<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Similar documents
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

倒立振子で学ぶ制御工学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

analog-control-mod : 2007/2/4(8:44) 2 E8 P M () r e K P ( ) T I u K M T M K D E8.: DC PID K D E8. (E8.) P M () E8.2 K P D () ( T ) (E8.2) K M T M K, T

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

c 2006 Yoneda norimasa All rights reserved

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

Lecture note 10: II Osaka Institute of Technology

( ) ( ) ( ) ( ) PID

1 c Koichi Suga, ISBN

1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u

( ) ( )

, MATLAB LMI MATLAB Mathematica Maple Mathematica Control System Professional 2 LMI MATLAB Mathematica Maple MATLAB SCILAB SCILAB MATLAB

2012 September 21, 2012, Rev.2.2

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

??

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

01_.g.r..

数理計画法入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

TOP URL 1

ばらつき抑制のための確率最適制御

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C60202D B2E646F63>

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

三石貴志.indd


newmain.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d


i


Wide Scanner TWAIN Source ユーザーズガイド


p06.dvi

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

i s

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

ohp_06nov_tohoku.dvi

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

keisoku01.dvi

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

K E N Z OU

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


untitled

D:/BOOK/MAIN/MAIN.DVI

ii

B ver B

08-Note2-web


Note.tex 2008/09/19( )

tnbp59-21_Web:P2/ky132379509610002944

例題で学ぶオペレーションズ リサーチ入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

pdf

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

December 28, 2018

研修コーナー

パーキンソン病治療ガイドライン2002

v_-3_+2_1.eps


1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

I , : ~/math/functional-analysis/functional-analysis-1.tex

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

II

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

II 1 II 2012 II Gauss-Bonnet II

2011de.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

(time series) ( 225 ) / / p.2/66

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

地盤環境振動の対策技術-00-前付.indd




provider_020524_2.PDF


ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.


Fr

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

I II III 28 29

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)


I II III IV V

178 5 I 1 ( ) ( ) ( ) ( ) (1) ( 2 )

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

??

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Transcription:

MATLAB/Simulink による現代制御入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/9241 このサンプルページの内容は, 初版 1 刷発行当時のものです.

i MATLAB/Simulink MATLAB/Simulink 1. 1 2. 3. MATLAB/Simulink MATLAB/Simulink M Simulink http://www.morikita.co.jp/soft/9241/ (http://www.maizuru-ct.ac.jp/control/kawata/study/book3/book3_page.html) 4. MATLAB/Simulink 5. (LMI) MATLAB/Simulink

ii OS Windows 7 (64bit) MATLAB MATLAB Version 7.11 (R21b) Simulink Version 7.6 (R21b) Control System Toolbox Version 9. (R21b) (.1) Symbolic Math Toolbox Version 5.5 (R21b) (.2) Robust Control Toolbox Version 3.5 (R21b) 9 MATLAB SeDuMi Version 1.3 (2145) SDPT3 Version 4. YALMIP Version 3 (R2193) (.3) 23 (.1) R28b Symbolic Math Toolbox Maple (http://www.maplesoft.com/) MuPAD R28a R28b Symbolic Math Toolbox (.2) 8 9 LMI LMILAB (.3) B.7

iii 1 1 1.1... 1 1.2... 4 1.3... 7 1.4... 1 2 11 2.1... 11 2.2... 13 2.2.1... 13 2.2.2... 16 2.2.3... 19 2.3... 21 2.4... 24 2.4.1... 24 2.4.2... 27 2.5 MATLAB... 28 2.5.1... 28 2.5.2... 29 2.5.3... 3 2.5.4... 32 3 33 3.1 1... 33 3.1.1... 33 3.1.2... 35 3.1.3... 38 3.2 n... 39 3.2.1 ()... 39 3.2.2... 4 3.2.3... 44 3.2.4... 46 3.3... 49

