(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

Similar documents
QMI_10.dvi

( ) ,

The Physics of Atmospheres CAPTER :

2 X-ray 6 gamma-ray :38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

総研大恒星進化概要.dvi

C: PC H19 A5 2.BUN Ohm s law

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

4 1 Ampère 4 2 Ampere 31

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

PDF

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

II

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

IA

Note.tex 2008/09/19( )

untitled


nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

Microsoft Word - 章末問題

LLG-R8.Nisus.pdf

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

Microsoft Word - 11問題表紙(選択).docx

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

30

温泉の化学 1

森羅万象2018のコピー

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

Microsoft Word - ●ipho-text3目次

QMI13a.dvi

text_0821.dvi

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

修士論文

From Evans Application Notes

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

TOP URL 1

main.dvi

devicemondai

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

untitled

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

放射線化学, 92, 39 (2011)

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

untitled

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

36 th IChO : - 3 ( ) , G O O D L U C K final 1

pdf

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

H22応用物理化学演習1_濃度.ppt

1 2 2 (Dielecrics) Maxwell ( ) D H

Part () () Γ Part ,


2 Zn Zn + MnO 2 () 2 O 2 2 H2 O + O 2 O 2 MnO 2 2 KClO 3 2 KCl + 3 O 2 O 3 or 3 O 2 2 O 3 N 2 () NH 4 NO 2 2 O + N 2 ( ) MnO HCl Mn O + CaCl(ClO

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

untitled

H22環境地球化学4_化学平衡III_ ppt

,,.,,.,.,,,.,.,.,..,.,,.,.,,..,, CMB

薄膜結晶成長の基礎2.dvi


untitled

notes.dvi

atomic line spectrum emission line absorption line atom proton neutron nuclei electron Z atomic number A mass number neutral atom ion energy

PowerPoint Presentation


数学概論I

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

all.dvi

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0


09_organal2

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

2011de.dvi

SO(2)

高知工科大学電子 光システム工学科

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

4_Laser.dvi

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

201711grade1ouyou.pdf

2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40,

Muon Muon Muon lif


輻射の量子論、選択則、禁制線、許容線

( ) ± = 2018

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

B

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

TOP URL 1

Transcription:

( ) ( ) 2002.11

1 1 1.1 (Blackbody Radiation).............................. 1 1.2 (Stefan-Boltzmann s Law)................ 1 1.3 (Wien s Displacement Law)....................... 2 1.4 (Kirchhoff s Law)........................... 3 1.5 ( Radiative Equilibrium Temperature ).................. 4 1.6..................... 5 2 7 2.1 ( Sun )......................................... 7 2.1.1...................................... 7 2.1.2.............................. 7 2.2 (Solar radiation).................................. 8 2.2.1...................... 8 2.2.2 (Solar constant).............................. 10 3 11 3.1............................................ 11 3.1.1............................ 11 3.2 (Terrestrial Radiation)............................... 13 3.2.1 (Greenhouse effect)............................ 13 3.2.2................................ 14 3.2.3.......................... 16 A 19 B (1) (2) 25 I

1 1.1 (Blackbody Radiation) (black body) ( ) 500K ν ( λ ) T Planck Planck Planck B ν (T ) B ν dν = 2hν 3 c 2 {exp( hν (1) kt ) 1}dν B λ dλ = h =6.626 10 34 [Js] k =1.3806 10 23 [J/K] c =2.998 10 8 [m/s] T [K] ν λ ( ν = c λ ) 2hc 2 λ 5 {exp( hc (2) λkt ) 1}dλ 1.2 (Stefan-Boltzmann s Law) T Stefan-Boltzmann Planck B λ (T ) B(T ) = = 0 0 = 2k4 T 4 h 3 c 2 B λ (T )dλ 2hc 2 λ 5 {exp( hc 0 λkt x 3 e x 1 dx ) 1}dλ ( x = hc λkt ) 1

