誤差とは? 真の値からの測定値のズレ 真の値 とは何かが問題 測定値から どのような値を求めたいと考えているのか? ちなみに測定値や推定値からどの範囲に真の値があるかの指標は 不確かさ

Similar documents
較正 計測機器に表示される値と それに対応する既知の値 ( 国際標準など ) との関係を 特定の条件下で確認する一連の操作 ( 広辞林 ) なのだが 光赤外のデータ解析での 較正 はそれより広いものも含まれている 例えば データ整約 解析の講義で説明されたダーク補正 フラット補正も較正と呼ばれたりす

統計的データ解析

基礎統計

カイ二乗フィット検定、パラメータの誤差

Hara-statistics

数値計算法

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - Inoue-statistics [互換モード]

様々なミクロ計量モデル†

EBNと疫学

不偏推定量

Microsoft PowerPoint - statistics pptx

線形システム応答 Linear System response

経営統計学

講義「○○○○」

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード]

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - e-stat(OLS).pptx

Microsoft PowerPoint saitama2.ppt [互換モード]

Microsoft PowerPoint - 基礎・経済統計6.ppt

母平均 母分散 母標準偏差は, が連続的な場合も含めて, すべての個体の特性値 のすべての実現値 の平均 分散 標準偏差であると考えてよい 有限母集団で が離散的な場合, まさにその意味になるが, そうでない場合も, このように理解してよい 5 母数 母集団から定まる定数のこと 母平均, 母分散,

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

Microsoft PowerPoint slide2forWeb.ppt [互換モード]

Microsoft PowerPoint 確率レジュメA

情報工学概論

PowerPoint プレゼンテーション

memo

スライド 1

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

Probit , Mixed logit

_KyoukaNaiyou_No.4

calibT1.dvi

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

Microsoft Word - Stattext07.doc

Microsoft PowerPoint - H17-5時限(パターン認識).ppt

Microsoft PowerPoint - zairiki_3

第7章

ビジネス統計 統計基礎とエクセル分析 正誤表

日心TWS

Microsoft Word - t30_西_修正__ doc

スライド 1

Microsoft PowerPoint - statistics08_03.ppt [互換モード]

1.民営化

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378>

統計学的画像再構成法である

Microsoft PowerPoint - statistics pptx

モジュール1のまとめ

スライド 1

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

Microsoft PowerPoint - sc7.ppt [互換モード]

untitled

平成 7 年度数学 (3) あるゲームを 回行ったときに勝つ確率が. 8のプレイヤーがいる このゲームは 回ごとに独 立であるとする a. このゲームを 5 回行う場合 中心極限定理を用いると このプレイヤーが 5 回以上勝つ確率 は である. 回以上ゲームをした場合 そのうちの勝ち数が 3 割以上

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,

測量士補 重要事項「標準偏差」

Microsoft PowerPoint - Statistics[B]

PowerPoint プレゼンテーション

パソコンシミュレータの現状

統計Ⅰ 第1回 序説~確率

禁無断転載 第 3 章統計的手法に用いられる分布 All rights reserved (C) 芳賀 第 1 節我々の身の回りにある代表的分布と性質 1. 分布の表わし方我々の身の回りにある全てのものは ばらつきを持っています 収集したデータを分析していくためには このばらつきがどのような分布にな

Microsoft Word - Chap17

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>

データ解析

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

Microsoft PowerPoint - aep_1.ppt [互換モード]

数値計算法

Microsoft Word - 補論3.2

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

英語                                    英-1

SAP11_03

解析力学B - 第11回: 正準変換

Excelによる統計分析検定_知識編_小塚明_1_4章.indd

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1

<4D F736F F D208EC08CB18C7689E68A E F1939D8C E82E646F63>

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

Python-statistics5 Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (

統計学の基礎から学ぶ実験計画法ー1

確率分布 - 確率と計算 1 6 回に 1 回の割合で 1 の目が出るさいころがある. このさいころを 6 回投げたとき,1 度も 1 の目が出ない確率を求めよ. 5 6 /6 6 =15625/46656= (5/6) 6 = ある市の気象観測所での記録では, 毎年雨の降る

DVIOUT

Microsoft Word - lec_student-chp3_1-representative

Microsoft Word - å“Ÿåłžå¸°173.docx

計算機シミュレーション

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft Word - thesis.doc

デジカメ天文学実習 < ワークシート : 解説編 > ガリレオ衛星の動きと木星の質量 1. 目的 木星のガリレオ衛星をデジカメで撮影し その動きからケプラーの第三法則と万有引 力の法則を使って, 木星本体の質量を求める 2. ガリレオ衛星の撮影 (1) 撮影の方法 4つのガリレオ衛星の内 一番外側を