iv 3.3.1... 49 3.3.2... 51 3.3.3... 52 3.4 MATLAB/Simulink... 56 3.4.1... 56 3.4.2... 58 3.4.3 MATLAB... 59 3.4.4 Simulink... 64 3.4.5... 66 4 67 4.1... 67 4.2... 68 4.2.1... 68 4.2.2... 7 4.3... 74 4.3.1... 74 4.3.2 1... 77 4.3.3 1. 82 4.3.4... 83 4.4 MATLAB/Simulink... 86 4.4.1... 86 4.4.2... 87 4.4.3... 9 5 92 5.1... 92 5.1.1... 92 5.1.2... 97 5.1.3... 98 5.2... 1 5.2.1... 1 5.2.2... 14 5.2.3... 18 5.3 MATLAB/Simulink... 11 5.3.1... 11 5.3.2... 113 6 115 6.1... 115

v 6.2... 116 6.2.1... 116 6.2.2... 118 6.3... 12 6.3.1... 12 6.3.2... 121 6.3.3... 124 6.4... 128 6.5 MATLAB/Simulink... 134 6.5.1... 134 6.5.2... 134 7 14 7.1... 14 7.1.1... 14 7.1.2... 142 7.2... 146 7.2.1 ( 1)... 146 7.2.2 ( 2)... 149 7.3 MATLAB/Simulink... 152 7.3.1... 152 7.3.2... 153 8 155 8.1 (LQ )... 155 8.1.1... 155 8.1.2... 159 8.2 ( )... 164 8.3... 169 8.4 MATLAB/Simulink... 174 8.4.1... 174 8.4.2 ( )... 177 8.4.3... 179 9 LMI 182 9.1 LMI... 182 9.1.1 LMI... 182 9.1.2 BMI LMI... 184 9.2 LMI... 186

vi 9.2.1... 186 9.2.2 LMI... 188 9.3... 192 9.4 MATLAB... 194 9.4.1 YALMIP... 194 9.4.2... 195 A 197 A.1... 197 A.2... 2 A.3... 25 A.4... 26 A.5... 21 B MATLAB/Simulink 211 B.1 MATLAB... 211 B.2 M M... 214 B.3 2... 216 B.4... 218 B.5 Simulink... 221 B.6 Symbolic Math Toolbox... 226 B.7 LMI LMI... 227 C 229 C.1... 229 C.2... 236 C.3... 238 C.4 MATLAB... 241 247 256 257

1 1 PID 1 2 1 () () 1.1 classical control theory PID control PID ( 1.1) 2 pole stability 3 1.1 2 1.1 2 ( 1.1) 1.1 2 1 u(t) =f 1 (t) 2 y(t) =z 2 (t) 1, 2 P : M 1 z 1 (t) =u(t) k ( z 1 (t) y(t) ) M 2 ÿ(t) = f k (t) {}}{ k ( z 1 (t) y(t) ) + μ ( ż 1 (t) ẏ(t) ) f μ (t) (1.1) {}}{ μ ( ż 1 (t) ẏ(t) ) P : y(s) =P (s)u(s) (1.2) ( 1.1) PID Proportional ()Derivative ()Integral ()

2 1 f k (t) [N] f μ (t) [N] M 1 [kg] 1 M 2 [kg] 2 k [kg/s 2 ] μ [kg/s] 1.1 1 u(t) =f 1 (t) 2 u(s) =L [ u(t) ], y(s) =L [ y(t) ] u(t), y(t) transfer function ( 1.2) P (s) :=y(s)/u(s) u(s) y(s) M 1 =.5, M 2 =1,k =2,μ =1y() =, ẏ() =, z 1 () =, ż 1 () = (1.1) z 1 (s) P : y(s) =P (s)u(s), P(s) = 2s +4 s 2 (s 2 +3s +6) (1.3) 1.2 P D ( PD ) y ref (t) y(t) e(t) :=y ref (t) y(t) ( 1.3) P D {}}{ K : u(t) = k P e(t) k D ẏ(t) K : u(s) =k P e(s) k D sy(s) (1.4) 1.1 2 ( 2 y(t) =z 2 (t) y ref (t) ) P D k P, k D () 1.2 P D ( 1.2) A.1 (p.197) P (s) f(t) f(s) =L [ f(t) ] ( 1.3) A B A := B

