輻射の量子論、選択則、禁制線、許容線

Similar documents
4/15 No.

02-量子力学の復習

atomic line spectrum emission line absorption line atom proton neutron nuclei electron Z atomic number A mass number neutral atom ion energy

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Mott散乱によるParity対称性の破れを検証

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

観測量と物理量の関係.pptx

PDF

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Radiative Processes in Astrophysics

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

QMI_10.dvi


スライド 1

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

30

QMII_10.dvi

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

総研大恒星進化概要.dvi

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

An automated method to generate the collisional radiative model of multiple charged ions SASAKI Akira, NISHIHARA Katunobu, MURATA Masaki Quan


( )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

IA

EOS and Collision Dynamics Energy of nuclear matter E(ρ, δ)/a = E(ρ, )/A + E sym (ρ)δ 2 δ = (ρ n ρ p )/ρ 1 6 E(ρ, ) (Symmetric matter ρ n = ρ p ) E sy

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

05Mar2001_tune.dvi


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


Drift Chamber

TOP URL 1

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

X u

高知工科大学電子 光システム工学科

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

nenmatsu5c19_web.key

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

( ) ,

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

TOP URL 1

untitled

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

薄膜結晶成長の基礎2.dvi

B

1 2 2 (Dielecrics) Maxwell ( ) D H

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

Microsoft Word - 11問題表紙(選択).docx

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

物理化学I-第12回(13).ppt

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

中央大学セミナー.ppt

2 X-ray 6 gamma-ray :38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

成長機構

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

master.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

4 19

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d


note4.dvi

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

スライド タイトルなし

放射線化学, 92, 39 (2011)

Transcription:

Radiative Processes in Astrophysics 005/8/1 http://wwwxray.ess.sci.osaka- u.ac.jp/~hayasida

Semi-Classical Theory of Radiative Transitions r r 1/ 4 H = ( cp ea) m c + + eφ nonrelativistic limit, Coulomb gauge r p e r r e A H = A p+ m mc mc 3 epa/ mc 3 η ( n pha0 ) >> 1 ( ea/mc 0 1 0 1 H = H + H H H H 0 φ = E φ k k k ψ () t = a () t φ exp( ie t/ h) k k k

Transition Probability w 4π = H h T ( ω ) 1 fi fi fi T 1 1 1 iωt' fi ωfi π 0 fi H ( ) ( ) H ( t') e dt' E 1 * 1 3 f Ei H fi () t φf H φid x, ωfi h ikr Art (, ) = Ate ( )... ( ) 4 e j ω r π rr fi ik wfi = f e l j i mc ω fi r r r l l r r r r = c( φ + E) = ce ω r j( ω) = ( ω) ct

Dipole Approximation r φ e I d x r r * ik 3 f jφi r r r ik r 1 r r e = 1 + ik + ( ik ) +... r d e j j 4π r r wfi = ( l d) ( ) fi j ω fi h c 4π wfi = d ( ) fi j ω fi h c

Einstein Coefficients and Oscillator Strength w lu = B J lu ν 4 3π B = d j( ω ), B B 3ch lu ul ul ul= lu 4 3 64πνul dul Aul = 3 3ch Oscillator Strength f ul 4π e classical B = f = B f hν mc lu lu lu lu ul lu

Selection Rules Dipole 0 (forbidden) (permitted) (selection rule) l= 1, m=0, 1 S=0, L=0, 1, J=0, 1 (except J=0 to J=0) Laporte's rule ( li ) 3 φ φ parity r Qd e r d x r r fi f j i j j j One-electron jump rule 1 orbital orbital

Density dependence of transition in ionized gas radiative de-excitation + collisional de-excitation = collisional excitation NA + NNσ = NNσ N N N N N 1 e 1 1 e 1 ( N N, N e 1 1 1 1 e 1 1 1 1 1 1 1 1 1 σ A = + 1 σ N σ A / σ ( e crit σ N e crit = + 1 σ Ne j = N A E = N A E σ N + 1 = XN A ( N =XNe 1 e crit 1 1 1 1 1 1 e 1 1 σ 1 Ne 1 N << N j = XN E e e crit 1 e 1 1 N >> N j = XN A E / σ e e crit 1 e 1 1 1 1 σ σ 1 E σ σ 1 1 N N e crit e + 1 1 1