= 2k4 T 4 x 3 h 3 c 2 0 e x (1 e x ) dx = 2k4 T 4 h 3 c 2 x 3 (e x + e 2x + + e nx )dx 0 = 2k4 T 4 h 3 c 2 6 1 n 4 n=1 = 2k4 T 4 h 3 c 2 π 4 15 = 2k4 π 4 15h 3 c 2 T 4 = bt 4 πb(t )=πbt 4 = σt 4 (3) 1 Boltzmann σ = 2π5 k 4 15c 2 h 3 =5.6698 10 8 [W/m 2 K 4 ] σ Stefan- 1.3 (Wien s Displacement Law) W.Wien Wien Planck B λ (T ) λ 2hc 2 ( 5+ hc λ 6 {exp( hc λkt ) 1} λkt λ = λ max 1 5+ x me xm e xm 1 db λ (T ) =0 dλ ) =0 exp( hc λkt ) exp( hc λkt ) 1 = 0 hc λ maxkt = x m 0 x s e x 1 dx = n=1 0 x s dx = s! e nx n=1 1 = s! ζ(s +1) ns+1 (s =1, 2, 3, ) ζ s ζ(s) ζ(2) = π2 π4, ζ(3) = 1.202, ζ(4) = 6 90 2

e xm = 5 5 x m x m = 4.9651 Wien x m = hc λ max kt =4.9561 λ max =2.89 10 3 /T [m] = 2897/T [µm] (4) 1.4 (Kirchhoff s Law) ( j ν ) ( k ν ) B ν (T ) j ν = k ν B ν (T ) (5) ν ε ν = α ν (6) ε ν B ν (T )=α ν B ν (T ) (7) ε ν = α ν =1 (8) ε ν = α ν < 1 (9) Kirchhoff Kirchhoff 40 km Kirchhoff ( local thermodynamic equilibrium : LTE ) 3

1.5 ( Radiative Equilibrium Temperature ) (Radiative equilibrium temperature ; T e ) S (2.2.2 ) (S) (A) 0.30 S (1 A) πr 2 e = 4 πr 2 e σt 4 e (10) r e : T e : σ : 5.67 10 8 [Wm 2 K 4 ] πr 2 e ( ) T e T e = 4 S (1 A) 4 σ = 255 [K] (11) 288 K 3.2.1 1: 4

1.6 2: 6000 K 255 K 2(a) 6000 K 255 K (1.2 ) (1.3 ) 0.4 µm (ultraviolet ; UV) 0.4 0.7 µm (visible) 0.7 100 µm (infrared ; IR) 100 µm 0.7 3 µm (near-infrared) 3 6 µm (midinfrared) 6 15 µm (far-infrared) 15 µm (ultra far-infrared) 0.2 4 µm 0.5µm 4 100 µm 15 µm 4 6 µm (Short wave ; SW) (Long wave ; LW) 2(b) (c) 11 km 0.3µm UV 11 km O 2 O 3 2 H 2 O CO 2 H 2 O CO 2 8 12µm O 3 2 O 2 O 3 (photo dissociation) ( )(photo ionisation) 5

(d) O 3 CH 4 N 2 O H 2 O CO 2 H 2 O 6

2 2.1 ( Sun ) 1.5 10 8 km 3 6.96 10 5 km 1.99 10 35 g 5 10 6 K 5800 K 150 g cm 3 10 7 gcm 3 90% (H) 75% (He) 25% (Fe) (Si) (Ne) (C) (4H He ) 2.1.1 (photosphere) 500 km 4200 6200 K (sunspot) 2000 K (faculae) 11 8000 160000 km 4500 5000 K (choromosphere) (10 6 K) (corona) 2.1.2 3 (absorption line) (Fraunhoferline) ( ) 69 (Fe) 388nm (Na 589.6nm Mg) 518.4nm (H) 656.3nm ( ) 3 1 (Astronomical Unit ; AU) 7

3: : http://www.cc.nao.ac.jp/oao/pub/telescope/sun/sun.htm 2.2 (Solar radiation) 6000 K 6000 K ( 0.4 0.7 µm) 46 % ( 0.7 µm 100 µm) 46 % ( 0.4 µm) 7% 4 4 6000 K 2.2.1 (1) (absorption) ( 0.4 µm ) O 2 O 3 0.3µm ( 0.4 0.7 µm ) N 2 O 2 ( 0.7 µm ) 4 H 2 O CO 2 O 3 ( ) (scattering) 4 8

4: [nm] [Wm 2 nm 1 ] 6000 K (Rayleigh Scattering) (Mie Scattering) 1 1.3 9

2.2.2 (Solar constant) L =3.9 10 26 W (solar luminosity) S 1 (AU) 1.495985 10 8 km = R R S S = L 4πR 2 = 1386.7 106 [W km 2 ] = 1386.7 [W m 2 ] (12) S = 1386Wm 2 (Solar Constant) C.G.Abbot 1970 11 0.1 % 10