1.1 3 1.2 2 ( 1.1) P D k P, k D 1 y ref (s) y(s) T (s) :=y(s)/y ref (s) P (s)k P T (s) = 1+P (s) ( ) = N T (s) k D s + k P D T (s) { N T (s) =2k P s +4k P D T (s) =s 4 +3s 3 + ( 6+2k D ) s 2 + ( 2k P +4k D ) s +4kP (1.5) 2 1/T (s) ) 4k P +2k P s 1 + k D s + 3 s 2 + k P 2k P 4k P + ( ) ( ) 2k P +4k D s + 6+2kD s 2 +3s 3 + s 4 4k P +2k P s 4k D s + ( 6+2k D ) s 2 +3s 3 + s 4 4k D s +2k D s 2 6s 2 +3s 3 + s 4 6s 2 +3s 3.. 1/T (s) 1 T (s) =1+ k D k P s + 3 2k P s 2 + (1.6) 1/T (s) s =(1.6) 3 P D k P, k D 2 G M (s) 2 G M (s) = ω 2 n s 2 +2ζω n s + ωn 2, ω n >, ζ > (1.7) y M (s) =G M (s)y ref (s) ω n ζ 1.3 (1.7) G M (s) 1 G M (s) =1+ 2ζ ω n s + 1 ωn 2 s 2 (1.8) (1.8) (1.6) 2 (1.4) k P, k D k P = 3ω2 n 2, k D =3ζω n (1.9)

4 1 P D (1.4), (1.9) 1.4 ζ =.7, ω n =.5, 2 { y ref (t<) (t) = 1 (t ) 1.4 P D ω n G M (s) T (s) ω n T (s) D T (s) 4 P D (1.4) k P, k D 2 T (s) 4 (D T (s) =) (a) ( <ζ<1) (b) (ζ =1) (ζ >1) 1.3 2 y M (s) =G M (s)y ref (s) (a) ω n =.5, ζ =.7 (b) ω n =2,ζ =.7 1.4 P D 1.2 1.1 2 P D 2 (y(t) =z 2 (t), ẏ(t) =ż 2 (t)) (1.4) 1 (z 1 (t), ż 1 (t)) modern control theory 2 1

1.2 5 1.3 2 ( 1.1) 2 y ref (t) =yc ref (y(t) =z 2 (t) =yc ref ) 1 z 1 (t) yc ref 1 P D 2 P D {}}{ K : u(t) = k P1 e 1 (t) k D1 ż 1 (t)+ k P2 e 2 (t) k D2 ż 2 (t) (1.1) e 1 (t) =y ref (t) z 1 (t), e 2 (t) =y ref (t) z 2 (t) x 1 (t) z 1 (t) x 2 (t) x(t) = x 3 (t) = ż 1 (t) z 2 (t) x 4 (t) ż 2 (t) } } 1 2 2 () k = [ k 1 k 2 k 3 k 4 ] = [ kp1 k D1 k P2 k D2 ], h = kp1 + k P2 state variable (1.1) x(t) kx(t) y ref (t) hy ref (t) state feedback K : u(t) =kx(t)+hy ref (t) (1.11) ( 1.5 ) 4 (1.11) y ref (s) y(s) T (s) y ref (s) y(s) T (s) :=y(s)/y ref (s) T (s) = N T (s) D T (s) N T (s) =2 ( ) ( ) k P1 + k P2 s +4 kp1 + k P2 D T (s) =s 4 + ( ) 3+2k D1 s 3 +2 ( ) 3+k P1 + k D1 + k D2 s 2 +2 { k P1 + k P2 +2 ( )} ( ) k D1 + k D2 s +4 kp1 + k P2 (1.12) k P1, k D1, k P2, k D2 T (s) (D T (s) =) P D (1.4) 1.5

6 1 pole placement method optimal regulator theory (4.3 ) ( 8 ) k, h J = { 6 ( y(t) y ref c ) 2 + u(t) 2} dt (1.11) k = [ 1.9 1.71 5.84 4.45 ], h =7.75 ( 1.6 (a)) 1.1 P D ( 1.6 (b)) (a) (1.11) 1.6 (b) P D (1.4), (1.9) (ω n =2,ζ =.7) x(t) u(t) y(t) x(t) x(t) state space representation { P : ẋ(t) =Ax(t)+bu(t) y(t) =cx(t) state equation (1.13) (1.13) 1 output equation 1.7 2 ( 1.4) ( 1.4) 2 2.4 (p.15)

