numb.dvi

Similar documents
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


all.dvi

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

untitled

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

A

Microsoft Word - 信号処理3.doc

Part () () Γ Part ,

(Jacobi Gauss-Seidel SOR ) 1. (Theory of Iteration Method) Jacobi Gauss-Seidel SOR 2. Jacobi (Jacobi s Iteration Method) Jacobi 3. Gauss-Seide

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

all.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

第5章 偏微分方程式の境界値問題

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

応用数学III-4.ppt

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

I , : ~/math/functional-analysis/functional-analysis-1.tex

linearal1.dvi

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.


() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

untitled


1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

第1章 微分方程式と近似解法

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

koji07-01.dvi

untitled

Chap9.dvi

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)


x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s


量子力学 問題

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

弾性定数の対称性について


ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

December 28, 2018

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

³ÎΨÏÀ


TOP URL 1

( ) a C n ( R n ) R a R C n. a C n (or R n ) a 0 2. α C( R ) a C n αa = α a 3. a, b C n a + b a + b ( ) p 8..2 (p ) a = [a a n ] T C n p n a


ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

2000年度『数学展望 I』講義録

all.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

数値計算:有限要素法

プログラム

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (


i

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

Untitled

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

Z: Q: R: C:

6.1 (P (P (P (P (P (P (, P (, P.

TOP URL 1

微分方程式の解を見る

IV (2)

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 I

第10章 アイソパラメトリック要素

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

i


n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

newmain.dvi

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1

Gmech08.dvi

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

Transcription:

11 Poisson kanenko@mbkniftycom alexeikanenko@docomonejp http://wwwkanenkocom/

, u = f, ( u = u+f u t, u = f t ) 1 D R 2 L 2 (D) := {f(x,y) f(x,y) 2 dxdy < )} D D f,g L 2 (D) (f,g) := f(x,y)g(x,y)dxdy (L 2 ) D f := (f,f) f L 2 ( ) L 2 (D) ( ) L 2 (D), l 2 = {(x 1,x 2,);x 2 1 +x2 2 + < }

Poisson - 1 (numb-1f) 2 D Dirichlet, ϕ j = λ j ϕ j, (D ), ϕ j D = 0 λ j ϕ j,,, {ϕ j } j=1 ie (ϕ i,ϕ j ) = δ ij, f(x,y) = c j ϕ j (x,y), c j = (f,ϕ j ) := f(x,y)ϕ j (x,y)dxdy j=1 D Fourier Fourier [0,1] [0,1] Poisson ( [a 0,a 1 ] [b 0,b 1 ] OK) (sinmπxsinnπy) = (m 2 +n 2 )π 2 sinmπxsinnπy, {sinmπxsinnπy} m,n=1, (m2 +n 2 )π 2 Q o 2sinmπxcosnπx 1 1 sin 2 1 cos2mπx mπxdx = dx = 1 0 0 2 2 1 { 2sinmπx} m=1

u(x,y) = m,n=1 u mn sinmπxsinnπy, f(x,y)= f mn sinmπxsinnπy, f mn = 4 m,n=1 D 3 f(x,y)sinmπxsinnπydxdy (m 2 +n 2 )π 2 u mn sinmπxsinnπy = f mn sinmπxsinnπy m,n=1 u mn = u(x,y) = m,n=1 f mn (m 2 +n 2 )π 2 m,n=1 f mn (m 2 +n 2 )π 2 sinmπxsinnπy,, 1 1, f(x,y)sinmπxsinnπydxdy 0 0

Poisson - 2 (numb-2f) [a 0,a 1 ] [b 0,b 1 ] Poisson ( 2 u x 2 + 2 u ) y 2 = f u(x+h x,y)+u(x h x,y) 2u(x,y) h 2 x u(x,y +h y)+u(x,y h y ) 2u(x,y) = f(x,y) h 2 y h x = a 1 a 0 M, h y = b 1 b 0 N, f ij = f(a 0 +ih x,b 0 +jh y ), u ij = u(a 0 +ih x,b 0 +jh y ), 2 + 2 1 0 1 0 0 h 2 x h 2 y h 2 x h 2 u y 11 f 11 1 2 + 2 1 h 2 x h 2 x h 2 y h 2 x u 21 f 21 0 1 h u M 1,1 f M 1,1 2 y 0 0 u 12 = f 12 1 h 2 y 0 u M 1,2 f M 1,2 1 h 2 x 0 0 1 0 1 2 + 2 h 2 y h 2 x h 2 x h 2 u y M 1,N 1 f M 1,N 1 4