Forbidden Transition N e crit A / σ 1 1 ( N << N j N e e crit 1 e N >> N j N e e crit 1 e j 1 N e N e-crit N e-crit

1cm Radio Wave

[OIII] Interpreting Astronomical Spectra by Emerson

Broad Line ( 1000-10000km/s Permitted only Density High N>10^8 /cc Narrow Line(1000km/s Permitted Forbidden Low Density N~10^3-10^6/cc Active Galactic Nuclei, by Blandford, Netzer, &Woltjer, Springer-Verlag

Emission from Thin Thermal Plasma neniv(=emission Measure) V Recombination (radiative, dielectric)

Ionization Equilibrium 1 n q i e i = q n ( q + α ) n + α n i 1 i 1 i i i i+ 1 i+ 1 : ionization rate coefficient α : recombination rate coefficient i dn dt Radiative Recombination + i + i 1 A + e A + h Dielectic Recombination + i + i 1 A + e A e ( =excited states) ( =excited states) + ν ' + i 1 + i 1 A e A h ν

The Saha Equation 0 + 0 ( χi + ( 1/) mv e ) + dn0 () v g = exp N0 g0 kt χ :ionization potential I dn N ( v) : number of ions in the ground level with free electrons (v~v+dv) : number of atoms int he ground level 3 dxdydzdp + xdpydpz 8π mvdv e g=g 0 ge, ge = = 3 3 h Nh Integrate over all v, + 3/ 3 3/ 0 e 8π + e 0 / I kt kt χ x π + e 0 χi / kt = e e x ds e 3 0 N0 h g0 m = e h g0 N N m g m kt g e The number of atoms or (1st ionization stage) ions in any state, using the Boltzmann laws + N0 g N 0 g 0 0 =, =, UT ( ) = partition_function = giexp( Ei / kt) + + N U( T) N U ( T) Saha's equation For j,j+1th ionization stages + + 3/ N Ne U ( T) π mekt = N U( T) h χ / kt N N U ( T) π mkt = j+ 1 e j+ 1 e N j U j( T) h e I 3/ j, j 1/ kt e χ +

W49B ASCA SIS Fujimoto et al.,1995

Einstein FPCS Cyg- Loop Vedder et al., 1986, ApJ307,p.69

Line profiles FeXXVI (H-like) 1s - p S 1/ - P 3/ 5a 6.977 kev Resonance line S 1/ - P 1/ 5b 6.956 kev Resonance line FeXXV (He-like) 1s - 1sp 1 S - 1 P w 6.70 kev Resonance line 1 S - 3 P x 6.683 kev Intercombination line 1 S - 3 P 1 y 6.669 kev Intercombination line 1s - 1ss 1 S - 3 S z 6.638 kev Forbidden line FeXXIV (Li-like) 1s p - 1sp P 3/ - D 5/ j 6.645 kev Satellite line Highly Ionized Iron P 1/ - D 3/ k 6.655 kev Satellite line P - S 1/ m 6.679 kev Satellite line 1s s - 1sps S 1/ - 1 P 3/ q 6.664 kev Inner-shell excitation S 1/ - 1 P 1/ r 6.653 kev Inner-shell excitation S 1/ - 3 P 1/ t 6.677 kev Inner-shell excitation http://www-x.phys.metro-u.ac.jp/~furusho/emissionline/line.html

Energy level diagram of H-like, He-like, and Li-like ions. http://wwwx.phys.metrou.ac.jp/~furusho/ emissionline/line. html

MEKA model

X-ray Spectrum from Plasma High resolution spectrum Stellar Coronae Capella observed with Chandra LETG Mewe et al., 001, A&A,368,p.888

Photo-Ionized Plasma ( ξ L/nR ) AGN Broad Line Region X

Ionization Structure Kallman & Mcray,198, ApJ,,50,p.63