B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

Similar documents
1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

untitled

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d

Lebesgue Fubini L p Banach, Hilbert Höld

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta


f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

³ÎΨÏÀ

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

応用数学特論.dvi


meiji_resume_1.PDF

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Part () () Γ Part ,

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

II Brown Brown

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

i

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

34号 目 次

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

DVIOUT

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

newmain.dvi

no35.dvi

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

Chap11.dvi

入試の軌跡

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10


lecture

untitled

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0



- II

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

2011de.dvi


Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Note.tex 2008/09/19( )

leb224w.dvi

untitled

v er.1/ c /(21)

04.dvi


1

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

II 2 II

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

Transcription:

. 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1 x) n 1 + n 2 x 2 [.3 ] f(x) = sin(x 2 ) R [.4 ] f(x) := x x e x x = 1 1P e n x x e x dx n P [.5 ] (1) 1 a n lim a n = (2) f(x) f(x) dx lim sup x 1 1 f(x) = 1 [.6 ] a > b 2 < ac Q(x, y) := ax 2 + 2bxy + cy 2 2 dxdy I := p D := {(x, y) R 2 ; Q(x, y) < 1}). 1 Q(x, y) D [.7 ] (x y) 2 e (x2 +y2) dxdy R 2 [.8 ] (X, d) X A, B d(a, B) := inf d(a, b) a A, b B A B A B =? d(a, B) > A

1. Lebesgue 28 4 21 [ 1.1 ] f(x) f (x) x = 8 < x 2 sin 1 (x 6= ) f(x) := x : (x = ) [ 1.2 ] Riemann [ 1.3 ] f n (x) := x 2 x 2 + (1 nx) 2 log sin x dx. (n = 1, 2,... ) [, 1] [ 1.4 ] f n (x) lim f n (x) dx = = lim f n (x) dx Hint: ε > [, ε] [ε, 1] 1X [ 1.5 ] t t dt = n n Hint: t t = e t log t = 1 P n= ( 1) n n! (t log t) n [ 1.6 ] A n (n = 1, 2,..., ) X A := 1 S χ An lim inf 1T k=n χ A n (x) = χ A (x) A k A n [ 1.7 ] X, Y f : X Y A Ω X B Ω Y (1) f f 1 (B) Ω B f 1 (B) f (2) f 1 f(a) æ A f [ 1.8 ] [, 1] f kfk kfk := f(x) dx ( ) (1) k k (2) [, 1] ( )

2. 28 4 28 [ 2.1 ] (1) E 3 := {(a, b ] ; 1 < a < b < 1} B(R) = σ[ E 3 ] (2) E 8 := {( 1, b ] ; b R} B(R) = σ[ E 8 ] Remark: B(R) = σ[ E 1 ] [ 2.2 ] E := {R h-intervals} E elementary family [ 2.3 ] E Ω P(X) elementary family A := { E } A algebra [ 2.4 ] B 1, B 2 Ω P(X) σ-algebras (1) B 1 B 2 algebra B 1 B 2 σ-algebra (2) B 1 B 2 σ-algebra [ 2.5 ] B σ-algebra (1) B {C n } (2) a = {a n } (a n = or 1) D a := S C n B a n =1 [ 2.6 ] S X X = F S X E S B := {A Ω X ; A S } {?} σ-algebra [ 2.7 ] S E σ[s] = {A Ω X ; A A c S } {?} Hint: σ-algebra [ 2.8 ] X A, B A B := (A B c ) (A c B) A B (1) (A B) C = A (B C) (2) A B Ω (A C) (C B)