Poisson - 3 (numb-3f) Poisson u = f D L 2 (D) {ϕ n } n=1 ( u, ϕ j ) = ( u,ϕ j ) = (f,ϕ j ) (, (f,g) = f(x,y)g(x,y)dxdy L 2 D ) u = u i ϕ i i=1 ( ϕ i, ϕ j )u i = f j, j = 1,2, i=1 u i Galerkin ( ϕ i ) {ϕ i } N i=1 u N ϕ i (Finite Element Method, FEM) A = (( ϕ i, ϕ j )) N i,j=1 5

D 6 1 (ie x,y 1 ) P1 1 L 2 D D = M i=1 T i P 1,,P N P i T i1,,t imi P i1,,p imi 1 ϕ i i 1 P i1,,p imi 0 0 i 1 P i m i T i m P i i T Pi 1 i 1 T i 2 Pi 2 P i m i P i 1 P i P i 2 ϕ i ( ) 0 A ( ϕ i, ϕ j )

7 (numb-3f ) 9 10 11 12 5 6 7 8 ϕ 6 (x,y) 1 2 3 4 Delaunay (FreeFEM ) FreeFEM ~kanenko/numcal/freefem examples, hogeedp ~kanenko/numcal/freefem/freefem++ hogeedp

(Conjugate gradient method, CG ) Ax = b f(x) := (Ax b,ax b) f (x), f(x+h) = (Ax+h b,ax+h b) = (Ax b,ax b)+(h,ax b)+(ax b,h)+o( h 2 ) = f(x)+2(ax b,h)+o( h 2 ), h ie Ax b = 0, f ( ), f f, (Ax,x) ( ), 8

9 0 x 0 1 r 0 = b Ax 0 p 0 = r 0 ( ) k = 0,1,2,,N 1 k -1 α k = (r k,r k ) (Ap k,p k ), x k+1 = x k +α k p k, r k+1 = r k α k Ap k (= b Ax k+1 ) r k+1 ε b k -2 β k = (r k+1,r k+1 ), p (r k,r k ) k+1 = r k+1 +β k p k 0 r 0,,r j = p 0,,p j, j = 0,,k r k+1 = 0 x k+1 r j r N = 0 A ( ), r k+1

10 j < k (r k,r j ) = 0, (Ap k,p j ) = 0 (p k,r k ) = (r k,r k ) = (p k,r k 1 ) (r k,p j ) = 0 (j < k), (p k,r j r j 1 ) = 0 (j k), k k = 0 k, k+1, α k (r k+1,r k ) = (r k α k Ap k,r k ) = (r k,r k ) α k (Ap k,r k ) = (r k,r k ) α k (Ap k,p k )+α k β k 1 (Ap k,p k 1 ) = 0 (r k+1,p k ) = (r k,p k ) α k (Ap k,p k ) = (r k,r k ) α k (Ap k,p k ) = 0 (p k+1,r k+1 ) = (r k+1,r k+1 )+β k (p k,r k+1 ) = (r k+1,r k+1 ) (p k+1,r k ) = (r k+1,r k )+β k (p k,r k ) = β k (r k,r k ) = (r k+1,r k+1 ) 1 (Ap k+1,p k ) = (p k+1,ap k ) = (p k+1, (r k r k+1 )) α k = 1 {(p α k+1,r k ) (p k+1,r k+1 )} = 0 k, j < k r j p 0,,p j, (r k+1,r j ) = (r k α k Ap k,r j ) = (r k,r j ) α k (Ap k,r j ) = 0 (Ap k+1,p j ) = (p k+1,ap j ) = (r k+1 +β k p k, 1 α j (r j r j+1 )) = β k α j (p k,r j+1 r j ) = 0 QED

(Choleski) A L A = LL T LU A = (a ij ), L = (s ij ) A = LL T i i a ii = s 2 ik, a ij = s ik s jk (i < j) k=1 k=1 a 11 = s 2 11, a 12 = s 11 s 21,, a 1n = s 11 s n1, a 22 = s 2 21 +s2 22, a 23 = s 21 s 31 +s 22 s 32,, a 2n = s 21 s n1 +s 22 s n2 a ij = a ji L 1 s 11 = a 11, s i1 = a i1, i = 2,,n s 11 2 s 22 = a 22 s 2 21, s i2 = a i2 s 21 s i1, i = 3,,n s 22 k s kk = a kk k 1 j=1 s2 kj, s ik = a ik k 1 j=1 s ijs kj s kk 11, i = k+1,,n a 11 a 12 a 1n s 11 0 0 s 11 s 21 s n1 a 21 a 22 a 2n s 21 s 22 0 s 22 s n2 0 a n1 a n2 a nn s n1 s n2 s nn 0 0 s nn Choleski A

