基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Similar documents
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

基礎数学I

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

: , 2.0, 3.0, 2.0, (%) ( 2.

確率論と統計学の資料

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl

b3e2003.dvi

newmain.dvi

Note.tex 2008/09/19( )


24.15章.微分方程式

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

第86回日本感染症学会総会学術集会後抄録(II)

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Part () () Γ Part ,

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

TOP URL 1


201711grade1ouyou.pdf

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

( ) ± = 2018

<4D F736F F D B B BB2D834A836F815B82D082C88C60202D B2E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

構造と連続体の力学基礎

tokei01.dvi

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx


最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

meiji_resume_1.PDF

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law


24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

December 28, 2018

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

( ) Loewner SLE 13 February

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

10:30 12:00 P.G. vs vs vs 2


6.1 (P (P (P (P (P (P (, P (, P.

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

フリーソフトでつくる音声認識システム ( 第 2 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)


<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2




: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

( ( 3 ( ( 6 (

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

6.1 (P (P (P (P (P (P (, P (, P.101

ii th-note

本文/目次(裏白)

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

TOP URL 1

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P


<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

量子力学 問題

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

2. label \ref \figref \fgref graphicx \usepackage{graphicx [tb] [h] here [tb] \begin{figure*~\end{figure* \ref{fig:figure1 1: \begin{figure[

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

II

, = = 7 6 = 42, =

第85 回日本感染症学会総会学術集会後抄録(I)

untitled

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

untitled

i

2

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

QMII_10.dvi

プログラム

Transcription:

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです.

i +α 3 1 2 4 5 1 2

ii 3 4 5 6 7 8 9 9.3 2014 6

iii 1 1 2 5 2.1 5 2.2 7 2.3 9 2.4 11 2.5 15 2.6 19 2.7 22 2.8 30 2.9 35 2.10 39 41 3 42 3.1 42 3.2 45 3.3 47 3.4 53 3.5 57 3.6 58 59 4 60 4.1 60 4.2 63 4.3 65 4.4 65

iv 5 70 5.1 70 5.2 83 94 6 95 6.1 95 6.2 98 6.3 101 6.4 104 109 7 110 7.1 M/M/S/S/N 110 7.2 M/M/S/S 117 123 8 124 8.1 M/M/S 124 8.2 M/M/S/K 130 136 9 137 9.1 M/M/1 137 9.2 M/M/1/K 143 9.3 M/G/1 150 171 172 A 174 B 176 C 178 D 179 E 182 F 184

v G 186 H B 191 I C 192 193 211 A α alpha B β beta Γ γ gamma Δ δ delta E ε epsilon Z ζ zeta H η eta Θ θ theta I ι iota K κ kappa Λ λ lambda M μ mu N ν nu Ξ ξ xi O o omicron Π π pi P ρ rho Σ σ sigma T τ tau Υ υ upsilon Φ φ phi X χ chi Ψ ψ psi Ω ω omega

vi 0 0 1 1 1(A) A nc k n k A c A F c (x) X E[X] X I Im[s] s i L max[x 1,...,x n] x 1,...,x n min[x 1,...,x n] x 1,...,x n N(μ, σ 2 ) μ σ 2 O 0 o(δt) Δt 0 Δt 0 np k n k P (A) A P (A, B) A B P (A B) B A Re[s] s A T A U( ) V [X] X Γ ( ) γ( ) δ( ) φ f ( k) f (k) F ˆP! ω A ω A (a, b) [a, b] (a, b] [a, b) ( ) n k f k f k f p ω A ω A a<x<b a x b a<x b a x<b n k nc k A(0,t] a a c B B S B(0,t] C S D(0,t] H H(t) h(t) h K (0,t] { } { } B (0,t] { } C (0,t] { } { } { } H { } H { } E[H]

