untitled

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

Part () () Γ Part ,

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

takei.dvi

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

Powered by TCPDF ( Title 第 11 講 : フィッシャー統計学 II Sub Title Author 石川, 史郎 (Ishikawa, Shiro) Publisher Publication year 2018 Jtitle コペンハーゲン解

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

現代物理化学 2-1(9)16.ppt

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…•

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

201711grade1ouyou.pdf

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

ohpmain.dvi

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

tokei01.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

数理統計学Iノート

第86回日本感染症学会総会学術集会後抄録(I)

1 Tokyo Daily Rainfall (mm) Days (mm)

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

確率論と統計学の資料

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

Z: Q: R: C: sin 6 5 ζ a, b

.1 1,... ( )


ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

−g”U›ß™ö‡Æ…X…y…N…g…‰

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

ii

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

1 I

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

ばらつき抑制のための確率最適制御

? (EM),, EM? (, 2004/ 2002) von Mises-Fisher ( 2004) HMM (MacKay 1997) LDA (Blei et al. 2001) PCFG ( 2004)... Variational Bayesian methods for Natural

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

2 #2 i p i (ɛ)., q D q lim n(ɛ) log i ɛ log(ɛ) lim ɛ log n(ɛ) log(ɛ) (238), ɛ ( 69 ), ɛ, n(ɛ) n(ɛ) ɛ Dq (239), D q (, )., q, q 2. 69: ɛ. 7.2 q (237),


30 (11/04 )

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

Tangle iota Tangle Tangle DAG Tangle Tangle 2 2 A B A B 2 A X B A B 2 Tangle Tangle Tangle Tangle 3 4 k 2 k

gr09.dvi

熊本県数学問題正解

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

16 7 5

四変数基本対称式の解放

kou05.dvi

TOP URL 1

i Γ

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

研修コーナー

パーキンソン病治療ガイドライン2002

TOP URL 1

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A


meiji_resume_1.PDF

日本内科学会雑誌第97巻第7号

日本内科学会雑誌第98巻第4号

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

untitled

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

Transcription:

Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4 Kullback-Leibler...................... 4.5............................ 5.6 max-plus Laplace.............. 6 2 Boltzmann 7 2.................................... 7 2.2 Boltzmann............................. 8 2.3....... 9 2.4............................. 3 Sanov 3. Sanov............................... 3.2 Sanov........................... 3 3.3 Sanov............................... 4 4 6 4. KL........ 6 URL.. 6 6 Ver.0.0. 0. 6 7 Ver.0.26. 4. Sanov 3. Stirling. 6 8 Ver.0.2...

2 0 : Stirling http://www.math.tohoku.ac.jp/~kuroki/latex/206050stirlingformula.pdf Stirling. Kullback-Leibler Boltzmann exp ν β νf ν k... [] Csiszar, Imre. A simple proof of Sanov s theorem. Bull Braz Math Soc, New Series 374, 453 459, 2006. http://www.emis.ams.org/journals/em/docs/boletim/vol374/v37-4-a2-2006.pdf [2] Dembo, Amir and Zeitouni, Ofer. Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability formerly: Applications of Mathematics, 38, Second Edition, Springer, 998, 396 pages. Google [3] Ellis, Richard, S. The theory of large deviations and applications to statistical mechanics. Lecture notes for École de Physique Les Houches, August 5 8, 2008, 23 pages. http://people.math.umass.edu/~rsellis/pdf-files/les-houches-lectures.pdf [4] Sanov, I. N. On the probability of large deviations of random variables. English translation of Matematicheskii Sbornik, 4284:, pp. 44. Institute of Statistics Mimeograph Series No. 92, March, 958. http://www.stat.ncsu.edu/information/library/mimeo.archive/isms 958 92.pdf [5]. I., 2008/2, 284. https://www.amazon.co.jp/dp/4563024376 [6] Ramon van Handel. Lecture 3: Sanov s theorem. Stochas Analytic Seminar Princeton University, Blog Article, 0 October 203. https://blogs.princeton.edu/sas/203/0/0/lecture-3-sanovs-theorem/ [7] Vasicek, Oldrich Alfonso. A conditional law of large numbers. Ann. Probab., Volume 8, Number 980, 42 47. http://projecteuclid.org/euclid.aop/76994830 Sanov 3.