1.3 7 1.7 1 3 1.3 1.1 2 u(t) y(t) single-input single-output system 1 (1 1 SISO ) PID 1 multiple-input multiple-output system ( 1.5) (MIMO ) 1.8 2 1.4 2 2 2 ( 1.8) 1.8 1, 2 f 1 (t), f 2 (t) 2 1.8 2 1 f 1 (t) 2 f 2 (t) 1 z 1 (t) 2 z 2 (t) 2 u(t) y(t) [ ] [ ] [ ] [ ] u 1 (t) f 1 (t) y 1 (t) z 1 (t) u(t) = =, y(t) = = (1.14) u 2 (t) f 2 (t) y 2 (t) z 2 (t) ( 1.5) p q p q

92 5 4 5.1 5.1.1 p p ẋ(t) =Ax(t)+Bu(t), x() = x P : y(t) =Cx(t) η(t) =x(t) (5.1) x(t) R n u(t) R p y(t) R p η(t) R n 5.1 K : u(t) = {}}{ Kx(t)+Hy ref (t) (5.2) y ref (t) =y ref c following control (5.2) 1.2 1.4 P D

5.1 93 5.1 5.1 2 2.4 (p.15) 1.1 (p.2) 2 M 1 =.5, M 2 =1,k =2,μ =1 { ẋ(t) =Ax(t)+bu(t) P : y(t) =cx(t) x 1 (t) z 1 (t) x 2 (t) x(t) = x 3 (t) = ż 1 (t) z 2 (t), u(t) =f 1(t), x 4 (t) ż 2 (t) 1 4 2 4 2 A = 1, b = 2, c = [ 1 ] 2 1 2 1 (5.3) (5.3) y(t) =z 2 (t) { y ref (t<) (t) = (5.4) yc ref (t ) y(t) =y ref c K : u(t) =kx(t)+hy ref (t) (5.5) ) x(t), u(t) x = [ ] x 1 x 2 x 3 x T 4, u ( 2 y ref c (5.3) y ref (t) =yc ref, x(t) =x, u(t) =u ẋ = { = Ax + bu = yc ref = cx [ ][ A b c x u ] [ ] = 1 y ref c (5.6)

94 5 x, u [ ] M A b = c =4 = M A b := c (5.6) x, u [ ] [ ] 1 [ ] x A b = yc ref u c 1 x 1 2 2 2 4 yc ref x 2 = x 3 = 1 4 4 4 yc ref = y ref c x 4 4 2 4 1 u (5.7) (5.7) 2 y ref c (u =) 1 y ref c (x 3 = yc ref ) 1 (x 1 = yc ref ) (5.5) y(t) y ref (t) =yc ref x, u x(t) := x(t) x, ũ(t) :=u(t) u (5.3), (5.6) x(t) =ẋ(t) =Ax(t)+bu(t) =A ( x(t)+x ) + b (ũ(t)+u ) = A x(t)+bũ(t)+ax + bu }{{ = A x(t)+ bũ(t) } e(t) =y ref c = cx(t) =y ref c c ( x(t)+x ) = c x(t)+yc ref cx = c x(t) { x(t) =A x(t)+bũ(t) e(t) = c x(t) (5.8) x, u x(t), ũ(t) (5.8) A cl := A + bk λ = α + jβ α t x(t) =e A clt x() e(t) =y ref c y ref (t) =yc ref (5.7) K : ũ(t) =k x(t) (5.9) y(t) = c x(t) (y(t) y ref (t) =y ref c ) (5.9) K : u(t) =k ( x(t) x ) + u = kx(t)+ [ k 1 ][ x u ]

