Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

Similar documents
03J_sources.key

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A

36 th IChO : - 3 ( ) , G O O D L U C K final 1

H1-H4

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合

RN201602_cs5_0122.indd

2_R_新技術説明会(佐々木)

RAA-05(201604)MRA対応製品ver6

元素分析

Basic Welding 1. welding processes and equipments

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =


PowerPoint プレゼンテーション

物理化学I-第12回(13).ppt

スライド 1

hv (%) (nm) 2


positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

untitled

untitled

2 Zn Zn + MnO 2 () 2 O 2 2 H2 O + O 2 O 2 MnO 2 2 KClO 3 2 KCl + 3 O 2 O 3 or 3 O 2 2 O 3 N 2 () NH 4 NO 2 2 O + N 2 ( ) MnO HCl Mn O + CaCl(ClO

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4


希少金属資源 -新たな段階に入った資源問題-

CPT2L1Z1J154.indd


01-表紙.ai

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード]

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40,

PDF


登録プログラムの名称 登録番号 初回登録日 最新交付日 登録された事業所の名称及び所在地 問い合わせ窓口 JCSS JCSS 年 12 月 1 日 2018 年 5 月 23 日公益社団法人日本アイソトープ協会川崎技術開発センター 神奈川県川崎市川崎区殿町三丁目


19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

リサイクルデータブック2016

リサイクルデータブック2017

CRA3689A

SIサイエンス株式会社 stable isotope metal

案内最終.indd


d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

CoPt 17

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

案内(最終2).indd

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

K 吸収端 XAFS 用標準試料 Ti Ti-foil 金属箔 縦 1.3 cm 横 1.3 cm 厚さ 3 µm TiO2 anatase ペレット φ 7 mm 厚さ 0.5 mm 作製日 TiO2 rutile ペレット φ 7 mm 厚さ 0.5 mm 作製日 2017.

X線分析の進歩36 別刷

untitled

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

理工学部無機化学ノート

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

000..\..

JAJP

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

untitled

Microsoft Word - Jmol リソースの使い方-2.doc

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

chno01.dvi

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

0406_total.pdf

日本電子News vol.44, 2012

The Physics of Atmospheres CAPTER :

Microsoft PowerPoint - 図材料科学基礎Ⅰ14_基礎編1.pptx

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

4 1 Ampère 4 2 Ampere 31

untitled

Z: Q: R: C:

コロイド化学と界面化学

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

SPring8菅野印刷.PDF

Agilent 7900 ICP-MS 1 1 Ed McCurdy 2 1 Agilent Technologies, Japan 2 Agilent Technologies, UK

c 2009 i

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

PowerPoint Presentation

C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid

05秋案内.indd

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

chap1.dvi

リサイクルデータブック2015

Microsoft Word - 11問題表紙(選択).docx

30

CuSO POINT S 2 Ni Sn Hg Cu Ag Zn 2 Cu Cu Cu OH 2 Cu NH CuSO 4 5H 2O Ag Ag 2O Ag 2CrO4 Zn ZnS ZnO 2+ Fe Fe OH 2 Fe 3+ Fe OH 3 2 Cu Cu OH 2 Ag Ag

2 A B A B A A B Ea 1 51 Ea 1 A B A B B A B B A Ea 2 A B Ea 1 ( )k 1 Ea 1 Ea 2 Arrhenius 53 Ea R T k 1 = χe 1 Ea RT k 2 = χe 2 Ea RT 53 A B A B

Ni PLD GdBa 2 Cu 3 O 7 x 2 6

( ) ,

新規な金属抽出剤

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

熊本県数学問題正解

2

Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harm


Transcription:

perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity atom interstitial impurity atom line defect dislocation planar defect surface grain boundary interface magnetic domain bulk defect void crack mechanical electrical magnetic optical chemical microstructure semiconductor hole elecronic defect structural defect

N n n E V F E V F Z Z E remove = Zε b ε b E surface Z ε b E F V = E remove E surface Zε b sublimation E E sub = zε b

E F V E sub fcc, face centered cubic E V F E V F E sub T m E 9k V F B T m k B N av R k B = R N av = 1.41 10 J/K ev electron-volt J 1 ev =1.60 10 19 J Table 1. Comparison of calculated and experimental E F V with E sub in fcc metals. Material E sub (ev) calculated E F (ev) experimental E F V (ev) Al 1).04 0.75 Cu*.54 1.8 1. Ag*.85 0.97 1.1 Au*.9 1.0 0.9 Ni* 4.45 1.6 1.6 Pd*.91 1.44 1.4 Pt* 5.77 1.4 1.5 1) R. O. Simmons and R. W. Ballufi, Physical Review,, 570(1960) *M. S. Daw, S. M. Foiles, M. I. Baskes, The embedded atom method: a review of theory and applications, Material Science Report, 9, 59(199)