ベイズ統計入門

Microsoft PowerPoint - 4.pptx

untitled

画像類似度測定の初歩的な手法の検証

Microsoft Word - Stattext13.doc

PowerPoint Presentation

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

コロイド化学と界面化学

自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好

Excelによる統計分析検定_知識編_小塚明_5_9章.indd

Transcription:

誤差と統計 画像処理を行う各段階や較正において 真の物理量からのずれが混入する このズレをどう定式化し どう小さくしていくかについて 具体例を交え解説する はずでしたが誤差が大きくなりました 八木雅文 2007/10/09 微改訂版

誤差とは? 真の値からの測定値のズレ 真の値 とは何かが問題 測定値から どのような値を求めたいと考えているのか? ちなみに測定値や推定値からどの範囲に真の値があるかの指標は 不確かさ

系統誤差とランダム誤差 系統誤差 : 何回やっても同じ量ずれる誤差ランダム誤差 : 毎回再現性のない誤差 機器の目盛りが間違っていて毎回同じ量ずれる 系統誤差機器が不安定で結果に再現性がない ランダム誤差

問題設定 データがあった場合 そこから欲しい情報を最も精度良く取り出すにはどうすればよいか? 例えば光赤外の天文データの場合 天体の光 バックグラウンドの光 それに測定の際の雑音が乗って観測される ここから天体の光を取り出すのが整約 解析

基本方針 まず生の観測量にはどのような誤差が乗っているのかをモデル化する そのモデルから物理量を求める整約 解析の各段階で 誤差がどのように変化するかを追いかける

光の強さ 天球上のある範囲から ある波長範囲の光がどれだけの強さで来ているか つまり ある一定時間にあるエネルギー範囲 (= 波長範囲 ) の光子が観測者側の単位面積をどれだけの数通過するか 単位は光赤外分野では 例えば [erg/sec/cm^2] が良く使われる

真の値? 時間変化しないものは 真の値が何かを言うのは簡単 例えば真空中の光速度 ところが 光はミクロな確率過程を経て天体から出てくるため ある 1 秒間に天体から出てくる光の量は別の 1 秒と同じではない つまり観測値は本質的に一定ではない

光量の誤差とは? その上で 求めたい 真の値 とは 長時間平均 これはある短時間に観測される光量の 分布の代表値 測光の場合の誤差とは 実際に測定あるいは推定した値がどれだけ精度良くその分布の代表値を求められたかという指標

分布と代表値 頻度 分布の代表値として良く使われるのは 平均 中央値 ( メディアン ) 最頻値 ( モード ) など 最頻値 中央値 平均 値

確率分布関数 観測量 X: 観測ごとに変わる量 があったとして X=X0 である確率を p(x0) と書ける場合 関数 p(x) が確率分布関数 X が連続量の時 X0-dX/2<X<X0+dX/2 に入る確率が p(x0)dx になるような p(x) が確率密度分布関数

サイコロの確率分布 例えば 6 面サイコロ 3 個を振って出た目の和を観測量 X とした時の確率分布関数は以下 X p(x) X p(x) X p(x) 3 1/216 9 25/216 15 10/216 4 3/216 10 27/216 16 6/216 5 6/216 11 27/216 17 3/216 6 10/216 12 25/216 18 1/216 7 15/216 13 21/216 8 21/216 14 15/216

平均 平均 (mean) あるいは期待値は 以下で定義される量 E X =mean= X p X dx もっともタチのいい統計量 ただし 外れ値に抜群に弱い 後述 また平均は線形性を満たす E ax by c =ae X be Y c

大数の法則 何回も観測して観測量 X の平均を求めると その値は確率分布 p(x) の平均に近づいていく この性質はメディアンやモードにはない

中央値 ( メディアン ) 中央値 (median) は 文字通り分布の中央の値で 以下のように定義できる median 1 p X dx 2 median p X dx 1 2 外れ値に強いが問題もある 後述

誤差の評価 一回の測定での誤差は 真の値がわからないと求まらない 測定値の 分布 が何らかの方法でわかっていれば 誤差の典型値 を計算できる 例えば良く使われるのが標準偏差 ( 誤差の二乗平均 )σ などと書かれる 但し σ は正規分布の標準偏差に相当する別の量の場合もある