3. 28 5 2 [ 3.1 ] X B ( := {E Ω X ; E E c } (E : ) µ(e) := µ 1 (E c : ) [ 3.2 ] X? B = P(X) f X 1 E B nx o µ(e) := sup f(x) ; F E (E 6=?), µ(?) = x F A := {x X ; < f(x) 5 1} (1), (2) S (1) A E µ(e) = 1 A E = 1 x E ; f(x) > 1 n (2) A E τ : {1, 2,..., n,... } A E P µ(e) = 1 f(τ(n)) [ 3.3 ] [3.2] µ µ σ-finite x X f(x) < 1 A [ 3.4 ] A algebra : A [, 1) µ [ n nx X E j = ( 1) p 1 (E j A). j=1 p=1 i 1 < <i p E i1 E ip P [ 3.5 ] (X, B, µ) E n B (n = 1, 2,... ) 1 µ(e n ) < 1 T lim sup E n := 1 1S E k µ lim sup E n = k=n Borel Cantelli [ 3.6 ] (X, B, µ) µ(x) < 1 (X) < 1 : B [, 1) ( ε > δ > µ(e) < δ E B (E) < ε. Hint: E n B (n = 1, 2,... ) P µ(e n ) < 1

[ 3.7 ] (X, B, µ) µ(x) < 1 E F E F cf. [2.8] (1) µ(e F ) = E ª F ª B (2) Ė, F B/ ª E, F d(ė, F ) := µ(e F ) d well-defined B/ ª [ 3.8 ] (1) lim sup E n lim inf E n Ω lim sup (2) P µ(e n E n+1 ) < 1 µ lim sup (E n E n+1 ) E n lim inf E n = (Remark: [3.7] (B/ª, d)

4. 28 5 12 8 >< (E =?) [ 4.1 ] N E µ (E) = 1 (E 6=?, N) >: 2 (E = N) µ [ 4.2 ] [4.1] µ Carathéodory µ? N 8 < ]E (]E < 1) [ 4.3 ] N E µ (E) := 1 + ]E : ]E E 1 (]E = 1) (1) E Ω F µ (E) 5 µ (F ) S 1 (2) E 1 Ω E 2 Ω Ω E n Ω lim µ (E n ) = µ E n [ 4.4 ] [4.3] µ Carathéodory µ? N [ 4.5 ] X = {} N A A := {A Ω X ; A A c }. (1) A algebra (2) A A µ (A) := ]A µ A premeasure σ[a] = P(X) [ 4.6 ] [4.5] α E Ω X ( ]E ( / E) α (E) := α + ](E \ {}) ( E) α P(X) α Ø ØA = µ µ Hopf σ[ A ] µ µ = 1 [ 4.7 ] (X, B, µ) N := {N B ; µ(n) = } B := {B F ; B B, F Ω N for some N N } B σ-algebra [ 4.8 ] [4.7] (1) µ(b F ) := µ(b) B µ (2) µ (3) B Ø Ø B = µ = µ

5. R 28 5 19 [5.5] 5 23 [ 5.1 ] X µ X E M µ G Ω X µ (E G) = E G E G G M µ Hint: µ (F ) = =) F M µ [ 5.2 ] Lebesgue Stieltjes µ E µ(e) < 1E G δ : Borel B µ(e) = µ(b) [ 5.3 ] F : R R µ F (a, b ] µ F ((a, b ]) = F (b) F (a) Borel (1) (3) (1) µ F ([a, b]) = F (b) F (a ) (2) µ F ([ a, b)) = F (b ) F (a ) (3) µ F ((a, b)) = F (b ) F (a) (1) (3) 1 < a < b < 1 [ 5.4 ] f : R R B(R) R Borel σ-algebra B B(R) f 1 (B) B(R) (1) C := {C B(R) ; f 1 (C) B(R)} σ-algebra (2) C R (1) B(R) C æ B(R) [ 5.5 ] C Ω [, 1] Cantor x, y C x < y x < z < y z / C z [ 5.6 ] R Lebesgue m ε > [, 1] R G ε G ε = [, 1] m(g ε ) 5 ε Hint: ε/2 k [ 5.7 ] m [5.6] R Lebesgue E L < m(e) < 1 < α < 1 I m(i E) > α m(i) (Hint: G æ E m(g) < 1 α m(e) G = P I n [ 5.8 ] N Ω R Lebesgue α N +α := {x + α ; x N} S Hint: Q = {r 1, r 2,... } R \ Q Ω 1 ( N + r j ) N := { x ; x N} j=1

