Microsoft Word - 演習5_蒸発装置

Similar documents
1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

量子力学 問題

TOP URL 1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

Q & A Q A p

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Microsoft Word - 11問題表紙(選択).docx

untitled

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

dynamics-solution2.dvi

pdf

,,..,. 1

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i


all.dvi

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

2011de.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

I II III IV V

CRA3689A

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

橡紙目次第1章1

all.dvi

TOP URL 1

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

NETES No.CG V

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,


S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

I ( ) 2019


1.. 1 ll a ii. 1i. i f 1 1 a. a. i. t. 1 fi fi. t i j fj i. j ;i 1. i. aa a

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

untitled


chap9.dvi

ohpr.dvi

( ) ,


Note.tex 2008/09/19( )

Super perfect numbers and Mersenne perefect numbers /2/22 1 m, , 31 8 P = , P =

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d



MOS FET c /(17)

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

Z: Q: R: C: sin 6 5 ζ a, b

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

~nabe/lecture/index.html 2

I 1

TOP URL 1

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

OHP.dvi


untitled

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

平成12年度

(1) (2) (3) (4) 1

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

The Physics of Atmospheres CAPTER :

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回


°ÌÁê¿ô³ØII

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

devicemondai


.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

keisoku01.dvi

PS2701-1, PS2701-2, PS DS

sikepuri.dvi

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

ρ(= kg m 3 ), g h P 0 C () [1] 1.3 SI Pa hpa h 100 ( : 100 ) 1m 2 1N 1Pa 1N 1kg 1m s 2 Pa hpa mb hpa 1mm 1mmHg hpa 1mmHg =

Untitled

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

Jacobi, Stieltjes, Gauss : :

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

構造と連続体の力学基礎

NewsLetter-No2

日歯雑誌(H22・7月号)HP用/p06‐16 クリニカル① 田崎

Transcription:

1-4) q T sat T w T S E D.N.B.(Departure from Nucleate Boiling)h(=q/ T sat ) F q B q D 3) 1

5-7) 4)

T W [K] T B [K]T BPR [K] B.P.E.Boiling Pressure Rising T B T W T BPR (3.1) Dühring T BPR T W T W T B T BPR =T B T W T BPR h p 1 Δp=ρgh p 1 Δp T W 3

Dühring F [g/s]x F V [g/s] L [g/s] x L S [g/s]c [g/s] F S V L C [ S C] (4.1) Fx F Lx L (4.) S C L V V F 1 x x F L (4.3) V [g/h], i V [J/g], T V [] =T B F [g/h] i F [J/g] T F [] x F [] D [g/h] =S i D [J/g] T B [] S [g/h] i S [J/g] L [g/h], i L [J/g] =i B, T L [] =T B, x L [] 4

8-9) i F i V i L i S i D [J/g] Si S Fi F Si D Vi V Li L (5.1) (3.1)L S( i S i D ) Fi F Vi V ( F V ) i L (5.) S( is id ) F( il if ) V ( iv il ) (5.3) T L [K]T B [K]i L i B [J/g] S( is id ) F( ib if ) V( iv ib) (5.4) (i S i D ) λ S [J/g] is id λs (5.5) (i B i F ) ib if Cp ( TB TF ) (5.6) C p [J/(gK)]T F [K] (i V i B ) λ V [J/g] iv ib V (5.7) (5.5)(5.7)(5.4)S S S FCp ( TB TF ) V V (5.8) S FC ( T T ) V p B F V S (5.9) Q [J/s] T o T ro =Q/h o A o (6.1) T ro T wo =Q/h so A so (6.) T wo T wi =Q/{(/l)A av }(6.3) T wi T si =Q/h si A si (6.4) T si T i =Q/h i A i (6.5) h [W/(m K)]h s [W/(m K)] [W/(mK)]l [m]a [m ]i o s w (6.1)(6.5)A i [m ] Q To Ti (6.6) 1 1 1 1 h A h A A h A h A o o so so av si si i i 5