vii L L q N P p i,j P (t) p i,j (t) Q q i,j q k S t W W (t) w(t) W q W q(t) Wq c(t) Wq c (0) X(t) {X(t)} γ Δt η λ λ k μ μ k π π j π(t) π j (t) ρ { } { } i j P (i, j) t i j t P(t) (i, j) i j Q (i, j) { } { } k { } W W W q Wq t {} k {} { } k { } π j t t j π(t) j 2 A, B F (x) F X (x) X F X,Y (x) X Y F X Y =y (x) Y = y X f(x) f X (x) X f X,Y (x) X Y f X Y =y (x) Y = y X p(x) p X (x) X p X,Y (x) X Y p X Y =y (x) Y = y X S X, Y Ω ω 3 I R T (0,t] (0,t] T c(0,t] (0,t] 4 L L q W n n W W q

viii 5 S i i T i,j i j z f i,j (n) i j n P (n) n p i,j (n) X(n) π(n) π j (n) i j n P (n) (i, j) n n n j π(n) j a i 6 i M {X m(t)} m p m m t n n t n t n {Y (t)} λ m 7 m 9 A A n a k C j J L n L(t) R r(t) T t(0,τ] U j Y Y (t) y(t) α n δ n + n k j n t R (0,τ] t j Y Y n n a s b k b S G S ν π S k

1 1 traffic congestion 1 1.1 A B A B 1 2 5 1 0.01 1

2 1 1.1 A-B 2 1.2 1 50 10 1 0.1 1.2 1 2 20 Agner Krarup Erlang 1

1 3 traffic theory 3 queueing 1 theory 2 4 5 6 1 7 2 8 Paul Baran Donald Watts Davies 1 1 queuing queueing

4 1 3 1.3 1 100 1 Gbps 1 1KB 10 5 1.3 9 1 G giga 10 9 10 bps bit per second 1

5 2 2.1 trialsample sample space Ω event 2.1 Ω Ω = { } S S = {φ, { }, { }, { }} φ S (1) Ω S (2) A S A c = {ω; ω A} S (3) A S B S A B S

6 2 (1) (2) Ω c = φ (A c B c ) c = A B (2.1) (2) (3) A B A B A B A B = φ A B A B exclusive 2.2 3 A B 1 B 2 A = { 3, 6 }, B 1 = { 1, 3, 5 }, B 2 = { 2, 4, 6 } A B 1 = { 1, 3, 5, 6 }, A B 1 = { 3 }, A c = { 1, 2, 4, 5 } B 1 B 2 = φ B 1 B 2 Ω A (1) 0 P (A) 1 (2) P (Ω) =1 ( ) (3) A 1,A 2,A 3,... P A i = i i P (A i ) P (A) A probability (1) (3) 2.3 Ω = { } { } { } P (Ω) =P ( ) =P ( )+P( ) =1 { } { } P ( ) =P ( ) = 1 2

42 3 3.1 3.1 n (n 1) + (n 2) + +2+1= (n 1)n 2 (3.1) 3.2 switching system 3.1 3.2

3.1 43 switching exchange circuit switching store-and-forward switching 3.1.1 3.2 1 3 3.3 3.3 1 3 3 1 3 1 3 3 1 1 3 3 3 2 3

44 3 3.1.2 Internet LAN Local Area Network 3.2 1 3 3.4 3.4 1 PDU Protocol Data Unit protocol 1 3 PDU PDU 2 3 PDU PDU buffer 3.2 router hub 1 PDU 48 3 PDU message packet cell PDU PDU

3.2 45 3.5 LAN Ethernet ( ) header 6 DA Destination Address 6 SA Source Address 2 PT Protocol Type 3 IP Internet Protocol 46 1500 I Information FCS Frame Check Sequence trailer 3.5 PDU PDU 3.4 3.2 1 call 1

46 3 switching system 3.6 source trunk switching element N S N S 3.6 bottleneck 1 holding

3.3 47 holding time service time 1 1 loss system 2 waiting system loss lost call crossbar switch 3.7 3.7 3.3 1 1 1

48 3 (0,t] A(0,t] B(0,t] B B = B(0,t] A(0,t] (3.2) B loss probability h (0,t] T (0,t] T (0,t]=A(0,t] h (3.3) T (0,t] (0,t] offered traffic T (0,t] a a = T (0,t] t = A(0,t] h t (3.4) a offered load (3.4) erlang erl (0,t] T c (0,t] T c (0,t]=(A(0,t] B(0,t]) h (3.5) T c (0,t] (0,t] carried traffic carried load a c a c = T c(0,t] t = (A(0,t] B(0,t]) h t = A(0,t] h t ( 1 B(0,t] ) A(0,t] = a(1 B) (3.6) (3.6) B B = a a c (3.7) a a a c