12 u(x,y,t) = v(x,y)w(t) Dirichlet, 1 2 u c 2 t 2 = 2 u x 2 + 2 u y 2 1 c 2v(x,y)w (t) = v(x,y)w(t), v(x, y) = w (t) v(x, y) c 2 = λ ( w(t) ) v(x,y) = λv(x,y) on D, v(x,y) D = 0 w +c 2 λw = 0 w(t) = c 1 cosc λt+c 2 sinc λt c λ/2π D = [0,1] [0,1] sinmπxsinnπy (m 2 +n 2 )π 2 ( eig2dfemf)

13 (Householder) (Lanczos),,, Lanczos 1 u 1 2 α 1 = (Au 1,u 1 ), v 2 = Au 1 α 1 u 1, β 1 = v 2, u 2 = v 2 /β 1 k u k, u k 1 v k+1 = Au k β k 1 u k 1 α k u k, β k = v k+1, u k+1 = v k+1 /β k P = (u 1,,u n ) B = P 1 AP AP = PB α 1 β 1 0 0 β 1 α 2 β 2 A(u 1,,u n ) = (u 1,,u n ) 0 β 2 0 βn 1 0 0 β n 1 α n Au 1 = α 1 u 1 +β 1 u 2, Au 2 = β 1 u 1 +α 2 u 2 +β 2 u 3,, Au k = β k 1 u k 1 +α k u k +β k u k+1, u k+1

14 k = 1,2,,n λ α 1 β 1 0 0 β 1 λ α 2 β 2 p k (λ) := 0 β 2 0 βk 1 0 0 β k 1 λ α k p k (λ) = (λ α k )p k 1 (λ) β 2 k 1 p k 2(λ) p 0 (λ) = 1, p 1 (λ) = 0 k = 1, λ, p k (λ) (p n (λ),,p 1 (λ),p 0 (λ)) Sturm ie a < b a b = [a,b]

(condition number), κ(a) = A A 1 L 2 - Ax A = sup x x 0 x x, A,, A = A,, A 1 A A 1 = A 1 = A, max λ i 1 i N κ(a) = min λ i = A A 1 i N 1, (Ax,x) = 0, A 1 A 15

16 Ax = b, A, b A, b, x A < 1 A 1, x κ(a) ( A x 1 κ(a) A / A A + b ) b B B < 1, I B, Neumann (I B) 1 = I +B +B 2 + (, I B I ) (I B) 1 = I +B +B 2 + 1+ B + B 2 + 1 = 1 B, B = A 1 A, (I +A 1 A) 1 1 1 A 1 A 1 1 A 1 A

, Ax = b (A+ A)(x+ x) = b+ b, 17 Ax+(A+ A) x = b A 1 A 1 Ax+(I +A 1 A) x = A 1 b x, x = (I +A 1 A) 1 A 1 ( Ax+ b) x (I +A 1 A) 1 A 1 ( A x + b ) A 1 1 A 1 A ( x + b ) A A 1 1 A 1 A ( A x + b A A ), b A x, κ(a) x A A 1 ( A x 1 A 1 A A + b ) A x κ(a) ( A 1 κ(a) A / A A + b ) QED b, A (, )

18, i a ii > j i a ij, Jacobi, 1 (preconditioning) Jacobi, Gauss-Seidel,, 1, (successive over-relaxation, SOR, ) x k+1 = x k +R k, 0 < ω < 1, x k+1 (1 ω)x k +ωx k+1 = x k +ωr k, ( ) 1 < ω < 2,,,, over-relaxation ω Jacobi Gauss-Seidel A, Jacobi M J (A), Gauss-Seidel M GS (A), ρ(m GS (A)) < ρ(m J (A)) < 1 ρ(m GS (A)) > ρ(m J (A)) > 1 ρ(m GS (A)) = ρ(m J (A)) = 1, Gauss-Seidel ( )

LAPACK (Linear Algebra Package) 19 LINPACK FORTRAN77, SCALAPACK, F95 lapack95, C clapack, C++ lapack++, JAVA ~kanenko/numcal/lapack/src,, BLAS (Basic Linear Algebra Subprograms) LAPACK, BLAS,,,,

20 1 Poisson Fourier numb-1f N, 2 Poisson numb-2f h, 3 Poisson numb-3f h, 4 FreeFEM

Q o FreeFEM JL Lions 21 /home/isstaff/kanenko/numcal/freefem++/bin /home/isstaff/kanenko/numcal/freefem++/examples* cd examples++ FreeFem++-x11 demoedp FreeFem numb-1f poisson1f, numb-2f poisson2f, numb-3f poisson3f, eig2dfemf ( ) wave2dfemf ( )

22 111 [0,1] [0,1] R 2 Poisson u = 1 Dirichlet Fourier 112 [0,1] [0,1] R 2 Poisson u = 1 Dirichlet 113 [0,1] [0,1] R 2 N Dirichlet Poisson u = 1