T o T so T wo A o To Ti Q U i Ai ΔT 1 1 1 Ai Ai 1 Ai 1 Ai A h h A A h A h A i i si si av so so o o l h o h so A so h si A av A si h i A i (6.7) r o T si T i r i Twi Q A [Δ T T T T T (6.8) ] i o i S B UiΔT 1 1 1 A A 1 A 1 A i i i i Ui hi hsi Asi Aav hso Aso ho A (6.9) o A si A so A i A o 1 1 1 A 1 A 1 A U h h A h A h A i i i i i si av so o o o A A, A A (6.10) si i so o A i =πr i =πd i (6.11)A o =πr o =πd o (6.1)A av =πr av =πd av (6.13) r [m]d [m] (6.10)U i [W/(m K)] 1 1 1 D 1 D 1 D D D (6.14) i i i i o Dav Ui hi hsi Dav hso Do ho Do A o [m ]U o [W/(m K)] T T 1 1 1 1 h A h A A h A h A o i Q o o so so av si si i i (6.6) To Ti Q U o Ao ΔT 1 1 1 Ao Ao 1 Ao 1 Ao A h h A A h A h A o o so so av si si i i (6.15) 6

Q A [Δ T T T T T (6.16) ] o o i S B UoΔT 1 1 1 Ao 1 Ao 1 Ao U h h A h A h A o o so av si i i i A A, A A (6.17) si i so o 1 1 1 D 1 D 1 D D D (6.18) U h h D h D h D o o o i o Dav o o so av si i i i Q (5.9) Q SS FCp ( TB TF ) V V (6.19) λ S [J/g]S [g/s] λ S S FC p (T B T F )Vλ V 3, 10-14) A U U h i 3, 10-13) (Re>10000)L (L/D>60)Pr=0.710 Dittus-Boelter hd 0.041 DG 0.8 C p 0.4 0.8 0.4 Nu 0.041Re Pr (7.1) hd 0.064 DG 0.8 C p 0.3 0.8 0.3 Nu 0.064Re Pr (7.) C p [J/(gK)] D [m] G [g/(m s)] h i [W/(m K)] [W/(mK)]n []μ [Pas] McAdams hd 0.03 DG 0.8 C p 0.4 0.8 0.4 Nu 0.03Re Pr (7.3) Nu []Re []Pr [] Colburnh St j H h Cp C u p 3 0. 0.03 DG /3 0. jh StPr 0.03Re (7.4) j H j-[]u [m/s] 7

h Nu (Re)(Pr) hd 0.03 DG 0.8 C p 1 3 0.8 1/3 Nu 0.03Re Pr (7.5) Sieder & Tate& McAdams Sieder & Tate Sieder-Tate hd 0.03 DG 0.8 C p 1/3 0.14 0.14 0.8 1/3 Nu 0.03Re Pr (7.6) w w μ w [Pas] Sieder-Tate 0.03 0.07 McAdams 0.03 3) (Re<100)Sieder-Tate 1/3 1/3 1/3 0.14 hd DG Cp D 1.86 L w (7.7) (100<Re<10000)Colburn j- N L 13) h o 14) 4 Re (7.8) [g/(ms)] (Re<100) h 0.95 g 1/3 W D (7.9) h 1/3 1.47Re 3 g 1/3 (7.10) 8

h 0.76 g 1/3 W L (7.11) D [m] g [m/s ] h o [W/(m K)] [W/(m K)]L [m]w [g/s]ρ [g/m 3 ]μ [Pas] (Re>100) 1/3 h 0.0077Re 3 g 0.4 (7.1) h s 15) D E [m] D E 4V G V (8.1) G V [g/(m s)]v [g/s] 16-17) U Q c [J] dq d c UA Δ T (9.1) T (T S T B )[K]θ [s] 1/U Q c 1 1 U U 0 Q c (9.) U 0 [W/(m K)]α U Q c θ du U dq (9.3) c (9.1)dQ c 9