N n H = ne F n N N! W = ( N n)! n! S mix = kblnw = k B [ln N! ln(n n)! ln n!] H, T S, G S vib G = H T S mix Tn S vib = ne F kbt[ln N! ln(n n)! ln n!] Tn S vib H = ne F H n -T S mix -Tn S vib G= H T S G N, n >> 1 ln N! N ln N N ln( N n)! ( N n) ln( N n) ( N n) ln n! n ln n n G ne F k B T[N ln N ( N n)ln( N n) n ln n] Tn S vib G G n = 0 Τ S

G n E F k B T ln n N n T S vib = 0 C V = n N N >> n C V = n N n N n = exp S vib exp E F k B T k B exp( S vib / k B ) A C V = A V exp E F k B T A =1 ~ 10 σ Ω W = σω E * F = EF W = EF σω C V (σ) = Aexp E * F = Aexp E σω F = C k B T k B T V exp σω k B T σ C V C V σω = CV ( σ ) CV = CV exp 1 kbt σω << k B T σω σω exp + kbt 1 kbt C V σω C k T B V

- C S C S = A S exp E S F k B T E S F A E S F E = E + E + E F V F strain int E V F E int solute atom - Hume Rothery Rules solvent atom 15 eletronegativity valence E int

R R+ R R R + R R R + R p σ r σ θ σ φ (R + R) σ r = p σ r θ = σ φ = p (R+ R) r R+ R 1 1+ ν ε r = { σ r ν s ( σθ + σφ )} = σ r E E ε φ = ε θ m 1 ν = 1 { σφ ν ( σθ + σ r )} = + σ E E r E ν p r 1+ ν = E σ 1+ ν r + 4E σ r 4πr dr = 4π (R + R) 1+ν 6 R + R E (1+ ν) p 4π(R + R) = E dr R + R r 4 ε = R R = 1+ ν E p (1+ ν) p 4π(R + R) = E = Eε 4πR 1+ ν (1+ε) E G = (1 + ν ) ε << 1 GΩε

Al R RCu Al = 0.14 nm E Al = 70 GPa ν Al = 0.5 Cu = 0.18 nm E Cu =10 GPa ν Cu = 0.4 Cu Al Cu Al R = R Cu E = E Cu ν = ν Cu R = R Al RCu ε = R R = 0.105 = 0.050 10 19 J = R s = R Al E s = E Al ν s = ν Al R = R Cu R 19 ε = 0.117 = 0.16 10 J = 0.10 ev 0.01eV Al Al Cu Cu Al Al Cu

E int A B AA BB AB E AA E BB E AB AB 1 = E AB ( EAA + E BB ) AA BB AB = 0 AB covalent bond + + A B AB(covalent) A B A B AB AB A B HF HI E = 561 kj/mol = 95 kj/mol HF E HI H H I I 1 ( E HH E + II ) = 9 kj/mol HI H I HF H H I I H F Pauling x AB = 96.5( xa xb ) (kj/mol) AB E 1 AB = ( EAA + EBB) + 96.5( xa xb ) kj/mol ev E 1 AB = ( EAA + EBB) + 0.0104( xa xb ) ev Table Pauling AB

AB intermetallic compound Table. Electronegativity defined by Pauling. 1 4 5 6 7 8 9 10 11 1 1 14 15 16 17 18 IA IIA IIIA IVA VA VIA VIIA VIII IB IIB IIIB IVB VB VIB VIIB 0 H He.1 Li Be B C N F O Ne 1 1.5.5 4.5 Na Mg Al Si P Cl S Ar 0.9 1. 1.5 1.8.1.5 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Br Se Kr 0.8 1 1. 1.5 1.6 1.6 1.5 1.8 1.8 1.8 1.9 1.6 1.6 1.8.8.4 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb I Te Xe 0.8 1 1. 1.4 1.6 1.8 1.9... 1.9 1.7 1.7 1.8 1.9.5.1 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi At Po Rn 0.7 0.9 1.1 1. 1.5 1.7 1.9....4 1.9 1.8 1.8 1.9. electronic phase - valence e/a e/a valence electrons per atom A B Z A Z B f A f B AB e / a = Z f + Z A A B f B A Cu Cu IB Z Cu = 1 Zn IIB Z Zn = f Zn Zn Cu-Zn e / a = 1+ f Zn