誤差の推定 観測値の母分布がわかる場合 一回の観測値が典型値からどれだけずれるか ( 誤差 ) の分布も推定できて 典型値も求められる 観測値の母分布の関数形はわかるあるいは仮定できるが パラメタが分からない場合 母分布のパラメタを推定

誤差と不確かさ なお 測定値が真の値からどれだけずれているか ( 誤差 ) と 測定値からどの範囲に真の値が収まっているか ( 不確かさ ) は 別概念 なのだが 以下ではこの辺りが曖昧に扱われている

分散 標準偏差 分散は期待値 E(X) を使って V X = X E X 2 p X dx と書ける 分散の平方根が標準偏差である 分散には以下の性質がある V ax b =a 2 V X b

MAD MAD(Median of Absolute Deviation) は 標準偏差に相当する統計量 あまり広く使われてないが 実は便利な量 MAD=Median( X-median ) 各データ点からメディアンを引いた値の絶対値のメディアン 正規分布の場合 MAD=0.6745 σ

サイコロ 3 つの場合 分布の典型値は 10.5 分散はゴリゴリと計算すると 8.75 標準偏差は 2.96 程度 つまり σ=2.96 これが理論から求まる誤差の典型値でこれを略して 誤差 と呼ぶことも多い この場合 3σ の範囲内と言えば 10.5±8.88 である

サイコロを振ってみた さて 実際サイコロ 3 つを振ってみた 14,11,14,13,13,13 この 6 回の試行 ( 観測 ) それぞれを X1,X2...X6 とすると 本来の平均 10.5 との差 +3.5,+0.5,+3.5,+2.5,+2.5,+2.5 が 本来の意味での誤差 14,11,14,13,13,13 の平均は 13 標準偏差は 1 これを標本平均 標本標準偏差と呼ぶ

まとめ 誤差とは1 回の観測量と 真の値 の差が本来の意味 しかし通常使われるのは 誤差の典型値 の意味であり この典型値として標準偏差が良く用いられる 測光の場合 真の値 とは分布の典型 値である

誤差の推定 以下では 1) そもそも誤差はどうなるはずかから考え 誤差の伝播を使って観測量の誤差を推定する ( 限界等級の計算 ) 2) 観測量の統計を考えた上で 解析での誤差の広がりを推定する ( 画像の並行移動 ) を例として挙げる

具体例 : 限界等級 撮像データの測光の限界等級とは 天体の測光値 (signal) が 測光誤差 (noise) の何倍かという比 S/N がある一定値 例えば 3 以上の天体が何等か という値である 例えば 28 等の天体が S/N=5 の時 S/N=5 での限界等級が 28 等 という

等級誤差と S/N 等級のランダム誤差 Δm と S/N との関係は m= 1.086 S / N 例えば 0.1 等以下の精度で測光をしたいのであれば S/N>10.86 が必要である

限界等級 この場合の限界等級は 測光精度 の意味での限界等級であって 検出限界の意味での限界等級ではない つまり測光精度の意味での限界等級が同じであっても 天体検出の割合が同じであるとは全く限らない 全然別の話

という話をしたら 検出の限界はどう推定するのか? と質問されたのですが これを理論から解析的に求めるのは極めて困難 正方形が N 個繋がった図形の数を数えるとかいう数学の未解決問題に関連してたりします こんなペントミノとか

S/N の S 露出時間を t システムの透過率を f 天体の光度を L とすると 検出器で検出される信号は形式的に S=f t L ( 単位は光電荷数 ) と書ける

S/N の N 測光での大きな誤差源の一つは機器のノイズ ( 読み出し雑音 ) 読み出し雑音は露出時間によらず一定であると考えてよい 1 ピクセルあたりのこの誤差を N1=r と書くことにする 単位は電荷数に換算しておく

さらっと書きましたが N1=r と書いたこの意味は ある画素での観測量を X とし 読み出し雑音を δx とした場合に δx の標準偏差が r であるという意味 式で書くとこう E X =0 V X =E X 2 = N1 2 =r 2

S/N の N もう一つは測定される電荷の分布の広がり ( ポアソン雑音 ) 素子に溜まった総電荷数を n ピクセル数を A とすると N2= n= S f t A s SKY t A s dark となる この N1,N2 の合成が誤差 N となる

何故 N2= n 天体から出てくる光の量は ポアソン分布 に従うと考えられる このポアソン分布とは非常に確率の低い事象について試行を非常に多数行った場合に起きた事象の数の分布であり 二項分布の極限である