1 b a Δ, 1 U 0 a A T b U (9.4) (9.1)U Q c τ Q c AΔT b a b a (9.5) 1 n 1 Q d [J/day] Q d nq (9.6) c 1 θ w [h]1 n [1/day] n 4 w (9.7) (9.6)(9.5)(9.7)1 Q d [J/day]τ [h] Q d 48AΔT b a b a w (9.8) 6, 17-18) 4 10

17) 3 V 1 V V 3 F(1 x F x L3 ) (10.1) 1 V 1 F(1 x F x L1 ) (10.) V ( F V 1 )(1 x L1 x L ) (10.3) 3 V 3 ( F V 1 V )(1 x L x L3 ) (10.4) 1 Q 1 S S FCpF( TB1 TF ) V1 1 (10.5) Q V1 1 ( F V1 ) Cp1( TB TB1) V (10.6) 3 Q 3 V ( F V1 V ) Cp( TB3 TB ) V3 3 (10.7) C C C C λ λ λ pf p1 1 Q U A T ) (10.8) p 1 1 1( S TB1 Q U A ( TB1 TB Q3 U3A3 ( TB TB3 A A A3 A ) (10.9) 3 ) (10.10) 1 p λs 1 7 (A, T B1, T B, V 1, V, V 3, S)(10.1)(10.5)(10.10) 7 1 18) 11

V 1 V V 3 F x F S T B1, C pf T B, C p1 T B3, C p U 1, A 1 U, A U 3, A 3 L 1, x L1 L, x L L 3, x L3 λ= 00000 A=.8 (1)= 49 Cp= 400 TB1= 100.5 (5)= 0 U1= 300 TB= 84.9 (6)= 0 U= 1700 V1= 0.76 (7)= 17 U3= 100 V= 0.309 (8)= 7 F= 1.40 V3= 0.348 (9)= xf= 0.100 Vs= 0.464 (10)= 3 xl3= 0.300 = 98 TF= 30.0 TB3= 60.0 Ts= 10 λt s 1), ;, (1981), 3.9 );, (1967), 4.3.4 3);, (198), 5.1 4);, 45(3), 191-197 (1981) 5);, (1978), 4.3 6);, (1975), 5 7), ;, (1967), 007 8),, ;, (1967),.1 9); 3, (006), 3.7 10)J.M. Coulson and J.F. Richardson; Chemical Engineering Vol.1 (6ed.), Butter-worth Heinemann(00), 9.4.3 11),,, ;, (197), 7..4 1),,, ;, (001), 4.3.1 13);, (1975), pp.94-96 14);, (009), -3 15); 3, (1998), 4. 16);, (1978), 4.6. 17)J.W. Mullin; Crystallization 4th ed., Butterworth-Heinemann (001), pp.379-38 18), ; Excel, (006), pp.10-11 1

305 wt%40 t/day 30 wt% 70 Pa 0 Pa D D av 990 g/m 3 16.7 W/(mK) 0.60 mpas 9 mm 3.9 J/(gK) 1 mm 0.60 W/(mK) 934 g/m 3.3 m 0.15 mpas (h si )5000 W/(m K) 0.58 W/(mK) (h so )10000 W/(m K) 1.8 m/s (1-1)T BPR [] (1-)V [t/day] (1-3)S [t/day] (1-4)h i [W/(m K)] (Re>10000)Colburn (1-5)h o [W/(m K)] W [g/s]c [g/s]c S [g/s] (1-6)U i [W/(m K)] (1-7)A[m ] (1-8)N[] 8000 J/(m h) 130 50 500 J/(m h) 70 1 5.00 10 8 J/day 1 5 h 100 m (-1)(9.3) (-)(9.4)a b (-3)τ [h] 13

10 6 (1-1)14, (1-)00 t/day, (1-3)33 t/day, (1-4)660 W/(m K), (1-5)49664 W/(m K), (1-6)1917 W/(m K), (1-7)54.5 m, (1-8)53, (-1), (-)a=.89 10 9, b=1.56 10 8, (-3)5.54 h 14