3 Kullback-Leibler Stirling Kullback-Leibler.. q i q i 0, r i= q i =. i q i. q,..., q r. n, i k i k i. i k i /n n., n i n. n k i /n q i,. 2 Boltzmann. q,..., q n, k /n,..., k r /n, n. n i k i, r i= k i = n k! k r! qk qr kr, 0. p i 0, r i= p i =. n i k i /n p i, p i..2 n p i. n, k i log n k i = np i + Olog n = np i + O n,. logk i /n = log p i + Olog n/n 2. Stirling r i= k i = n log = n log n n + Olog n = k i log n i= k i + Olog n, log k i! = k i log k i k i + Olog k i = k i log k i k i + Olog n, log q k i i = k i log q i. 2 Taylor log + x = x x 2 /2 + x 3 /3 x 4 /4 +. i=

4. Kullback-Leibler k i. : log k! k r! qk q k r r = n = n = n k i log k i n n log q i + Olog n p i log p i log q i + Olog n i= i= i= p i log p i q i + Olog n. 4...3 Kullback-Leibler D[p q] = i= p i log p i q i : log k! k r! qk q k r r = nd[p q] + Olog n. p i. D[p q] Kullback-Leibler Kullback-Leibler divergence. Kullback-Leibler S[p q] = D[p q] = i= p i log p i q i. n q i p i n. : n p i = exp nd[p q] + Olog n. D[p q] > 0, n Olog n nd[p q], exp nd[p q]..4 Kullback-Leibler Kullback-Leibler D[p q] p = p,..., p r fx = x logx/q = xlog x log q x > 0. f x = log x log q +, f x = /x > 0 fx. fx x = q

.5. 5 x. fx fq + f qx = x q x = q. D[p q] = i= p i log p i q i p i q i = 0, i= p i = q i i =,..., r. Kullback-Leibler 0, 0 p i q i., p i q i, D[p q] > 0, p i n n 0., n k i /n q i.. Kullback-Leibler q i p i. n Kullback- Leibler n. Kullback-Leibler, Kullback-Leibler., p i, Kullback-Leibler. Kullback-Leibler. n, Kullback-Leibler. Kullback-Leibler, p i.. n.. B A., A B, B A.., n,...5 r = 2, q = q, q 2 = q.., p = p, p 2 = p, Kullback-Leibler : D[p q] = p log p q + p log p q. p = q 0, p q. Kullback- Leibler q p. p n exp nd[p q] + Olog n., p, D[p q] p

6. Kullback-Leibler n 0.. n. n a.?, n q. 0 a < q, a n., 0 a < q, a, n q. q < a., n, a 0. a p. Kullback-Leibler. p a D[p q] p = a., n p = a. q < a, a, n a. : { D[q q] = 0 0 a q, n n log k/n a n q k q n k = inf D[p q] = k p a, n k k/n a q k q n k = exp D[a q] q < a. n inf D[p q] + Olog n. p a a. n D[p q]..6 max-plus Laplace a, b a, b max{a, b}, a, b a + b semiring, semifiled max-plus. max-plus tropical mathematics.,.., max 0, +,. log., : n n logena + e nb = max{a, b}, n n logena e nb = a + b.

7.. a b, b a 0, e nb a, n logean + e nb = n log e na + e nb a = a + n log + e nb a a n.. : n n log expna i + Olog n = max{a,..., a r }. i= expna i + Olog n /n n a i., expna i + Olog n = expn max{a,..., a r } + Olog n i= n. Laplace. : β exp nfx + Olog n dx = exp n inf fx + Olog n α x β α fx x = x 0, f x 0 > 0, β e nfx gx dx = e nfx0 2π gx 0 + o nf x 0 α Laplace. n. n. 2 Boltzmann Kullback-Leibler, Boltzmann. 2. q = q,..., q r. n i i k i /n p i, p = p,..., p r. n p = exp nd[p q] + Olog n n. : p = p,..., p r f ν,i p i = c ν ν =, 2,..., s i=