5.1 95 = kx(t)+hyc ref, h = [ k 1 ][ ] 1 [ ] A b c 1 (5.1) (5.5) y ref (t) =yc ref (4.3.3 ) A cl := A+bk λ 2 ± 2j, 2 ± j k (5.1) h 1 2 ± 2j, 2 ± j (4.53) (p.81) Δ(λ) δ, δ 1, δ 2, δ 3 Δ(λ) :=(λ +2 2j)(λ +2+2j)(λ +2 j)(λ +2+j) = λ 4 +8λ 3 +29λ 2 +52λ + 4 (5.11) = δ 3 =8, δ 2 =29, δ 1 =52, δ =4 (4.56) (p.82) Δ A 8 16 32 36 Δ A = A 4 + δ 3 A 3 + δ 2 A 2 8 12 8 28 + δ 1 A + δ I = 16 18 24 34 4 14 4 26 (5.12) 2 (4.9) (p.71) V c 2 4 4 V c = [ b Ab A 2 b A 3 b ] 2 4 4 12 = 2 2 2 2 6 (5.13) (4.57) (p.82) (5.5) k, h V 1 c {}}{ e 32 64 8 16 32 36 {}}{ [ ] 1 32 64 8 12 8 28 k = 1 64 8 4 8 16 18 24 34 8 8 8 4 14 4 26 [ = 7 2 5 2 13 11 ] (5.14) 2 2 2 2 2 4 [ ] 4 7 5 13 11 1 h = 1 } 2 2 {{ 2 2 } 4 4 = 1 (5.15) [ ] 4 k 1 2 4 1 [ ] 1 [ ] A b c 1 Δ A

96 5 k, h (5.14), (5.15) (5.5) yc ref =1 5.2 2 y(t) y ref (t) =yc ref 5.2 5.1 u(t) y(t) p p (5.1) Point! () p p (5.1) M = A B C O [ = M := ] A B (5.16) C O ( 5.1) A cl := A + BK K K : u(t) =Kx(t)+Hy ref (t), y ref (t) =y ref c H = [ K I ][ ] 1 [ ] A B O C O I ) e := lim t e(t) = (5.17) steady-state error ( e(t) :=y ref (t) y(t) 5.1 { [ ] [ ] ẋ(t) =Ax(t)+bu(t) 1 P :, A =, b =, c = [ 1 ] (5.18) y(t) =cx(t) 2 3 1 y(t) y ref (t) =y ref c ( 5.1) (5.16) 5.1.2 (5.1)

5.1 97 K : u(t) =kx(t)+hy ref (t) (5.19) [ ] A b (1) M := y(t) =yc ref c x, u (2) A + bk 2 ± 2j k h h = [ k 1 ][ ] 1 [ ] A b c 1 (5.2) 5.1.2 (5.16) (5.16) invariant zero Point! p p p p (5.1) s M(s) [ =, M(s) := ( si A ) ] B C O (5.21) (s =) M() = A B C O = (5.22) (5.16) (5.16) M() p p (5.1) 1 5.2 1 1 { [ ] [ ] P : ẋ(t) =Ax(t)+bu(t) 2 1, A =, b = y(t) =cx(t) 3 2, c = [ 2 2 ] (5.23) (5.21)

155 8 4 ( ) () 8.1 (LQ ) 8.1.1 p n { ẋ(t) =Ax(t)+Bu(t), x() = x P : η(t) =x(t) (8.1) 4.3 K : u(t) =Kx(t) (8.2) x(t) = [ x 1 (t) x n (t) ]T R n u(t) = [ u 1 (t) u p (t) ]T R p η(t) = [ η 1 (t) η n (t) ]T R n 4.3 (1) (p.75) K u(t)

156 8 u i (t) u i (t) 4.3 (1) x 2 (t) 4.3.4 K K ( 4.7 (p.83) ) optimal regulator 8.1 1 2 2.1 (p.16) 2.6 1 M =1,k = 1, μ =1 [ ] [ ] 1 ẋ(t) =Ax(t)+bu(t), A =, b = (8.3) 1 1 1 u(t) =f(t), y(t) =z(t), x(t) = [ x 1 (t) x 2 (t) ]T = [ z(t) ż(t) ] T (8.3) K : u(t) =kx(t), k = [ 5 1 ] (8.4) (t x(t) ) k A cl := A + bk 1 ± 2j x = [ 1 ] T x 1 (t), x 2 (t) u(t) 2 J x1 = x 1 (t) 2 dt >, J x2 = x 2 (t) 2 dt >, J u = u(t) 2 dt > 8.1 x i (t) J xi J xi x i (t) x i (t) u(t) u(t) J u x i (t) J xi (J xi x i (t) )