3.3 49 3.8 a a c 3.8 S (0,t] T c (0,t] St St T c (0,t] η = T c(0,t] St = a c S (3.8) η utilization 3.1 3.9 S =2 60 A(0, 60 ] = 13 [ ] B(0, 60 ] = 1 [ ] B B = B(0, 60 ] A(0, 60 ] = 1 13 0.077 3.9

70 5 5.1 Markov process Markov chain 5.1.1 {X(n)} 2.16 n =0, 1, 2,... 5.1 5.1

5.1 71 0, 1, 2,...,n i 0,i 1,i 2,...,i n n +1 j P (X(n +1)=j X(0) = i 0,X(1) = i 1,...,X(n) =i n ) P (X(n +1)=j X(0) = i 0,X(1) = i 1,...,X(n) =i n ) = P (X(n +1)=j X(n) =i n ) (5.1) Markov property {X(n); n =0, 1, 2,...} i 0,i 1,...,i n j n (5.1) discrete-time Markov chain i j n P (X(n +1)=j X(n) =i) =P (X(1) = j X(0) = i) (5.2) stationary (5.2) p i,j P (X(1) = j X(0) = i) =p i,j (5.3) p i,j i j transition probability 5.2 state transition diagram 0 5.2 p 0,0 =1 α, p 0,1 = α, p 0,2 =0, p 0,3 =0 p 1,0 =0, p 1,1 =0, p 1,2 =1, p 1,3 =0 p 2,0 =0, p 2,1 =0, p 2,2 =0, p 2,3 =1 p 3,0 =0, p 3,1 = β, p 3,2 =1 β, p 3,3 =0 5.2

72 5 5.1 5.2 X(0) initial state i 0 i 1,i 2,...,i n P (X(0) = i 0,X(1) = i 1,...,X(n) =i n ) = P (X(0) = i 0,X(1) = i 1,...,X(n 1) = i n 1 ) P (X(0) = i 0,X(1) = i 1,...,X(n) =i n ) P (X(0) = i 0,X(1) = i 1,...,X(n 1) = i n 1 ) = P (X(0) = i 0,X(1) = i 1,...,X(n 1) = i n 1 ) P (X(n) =i n X(0) = i 0,X(1) = X 1,...,X(n 1) = i n 1 ) (5.4) (5.1) P (X(0) = i 0,X(1) = i 1,...,X(n) =i n ) = P (X(0) = i 0,X(1) = i 1,...,X(n 1) = i n 1 ) P (X(n) =i n X(n 1) = i n 1 ) = P (X(0) = i 0,X(1) = i 1,...,X(n 1) = i n 1 )p in 1,i n (5.5) P (X(0) = i 0,X(1) = i 1,...,X(n) =i n ) = P (X(0) = i 0 )p i0,i 1 p i1,i 2 p in 1,i n (5.6) i S i P (S i k) = k 1 m=0 p m i,i(1 p i,i ) (k =1, 2, 3,...) (5.7) S i S i i sojourn time 5.1.2 2.10

5.1 73 initial distribution p i,j (i, j =0, 1, 2,...) n X(n) j π j (n) P (X(n) =j) =π j (n) (5.8) π j (n) X(n) π j (n) j π(n) [ π 0 (n),π 1 (n),π 2 (n),...]=π(n) (5.9) n 0 i n j 1 p i,j (n) P (X(n) =j X(0) = i) =p i,j (n) (5.10) p i,j (n) i j n (5.10) n =1 (5.3) n =1 (1) p i,j i j m n P (X(m + n) =j X(m) =i) =P (X(n) =j X(0) = i) (5.11) i j n p i,j (n) (i, j) P (n) p 0,0 (n) p 0,1 (n) p 0,2 (n) p 1,0 (n) p 1,1 (n) p 1,2 (n) = P (n) (5.12) p 2,0 (n) p 2,1 (n) p 2,2 (n)...... P (n) n transition probability matrix P (0) = I (5.13) 1 1, 2, 3,...,n 1