Cu-Zn e / a < 1. 4 fcc Cu-Zn 1.4 < e / a < 1. 6 1.6 < e / a < 1. 75 bcc CuZn Cu 5 Zn 8 1.75 < e / a CuZn 5 Cu Mole fraction of Zn Zn Mott Jones e/a Table 1 IB Cu Ag Au electronic phase

Table. Valence electrons per atom for α, β and γ-phases. Alloy Maximum e/a Minimum e/a Range of e/a Cu-Zn 1.84 1.48 1.58-1.66 Cu-Al 1.408 1.48 1.6-1.77 Cu-Sn 1.70 1.49 1.67-1.67 Cu-Ga 1.406 Cu-Si 1.40 Cu-Ge 1.60 Ag-Cd 1.45 1.50 1.59-1.6 Ag-Zn 1.78 1.58-1.66 Ag-Hg 1.5 Ag-In 1.40 Ag-Al 1.408 Ag-Ga 1.80 Ag-Sn 1.66 Au-Zn 1.48 Au-Cd 1.49 Au-Al 1.7 N. F. Mott and H. Jones, The theory of the properties of metals and alloys, (Dover, New York, 1958), p.17 self-interstitial atom fcc fcc R a a = R R i a R R i = = ( 1) R 0. 414R = GΩ + ε (1 ε ) R Ri R ( 1) R ε = = = R ( 1) R i R i a R

= 4 GΩ (1 + ) Al = 9.1 10 19 J = 5.7eV 0.75eV C SIA C SIA E exp kbt strain C SIA 10 96 C SIA 10 1 Frenkel pair radiation damage fcc R i R 41 H C N O - Fe-C C 91 bcc body centered cubic ferritic phase 91 194 fcc austenitic phase 155 bcc δ

1600 δ 1400 155 δ+l δ+γ 19 149 L Temperature ( o C) 100 1000 91 γ γ+l.14 114 γ+fe C 4. L+Fe C 800 α 600 α+γ 0.0 0.76 77 α+fe C 400 0 1 4 5 6 6.7 Carbon (wt%) Fe-Fe C Fe Fe C bcc 77 0.0wt% C Fe Fe C cementite C 77 C fcc 77 0.76wt% C 1147.14wt% C bcc C 149 0.09wt% C bcc fcc bcc O T R a 4R a = O R oct

a R R oct = = 1 R 0. 155R Fe R = 0.14 nm R oct = 0.019 nm C R C = 0.07 nm R oct.5 T R tet R oct 1.9 R tet = 0.06 nm C O T bcc bcc C z Fe 4 Fe y <100> z c c = ( R+ R C ) a (0.14 + 0.07) 0.87 = 0.105 nm C Fe 0.05nm z x

ε z c = a = 0.66 <100> x y x y z ε x ε y ε z ε x = ε y C xy C Fe Fe a 4 a = R R = 1 R + 6 ε x = ε y = a C R C a / = 1+ 6 4 1+R C R = 0.0 z x y 1/10 -Fe C fcc C quench C martensite C c z a x y body-centered tetragonal cubic, bct C C C 0.5wt% C x y z bct c Zener

C <100> V p V V/V p( V / V ) = V K p V p = K V E V = (1 ν ) V K = E /{ (1 ν )} EV V = V 6(1 ν ) V V = a V V ε x + ε y + ε z = 0.66 0.0 = 0.0

E Fe = 10 GPa ν Fe = 0.9 = W 1. 10 0 J = 0.75 ev C C C C E exp kbt strain 7 C C = 0.0017 at% =0.006 wt% Fe-C 7 C 0.0 wt% C 0.6 ev C C x10 9 wt% C C graphite Fe Fe C cementite C C - C fcc - O T a R R oct = = ( 1) R 0. 414R R oct = 0.051 nm ε = 4 Ω = RC R R oct oct πr oct = 0.40 = GΩε (1 + ε ) = 4.1 10 0 J = 0.6 ev C C C C C E exp kbt strain 7 C C = 5 at% = 1.1 wt% 1147 C C = 1 at% =.9 wt% C C = 0.76 wt% C C =. wt%

T 1/ C O T fcc fcc Al Cu 5 A-B B f a f w f a f w A M A B M B N av -Fe -Fe -Fe 0.65nm