8.1 (LQ ) 157 8.1 x 1 (t), x 2 (t), u(t) 2 J u(t) J u (J u u(t) ) 8.1 x() = x = [ 1 ]T 2 J x1 =.45, J x2 =1.25, J u =17.5 J x1, J x2, J u J x1 <J x2 J u J x1 + J x2 + J u J u J x1, J x2 J u J x1, J x2, J u J = q 1 J x1 + q 2 J x2 + rj u ( = q1 x 1 (t) 2 + q 2 x 2 (t) 2 + ru(t) 2) dt (8.5) q i, r> q 1 = 1, q 2 =, r =1 (8.5) J J = 1.45 + 1.25 + 1 17.5 = 45 q 1 J x1 q 2 J x2 r J u + +17.5 = 467.5

158 8 x 1 (t) J x1 u(t) J u q 1 =.1, q 2 =, r =1 (8.5) J J =.1.45 + 1.25 + 1 17.5 =.45 q 1 J x1 q 2 J x2 r J u + +17.5 =17.545 u(t) J u x 1 (t) J x1 8.1 (8.5) p n (8.1) n p ( n p J = q i J xi + r j J uj = q i x i (t) 2 + r j u j (t) )dt 2 (8.6) i=1 j=1 i=1 j=1 J xi, J uj x i (t), u j (t) 2 J xi = x i (t) 2 dt, J uj = u j (t) 2 dt q i, r j > ( 8.1) Point! (8.6) q i, r j > q i x i (t) (J xi ) r j > u j (t) (J uj ) 8.1.2 (8.6) (8.2) (8.6) q i, r j q i, r j (8.6) ( 8.1) r j = u j (t) r j >

J = 8.1 (LQ ) 159 Q x(t) {}}{ x(t) {}} T { [ x1 (t) x n (t) ] q 1 x 1 (t)..... q n x n (t) + [ u 1 (t) u p (t) ] r 1 u 1 (t).... u(t) T r p u p (t) } {{ } R } {{ } u(t) dt (8.7) Q = Q T, R = R T quadratic form > 2 Q = Q T, R = R T > 2 (8.8) () linear quadratic (LQ) optimal control LQ Point! (LQ ) n (8.1) (i) Q = Q T > (ii) (Q o, A) ( 8.2) Q = Q T = Q T o Q o Q = Q T R = R T > J = ( x(t) T Qx(t)+u(t) T Ru(t) ) dt (8.8) (8.2) 8.1.2 ( 8.3) Point! (LQ ) (8.1) (8.8) (8.8) (8.2) K = K opt ( 8.2) (Q o, A) (7.24) (p.149) ( 8.3) A.4 (p.26)

16 8 K opt := R 1 B T P opt (8.9) P = P opt Riccati equation ( 8.4) PA+ A T P PBR 1 B T P + Q = O (8.1) P = P T > (8.8) J min = x T P opt x (8.11) A.4 (p.26) (8.9) K opt (8.1) (A.58) (p.28) P opt A cl + A T clp opt = Q cl, { A cl := A + BK opt Q cl := K T optrk opt + Q (8.12) (i) 7.2.1 (ii) 7.2.2 A cl := A + BK opt (t x(t) ) 8.2 1 8.1 (p.156) 1 (8.3) J = ( x(t) T Qx(t)+ru(t) 2) dt (8.13) Q, r [ ] [ ] 3 q 1 (1) Q = >, r =1> (2) Q = (q 1 > ), r =1> 6 [ ] PA+ A T P 1 r PbbT P + Q = O, P = P T p 11 p 12 = > (8.14) p 12 p 22 P (8.13) ( 8.4) Riccati

() 197 1 15 1988 1992 1997 ( () ) 1997 () 1998 2 26 27 21 MATLAB/Simulink () Scilab () MATLAB/Simulink c 211 211 6 2 1 1 1 4 11 (12 71) 3 3265 8341 FAX 3 3264 879 http://www.morikita.co.jp/ () // PrintedinJapan ISBN978 4 627 9241 5