74 5 I n =1 (1) P 5.2 1 α α 0 0 P = 0 0 1 0 0 0 0 1 0 β 1 β 0 n P (n) i j 0 p i,j (n) 1 (5.14) n i p i,j (n) = 1 (5.15) j P (n) 1 n j π j (n) = i π i (0)p i,j (n) (5.16) π(n) =π(0)p (n) (5.17) P (n) (i, j) p i,j (n) (5.10) p i,j (n) =P (X(n) =j X(0) = i) = P (X(0) = i, X(n) =j) P (X(0) = i) (5.18) (5.6) P (X(0) = i) i 1,i 2,...,i n 1 P (X(0) = i 0,X(1) = i 1,...,X(n) =i n ) P (X(0) = i i 2 i 0 ) n 1 i 1

5.1 75 = p i0,i 1 p i1,i 2 p in 1,i n i 1 i 2 i n 1 (5.19) p i,j (n) = p i,i1 p i1,i 2 p in 1,j i 1 i 2 i n 1 (5.20) P (n) =P n (5.21) (5.17) (5.21) π(n) =π(0)p n (5.22) π(0) P n π(n) P n (5.21) i m k n j i k j m n E p i,j (m + n) = k p i,k (m)p k,j (n) (5.23) P (m + n) =P (m)p (n) (5.24) (5.23) (5.24) Chapman Kolmogorov equation 1 (5.24) n =1 P (m +1)=P (m)p (5.25) Kolmogorov s forward equation 1 m =1 P (n +1)=PP(n) (5.26) Kolmogorov s backward equation (5.25) (5.26) (5.21)

76 5 5.1 5.2 α =0.7 β =0.5 π(0) = [ 0.15, 0.05, 0.5, 0.3 ] 5.3 5.3 5.2 5.1 5.1.3 i j i j reachable i j i j j i i j i j i i i j j i i j j k i k equivalence class irreducible

211 e x 18, 26 FCFS 64 HOL 64 k 37 LCFS 64 M/G/1 150 M/M/1 137 M/M/1/K 143 M/M/S 124 M/M/S/K 130 M/M/S/S 117 M/M/S/S/N 110 n 73 n 73 PASTA 100 PDU 44 PR 64 PS 64 RR 64 t 84 t 84 2, 48 B 120 B 121, 191 C 127 C 128, 192 117 120 124 127 20 21 46 119 79, 91 110 114 112 9 43 19 6 39 13 94 6 81 13 11 27 152 152 77, 91 20 19 170 16 61 4, 65 56 22 76, 91 60 79, 93 10 47 48 48 40 30 30 31 23 63 1, 45 43 42 46 117 47 1, 48 114, 120 75, 86 75, 85 77, 91 160 60 61 47, 61 51, 61 140 113, 120 81, 93

212 5 81 5 58 21 61 61 101 78, 91 78 31 30 31 51 104 95 101 95 110 9 7 32 32 32 33 40, 65 40 71 89 40 72 73 77 46 23 50, 65 19 50 77, 91 6 44 45 40 71, 84 73, 84 88 88 7 201 47 47 82, 92 61 123 72 47 36 181 180 43 46 75, 85 24 179 81 56 71, 83 81, 91 181 46 76, 91 53, 60 56, 60 2, 50, 60 76, 91 8, 32 56 1 3 45 10 15 94 6 44 45 48 48 11 16 45 4, 44 78 19 5 5 165 52 122, 127 20 1 174 16 64 44 44 24 12 12 22 8 45 165 15 98 54, 98 17 46 12 12 159 46

213 47, 57 60 60 60 3, 60 61 2, 127 70 71, 83 63 70 13 59 85 44 44 23 61 5 47 64 188 26, 186 12 40 71 66 49, 65 77, 91 12 40 83 5 165 166 166

1987 1988 1991 1993 2000 C 2014 2014 6 9 1 1 1 4 11 102 0071 03 3265 8341 FAX 03 3264 8709 http://www.morikita.co.jp/ Printed in Japan ISBN978 4 627 85221 1