二項分布 ある確率 p で事象が起きる試行を N 回行ったとき X 回事象が起きる確率分布を二項分布と呼び B(N,p) と書く 平均は Np 分散は Np(1-p) 例えば N=5, p=1/6 の時 (6 面サイコロ 5 個振った時に 1 の目の出る数の確率分布 ) は B(5,1/6) である

B N, p X = N C X N C X = B 5, 1 6 0 = 1 1 6 B 5, 1 6 2 = C 5 2 二項分布 N! X! N X! 1 6 2 p X 1 p N X 5~0.402 16 5 2 1 ~0.093

平均の計算 ( おまけ ) N E X = X =0 X N C X p X 1 p N X ここでモーメント母関数と呼ばれる以下の関数を導入する N t =E e t X = X=0 N = X =0 e t X N C X N C X = pe t 1 p N p X 1 p N X p e t X 1 p N X

平均の計算 ( おまけ ) これを t で微分すると ' t = 一方で N X=0 N ' 0 = X =0 N E X = X =0 X e t X N C X X N C X p X 1 p N X p X 1 p N X ' t =Np e t p e t 1 p N 1 ' 0 = Np X N C X p X 1 p N X = Np

分散の計算 ( おまけ ) N V X = X =0 X Np 2 N C X p X 1 p N X 平均同様にモーメント母関数を使うと N ' ' t = X =0 X 2 e t X N C X p X 1 p N X ' ' t = Np e t p e t 1 p N 1 N N 1 p 2 e 2t p e t 1 p N 2 ' ' 0 =Np N 2 p 2 N p 2

分散の計算 ( おまけ ) N V X = X=0 X 2 2 Np X Np 2 N C X p X 1 p N X に代入して V X = Np N 2 p 2 Np 2 2 Np Np Np 2 =Np 1 p が導かれる なお (X-Np) 周りの母関数を考えたほうが計算は楽

ポアソン分布 平均 E(X)=k 分散 V(X)=k p k x = k x e k x! 二項分布は平均は Np 分散は Np(1-p) だったのだが ポアソン分布は p<<1 の極限なので k=np=np となる 従って標準偏差は k

ポアソン分布の和 ポアソン分布に従う X Y という 2 つの変数があったとき 和 X+Y もポアソン分布に従う 二項分布の和は p が等しければ二項分布になるが その他は二項分布には必ずしもならない なお 差 X-Y はポアソン分布には従わない

余談 X,Y がポアソン分布なら和 X+Y もポアソン分布に従うのに 何故 X-Y はポアソン分布じゃないのか気になりませんか? 直接の回答じゃないけど以下をどうぞ 自然数 A,B の和 A+B は自然数 さて A-B は自然数??

ポアソンの和 今回の場合 天体から出てくる光はポアソン分布に従い 空からの光もポアソンに従っていると考え またダーク電流もポアソン分布に従っていると考える ( ことにする ) この結果この独立な 3 つの量を足した 電荷数 もポアソンに従うと考えて良い ここで中間赤外辺りだと 星から出る光は縮退の影響でポアソンに従わないという指摘を頂き調査中です

ポアソン分布の定数倍 ポアソン分布の定数倍はポアソン分布にならない これは要注意 電荷数はポアソン分布に従うが これが FITS になって出てきた値はゲインで割り算されているので ポアソン分布には従わない これが式を電荷数で書いた理由

正規分布 別名ガウス分布 誤差は良くこの分布だと仮定される 平均 m 標準偏差 σ の場合 N m, 2 x = 1 x m 2 e 2 2 2 2 ポアソン分布は k が大きければ正規分布で良く近似できる

誤差の伝播 さて このように 2 種の誤差源があった場合 その合成に用いられるのが 誤差の伝播の式 一般的には分散 ( 標準偏差 ) が演算によってどのように変わるかをまとめたもの

ここでの基本方針 確率変数 X,Y と関数 f(x,y) があった場合 f(x,y) の誤差は 1) 確率変数 X と誤差 δx を求める Y も同様 2) 期待値 E(f(X,Y)) を求める 3) 分散 V(f(X,Y))=E((f(X,Y)-E(f(X,Y))^2) つまり観測値から期待値を引いた二乗平均を求めるという方針で求める

誤差の伝播の例 X,Yの平均を, X Y と書き 標準偏差を, とする X Y この時 E(X+Y)= X Y V X Y =E X Y X Y 2 =E X X Y Y 2 =E X X 2 2 E X X Y Y E Y Y 2 = X 2 Y 2 2 E X X Y Y

共分散 E X X Y Y ここで出てきたを共分散と呼んで Cov X, Y と書く 共分散が0の時 X Yは独立という 誤差の伝播で変数が独立かどうかは極めて重要 しかし実際のデータでは独立かどうか判断するのは簡単とは限らない