8 2. Boltzmann., R r,,...,, f ν,,..., f ν,r ν =,..., s. p, n?, i E i E i p i = U i=, U, n., i, E i, E i p i = U i=, U, n. 2 s =. s >. 2.2 Boltzmann n, r i= p i = Kullback-Leibler K[p q] = r i= p i logp i /q i p = p,..., p r. Lagrange. Kullback- Leibler p. L = p i log p s i + λ p i + β ν f ν,i p i c ν q i= i i= ν= i=. λ, β ν. p i L 0 0 = L λ = 0 = L β ν = p i, i= f ν,i p i c ν ν =,..., s, 2 i= 0 = L p i = log p i q i + λ + s β ν f ν,i i =,..., r 3 ν=. 3, s p i = exp λ β ν f ν,i q i ν=

2.3. 9, Z := e λ = i= e s ν= β νf ν,i q i, p i = Z e s ν= β νf ν,i q i 4. Z. p i Z = e λ β ν. β ν 4 2. exp s ν= β νf ν,i Boltsmann. Boltzmann q i p i. p i Gibbs., n p = p,..., p r. n p i Gibbs. s =, f,i = E i, c = U, β = β, p i = Z e βe i q i, Z = e βe i q i, i= log Z β = Z E i e βe i q i = U. i= q i Boltzmann. Gibbs S[p q] = K[p q] = r i= p i logp i /q i : logp i /q i = s ν= β νf ν,i log Z, r i= p i =, r i= f ν,ip i = c ν S[p q] = s β ν c ν + log Z. ν= s =, f,i = E i, c = U, β = β S[p q] = βu + log Z., Boltzmann,. 2.3 qx. n px /n n S[p q] = K[p q] = px log px qx dx. px : f ν xpx dx = c ν ν =,..., s.

0 2. Boltzmann, K[p q] px : px = s Z e ν= β νf ν x qx, Z = e s ν= β νf ν x qx dx, log Z = f ν xe s ν= β νf ν x qx dx = c ν. β ν Z... k + + k r = n, β i = log q i p k,...,k r = q k,...,k r = k! k r! qk q k r r k! k r! r n, Z = r = e i= β ik i q k,...,k r, Z r n px = Z e x µ2 /2σ 2, Z = 2πσ 2. Gamma x > 0 px = e x/τ x α τ α Γα = e x/τ+α log x Z, Z = τ α Γα. Beta px = x > 0 x α Bα, β + x = eα log x α+β log+x, Z = Bα, β. α+β Z t Cauchy px = π + x Z 2 = e log+x2, Z = π. Beta 0 < x < px = xα x β Bα, β = eα log x+β log x Z, Z = Bα, β. Poisson p k = e λ λ k k! = e log λk q k, q k = e Z k!, Z = eλ+.

2.4. 2.4 s =, f x = x 2, c =, qx = 3., n x 2 x 2 + + x 2 n/n x 2 + + x 2 n = n, n x. px = Z e βx2, Z = R e βx2 dx = πβ /2, log Z β = 2β =. β = /2, Z = 2π, px = e x2 /2 / 2π. n. R n 2 n n n. : n n S n fx µ n dx = R fx e x2 /2 2π dx. n S n n n, µ n, fx x x x,..., x n. 4.,. 3 Sanov Sanov. Stirling. [6].. 3. Sanov {, 2,..., r} P : P = { p = p,..., p r R r p,..., p r 0, p + + p r = }. P r. q = q,..., q r P. X, X 2,... {, 2,..., r}, q = q,..., q r. q = q,..., q r. 3 qx = qx.,. 4 Maxwell-Boltzmann. http://www.math.tohoku.ac.jp/~kuroki/latex/206050stirlingformula.pdf