6. 28 6 9 [6.1]ª[6.7] (X, B) [ 6.1 ] A Ω X A B A B A := {E Ω A ; E B} σ-algebra A {F A ; F B} [ 6.2 ] f : X R X := f 1 (R) f (1) (3) (1) f 1 ({ 1}) B (2) f 1 ({1}) B (3) f := f Ø Ø X : X R [ 6.3 ] f, g : X R (±1) = fg [ 6.4 ] f, g : X R a R ( a (f(x) = g(x) = ±1) h(x) := f(x) + g(x) h a R a R [ 6.5 ] f n (n = 1, 2,... ) X R L := {x X ; lim f n (x) } T L = 1 1S 1T n x X ; f n (x) f m (x) < 1 o k k=1 l=1 n,m=l L B [ 6.6 ] {x X ; lim f n (x) = 1} {x X ; 1} lim f n (x) = [ 6.7 ] f : X R r Q f 1 ((r, 1]) B f [ 6.8 ] f : R R Borel

7. 28 6 16 (X, B, µ) B [ 7.1 ] Fatou [ 7.2 ] f = f du < 1 ε > µ(e) < 1 E B f dµ > f dµ ε E [ 7.3 ] f = (E) := f dµ (E B) E g = g d = gf dµ Hint: g [ 7.4 ] f : X [, 1] E n := {x X ; f(x) = n} P 1 P µ(e n ) 5 f dµ 5 µ(x) + 1 µ(e n ) 1X µ(x) < 1 f dµ < 1 () µ(e n ) < 1 [ 7.5 ] f = f dµ < 1 {x X ; f(x) = 1} X {x X ; f(x) > } σ-finite [ 7.6 ] Fatou lim inf lim sup. [ 7.7 ] f n = (n =, 2,... ) x X f n (x) f(x) lim f n dµ = f dµ < 1 E B lim f n dµ = f dµ E E Hint: χ E f n χ E cf n Fatou [ 7.8 ] lim f n dµ = f dµ = 1

8. 28 6 3 (X, B, µ) R Lebesgue m 1P [ 8.1 ] f n dµ < 1 f n (a.e.) [ 8.2 ] C Cantor [, 1] f ( (x C) f(x) := n x 1 3 n f dm = 3 [,1] [ 8.3 ] [, 1] ( f(x) := (x Q) n x 1 n f dm = 1 9 [,1] [ 8.4 ] {f n } f n (x) (8x) lim f n (x) 5 g(x) (a.e.x) g(x) f n dµ = [ 8.5 ] f n (n = 1, 2,... ) f (1) µ(x) < 1 f f n d u f dµ (2) µ(x) = 1 (1) R Lebesgue [ 8.6 ] f n, g n (n = 1, 2,... ) f, g f n f (a.e.) g n g (a.e.) f n (x) 5 g n (x) (8x X) g n dµ g dµ f n dµ f dµ [ 8.7 ] f ε > δ > µ(e) < δ f dµ < ε E [ 8.8 ] f = f n dµ n = 1, 2,... f

9. Riemann Fubini 28 7 7 [9.7] 7 11 18 [ 9.1 ] (X, B, µ) X f g µ-a.e. f [ 9.2 ] lim 1 + nx 2 (1 + x 2 ) n dx k [ 9.3 ] lim x n 1 x k dx = n! k 1 k (Hint: 1 k x k 5 e x ( 5 x 5 k) [ 9.4 ] e tx2 dx = r π t (t > ) t x 2n e x2 dx = (2n)! π 4 n n! x α 1 [ 9.5 ] α > 1 e x 1 dx = Γ(α) P 1 µ 1 n α. Hint : x > 1 e x 1 = 1 P e nx. [ 9.6 ] a > 1 ax sin x e x dx = Arctan 1 a Re a > [ 9.7 ] f(x, y) := e axy sin x E := (, 1) (1, 1) x, y E f(x, y) 5 xe axy [ 9.8 ] a > f (, a) g(x) := ( < x < a) g (, a) a f(x) dx a x a f(t) t dt g(x) dx =