測光の S/N V X Y = X 2 Y 2 2Cov X,Y 測光誤差の場合 各ピクセルの読み出し雑音とポアソン雑音は全て独立と考えられるので ピクセル数をAとおくと N 2 =A N 1 2 N 2 2 N = A r 2 S f t A s SKY t A s dark S N = f t L A r 2 t f L A s SKY A s dark

測光の S/N S N = t r 2 f t L A r 2 t f L A s SKY A s dark f L A s SKY A s dark S N ~ f L r t t r 2 f L A s SKY A s dark の場合は S N ~ f L f L A s SKY A s dark t

しかし 実際には露出時間には上限がある サチり ガイドの影響 宇宙線の増加従って 露出をいくつかに分割して撮ることになる これを足し合わせた結果は 必ずしも総露出時間の平方根で S/N が上がるとは限らない

平均とメディアン 分散で N を評価した場合 S/N を最も高くする足し合わせ方は単純平均 しかし 単純平均は外れ値に弱い そこで 複数の露出の足し合わせには sigma-clipped mean や メディアンが用いられる

メディアン 例えば 平均 100 分散 20 の観測値のうち 1 つに非常に大きなノイズが乗った場合 113,92,66,10000,104,68,90 これを単純平均を取ると ~1500 一方 median は 92, MAD で σ を推定した上での 3σ-clipped mean は 89 単純平均よりは遥かに良い推定

メディアンの誤差 しかし メディアンは単純平均よりも誤差が大きくなる 分散 1 の正規分布の平均とメディアンを比べると N が十分大きいところでは s mean = 1 N s median = 1.25 N

メディアンの誤差 N s(median) s(1-clipped) 3 1.16 1.22 4 1.09 1.15 5 1.20 1.12 6 1.14 1.10 7 1.21 1.08 1つだけclip された場合とメディアンでは N>4 では clipped の方が誤差が小さい

系統誤差の影響 一方 1σ 程度以下の系統誤差 例えば画像の足し合わせではバックグラウンドの引き残りなど に対しては メディアンは引きずられにくいが clipped mean は引きずられる 外れ値が常に大きい側に偏る場合 メディアンは系統的にずれる

まとめ 天体からの光の S/N のうち ノイズはポアソン雑音と読み出し雑音の合成であると考えられている 露出時間が長くなると理想的な状態でも S/N は露出時間の平方根でしか上がらない メディアンよりも単純平均や clipped mean の方がランダム誤差は少ない

続く? いや この辺で時間切れじゃないかなと

画像の並行移動 回転も類似の問題があるのだが ここでは並行移動だけ考える 画像を非整数ピクセルだけ並行移動させたい 例えば位置を合わせて足し合わせる場合など

画像の差 ( 余談 ) 画像の差し引きの時は特に精度が必要になる ( 右は 0.2pixel ずれた場合 )

並行移動 並行移動の方法として 線形補間のリサンプリングを考える 例えば x 軸方向に -a (0<a<1) だけシフトさせるときは v x' = 1 a v x a v x 1 x x+a x+1

実際にシフトさせた 左がシフト前 右は x+0.5, y+0.5 シフト ピクセルあたりのノイズは減っている左 67ADU, 右 43ADU

誤差の伝播 各点での誤差を σ とする X 方向だけ考えて v x' = 1 a v x a v x 1 とする 各点の誤差が独立であれば この分散は V 1 a v x a v x 1 = 1 a 2 2 a 2 2 a=0.5 で 0.5 2 と小さくなる

S/N は上がるのか? 一般的には上がらない S N = f t L A r 2 t f L A s SKY A s dark まず この式を求めた際に 各点での誤差の独立を仮定していたが 並行移動の結果 独立ではなくなる

S/N はあがらない また S/N はその天体の光量をどれだけ正しく見積もれたかの指標だと思うと 並行移動によってその天体周りの光量がほとんど変化しない ( 開口の端での出入りだけ ) ので S/N が変わるのはおかしい

画像変形に伴う S/N これは単純な線形補間による並行移動の例だが 他の画像変形も行うことによりピクセル当たりのノイズが減る場合が多い しかし 天体全体の光量が同じならば S/N は結果的に変化していないと考えるのが妥当

まとめ 画像変形を行うとピクセルあたりの S/N が見かけ上向上して見えることがある しかしこの場合 隣り合ったピクセルとの共分散も高くなり 一定以上の範囲での S/N は向上しない この点は騙されやすいので要注意