2 3. Sanov A #A, A P A. i =,..., r X,..., X n i k i P #{ k =, 2,..., n X k = i } = k i for each i =,..., r = k! k r! qk qr kr. k,..., k r k i = 0,,..., n, k + + k r = n. k,..., k r k /n,..., k r /n P n P : { k P n = n,..., k } r k i = 0,,..., n, k + + k r = n. n P n n + r. #P n n + r. X,..., X n P n P n, P n. P n P n. p, q P 2 D[p q] : D[p q] = i= p i log p i q i. p i q i 0 0 log 0 = 0, log 0 =. D[p q] Kullback-Leibler. 3. Sanov. : A P inf n 2 A P 5 sup n n log P P n A inf p A D[p q]. n log P P n A inf p A D[p q]. 3 P A A n n log P P n A = inf D[p q]. p A n Kullback-Leibler D[p q] inf. 3.2. r = 2, q = q, q 2 = q, p = p, p 2 = p, D[p q] = p log p q + p log p q. 5 P A., A.

3.2. Sanov 3 p = q 0, p q. 0 a < b, A = a, b. P P n A = n q k q n k k n n log α<k/n<β a<k/n<b n q k q n k = inf k D[p q] = a<p<b. Sanov. D[b q] b < q, D[q q] = 0 a q b, D[a q] q < a 3.2 Sanov Stirling. 3.3. k, l. l k l k. l! k! kl k. l! k! = k + k + 2 l kl k. l! k! = l + l + 2 k = k l k. k k l Sanov. Stirling. 3.4. p P n n + r e nd[p q] P P n = p e nd[p q].. p = p,..., p r = k /n,..., k r /n P n, nd[p q] = e nd[p q] = P P n = p = k i log p i + i= p k p kr r k i log q i, i= q k q k r r, k! k r! qk q kr r.

4 3. Sanov, : n + r k!... k r! pk p k r r... l i = 0,,..., n, l + + l r = n., p i = k i /n l!... l r! pl p lr r., 3.3, k!... k r! pk p kr r = l! k! lr! k r! kk l k k r l r r k l k k l r k r r k k l k k r l r r =., = l + +l r=n n + r. l!... l r! pl p lr r n + r k!... k r! pk p kr r 3.3 Sanov 3... A {, 2,..., r} P. n= P n = P Q r {, 2,..., r} P. A P p n P n A. P P n A = p P n A D[p n q] = inf D[p q] n p A P P n = p P P n = p n 3.4.. n log P P n A D[p n q] r logn + n inf n n log P P n A inf p A D[p q]. n + r e nd[p n q].. 2. A {, 2,..., r} P. P P n A = P P n = p e nd[p q] n + r e n inf p A D[p q]. p P n A p P n A

3.3. Sanov 5 3.4.. n log P P n A inf D[p q] + r logn + p A n sup n n log P P n A inf p A D[p q]. 2. 3. A B, B C, A C. B A C inf p B D[p q] inf p A D[p q] inf p C D[p q]. C B D[p q] p, inf p C D[p q] = inf p B D[p q]. inf p B D[p q] = inf p A D[p q] = inf p C D[p q].,2 3. 3.. 3.5. Sirling.. : q i 0, q + + q r = k! k r! qk q k r r k i Z 0, k + + k r = n.., k i,. 2 : k i Z 0, k + + k r = n, k i /n = q i, l! l r! ql q l r r k! q r! qk q k r r l i Z 0, l + + l r = n. : l! k! kl k k, l Z 0. k, l. 2. Sanov.

6 4. 4 4. KL n,. q i 0, r i= q i =, a, b i r i= b i = a, p i = b i a = Nb i Na. N Na log Na! Nb! Nb r! qnb qr Nbr = i= p i log p i q i. Kullback-Leibler. /Na Na! N Nb! Nb r! qnb q Nb r r = p /q p pr /q r pr... N Na log Na! Nb! Nb r! qnb q Nb r r = Na Nb i log k log k + Nb i log q i Na k= i= k= i= = Na log k Nb i Na Na log k Na + Nb i log q i k= = Na Na k= 0 log k Na log x dx = [x log x x] 0 = i= p i log p i q i. i= i= i= pi i= 0 k= Na Nb i k= log x dx + i= log k Na + p i log q i i= p i log q i i= [x log x x] p i 0 + p i log q i 2 Na logna r i= Nb i logna = 0.. : N Na p i = b i /a /Na i= p /q p pr /q r p r.