3 3.1 46 O 2 CO 2,H 2 O,N 2 (78 %) (20 %) 2% A CO 2 O 2 15 C A 3.1.1 (E t ) (E r ) (E v ) (E e ) (Translational Energy) (photon) ( ) (collision/pressure broadening ) (Lorents width) (Lorentz profile/shape) (Doppler broadening) 11

(Doppler profile/shape) (Void profile/shape) (Rotational Energy) OH 0-1000GHz 3 (Vibrational Energy) 300K (Electronic Energy) ( 2 ) 1. (H 2 O) (asymmetric top) - 6.3µm (8 12µm) 2. (CO 2 ) - 15µm 3. (O 3 ) 12

- 9.6µm 14µm UV-A(320-400 nm), UV-B (280-320 nm), UV-C (200-280 nm) UV-C UV-B UV-A 4. (CH 4 ) 7.6µm 6.5µm 5.2µm 3.3µm 7.6µm 1 20 5. (N 2 O) N-N-O 17µm 7.8µm 4.5µm 7.8µm 7.6µm 1 200 ( ( ) ) 2 Rayleigh Mie ( 2.2.1 (2) ) Mie Rayleigh ( ) 3.2 (Terrestrial Radiation) 3.2.1 (Greenhouse effect) 288 K 1.5 255 K 13

ε ν 0.61 61 % 39 % (H 2 O) (CO 2 ) (CH 4 ) (greenhouse effect) CO 2 90 atm 3.2.2 ( 5) 5: ( ε =1.0) I αi (1 α)i σt 4 g ( T g ) σt 4 ( T ) 14

(1 α)i + σt 4 σt 4 g = 0 (13) αi 2σT 4 + σt 4 g = 0 (14) (13) (14) T = 4 I σ, T g = 4 (1 + (1 α))i σ I α T g = 4 I/σ ( 6) 6: T 1, T 2,T 3 σt2 4 2σT 1 4 = 0 (15) σt1 4 + σt3 4 2σT2 4 = 0 (16) σt2 4 + σtg 4 2σT3 4 = 0 (17) I + σt3 4 σt g 4 = 0 (18) 15

,, I T 1 = 4 σ, T 2 = 2 Iσ 4 T 3 = 3 Iσ 4 T g = 4 4 I σ n T g = 4 n +1(I/σ) 1/4 n 3.2.3 7: (Goody,1964) τ<1, =1, 4 τ 6.5 Kkm 1 7 6.5 Kkm 1 ( 7 ) 16

8: ( Manabe and Strickler, 1964) (L+S) ( ) H 2 O(L+S), CO 2 (L+S), H 2 O+CO 2 (L+S) 8 H 2 O,CO 2 H 2 O+CO 2 7(Goody 1964) O 3 10 km 9 H 2 O H 2 O+CO 2 8 6.5K km 1 O 3 17

9: ( Manabe and Strickler, 1964) H 2 O,H 2 O+CO 2,H 2 O+CO 2 +O 3 18

A (%) N 2 78.09 O 2 20.94 Ar 0.93 CO 2 0.035 Ne 1.8 10 3 CH 4 1.7 10 4 He 5.24 10 4 Kr 1.14 10 4 H 2 5.0 10 5 N 2 O 3.1 10 5 CO 0.4 1.0 10 5 Xe 8.0 10 6 O 3 1.0 10 10 6 H 2 S 0.5 50 10 9 NH 3 0.1 10 10 8 SO 2 2.0 10 10 8 NO 2 0.1 100 10 8 H 2 O 0.1 2.0 ( ) 78 % ( ) 19

NO x 46 27 20 3.1 50 (15µm) (2.7, 4.3µm) ( 10) 20 20

10: 1958 1992 25 km 60 N 90 % 10 % CO 2 H 2 O 3 ( ) 21

(Aerosol) 10 3 10 2 µm 10 7 m ( ) 10 7 10 6 m 10 6 m 11 11: (Mie Rayleigh ) 12 ( ) ( ) ( ) 13 22

12: (CH 4 ) (rainout) 1991 SO 2 14 23

13: ( &, 1980) 14: 24

B (1) 15 16 15: ( 1) 16: ( 2) Kiehl and Trenberth, 1996 15 100 % 0.3 30 % 25

0.6 60 % 16 342W m 2 ( 1364W m 2 ) 15 49 % 26

(2) [ ] (CO 2 ) ( ) ( ) (= σt 4 T ) [ ] (CO 2 ) ( ) CO 2 27

1. 1999 1982 MACS 28