(pdf) (cdf) Matlab χ ( ) F t

Similar documents
untitled


tokei01.dvi

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

k2 ( :35 ) ( k2) (GLM) web web 1 :

waseda2010a-jukaiki1-main.dvi

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

-- Blackman-Tukey FFT MEM Blackman-Tukey MEM MEM MEM MEM Singular Spectrum Analysis Multi-Taper Method (Matlab pmtm) 3... y(t) (Fourier transform) t=

10:30 12:00 P.G. vs vs vs 2

こんにちは由美子です

数理統計学Iノート

Part () () Γ Part ,

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

st.dvi

151021slide.dvi

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

確率論と統計学の資料


こんにちは由美子です

CVaR

ohpmain.dvi

28

untitled

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

keisoku01.dvi

1 Tokyo Daily Rainfall (mm) Days (mm)

自由集会時系列part2web.key

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

201711grade1ouyou.pdf

renshumondai-kaito.dvi

untitled

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

最小2乗法

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

「スウェーデン企業におけるワーク・ライフ・バランス調査 」報告書

こんにちは由美子です

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

分布

kato-kuriki-2012-jjas-41-1.pdf

Microsoft Word - 信号処理3.doc

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

PDF

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

2 1 Introduction

ばらつき抑制のための確率最適制御


SFGÇÃÉXÉyÉNÉgÉãå`.pdf

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

( ) 1.1 Polychoric Correlation Polyserial Correlation Graded Response Model Partial Credit Model Tetrachoric Correlation ( ) 2 x y x y s r 1 x 2

.. F x) = x ft)dt ), fx) : PDF : probbility density function) F x) : CDF : cumultive distribution function F x) x.2 ) T = µ p), T : ) p : x p p = F x

meiji_resume_1.PDF

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

TOP URL 1

基礎数学I

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2

講義のーと : データ解析のための統計モデリング. 第2回

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

-- o C inter Arctic Oscillation Index Sapporo Air-Temp Matlab randn (red n

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

数値計算:有限要素法

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

統計的データ解析

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like


AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

seminar0220a.dvi

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

³ÎΨÏÀ

日本内科学会雑誌第102巻第4号

1 1 [1] ( 2,625 [2] ( 2, ( ) /

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.


populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

01.Œk’ì/“²fi¡*

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

ii

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

液晶の物理1:連続体理論(弾性,粘性)

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

The Physics of Atmospheres CAPTER :

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

Transcription:

(, ) (univariate) (bivariate) (multi-variate) Matlab Octave Matlab Matlab/Octave

--...............3. (pdf) (cdf)...3.4....4.5....4.6....7.7. Matlab...8.7.....9.7.. χ ( )...0.7.3.....7.4. F....7.5. t-...3.8....4.8.....4.8.....5.8.3....6.8.4....8.8.5....8.8.6....8.9....9.9.....9.9.....0.9.3....0.9.4.....9.5.....0....3

--... (population) (sample) (parameter) population mean µ ( population variance)σ ˆµ (statistics) (sample mean)x (sample variance)s statistics statistics.. (discrete) (continuous) (trial) (event) (elementary event) Ω trial, event (stochastic variable) stochastic

-3-0~ (probability) /6.3. (pdf) (cdf) X x (probability function) i PX ( = xi ( )) = W = Wi ( ) (.) xi () P W xi,,...,6 P()=P()=...=P(6)=/6 X X x x+ x (probability density) (probability distribution function, PDF) Px ( < X x+ x) = Wx ( ) x W X x F( x) = P( X x) (.) (distribution function) (cumulative distribution function, CDF) (cumulative probabilities) PDF CDF x F( x) = W( x) dx (.3) d W( x) = F( x) (.4) dx PDF (, ) x CDF CDF α x x= W ( α) CDF PDF CDF 0 0 0

-4- (inverse of cumulative distribution function, ICDF) PDF CDF.4. (expected value) EX ( ) = Pxi ( ( )) xi ( ) (.5) i EX ( ) = Pxxdx ( ) (.6) Ω Ω X.5. xi ( ), yi ( ),,..., y () i = ax () i + b (.7) a b x, y ( x i) x() i x, y () i y() i y a, b (residual) ε = ( ax + b y ) i i { a x i b y i abx i ax iy i by i} { a x i b y i ax iy i} = + + + = + + i i ) a ( x = y = 0 b ( axi xiyi) a ε = b b ε = b=0

-5- x () i y () i ( x() i x)( y() i y) a = = x () i ( x() i x) a (regression coefficient) x, y ( ) (.8) ye( i) y = a x() i x (.9) e (estimated value) ( / x ) (.8) (.8) r = ( xi ( ) x)( yi ( ) y) ( xi ( ) x) ( yi ( ) y) (correlation coefficient) r ρ x y S, S x y (.0) ( xi () x)( yi () y) r = = x() i y() i xy S S S S (.) ( ) x y x y S y a = r (.) S x (covariance) Cxy = ( x() i x)( y() i y) (.3) (normalize) ± (residual)

-6-, y () i, r y () i = y() i y () i r e (.9) Sy Sy [ yr() i ] [ ye() i y] = y() i r ( x() i x) y r ( x() i x) + y y Sx Sx Sy Sy = ( yi () y) r ( xi () x) r ( xi () x) S S = rs = x x y rsy 0 Sy = [ y() i y] = [ ye() i + yr() i y] = + = + ( ye() i y) ( yr() i ) ( ye() i y) yr() i S y ( ye() i y) = r ( x() i x) = r Sy x S r - r 0.5, 0.6, 0.7 /4, /3, / 0.7 (dominant)

-7-.6. (Monte-Carlo method) (Monte-Carlo simulation) Matlab randn rand (0,). (-, ) n m (PDF) n=00 m=00, 000, 0000 hist v x=-0.3:0.0:0.3;(x=-0.3, -0.8, -0.6 ) bin vh vh=hist(v,x)

-8-..7. Matlab ( ) t F t F t F Matlab Statistical Toolbox Octave statistics/distribution. Matlab statistics Toolbox Octave statistics/distribution PDF CDF ICDF x CDF normpdf [,mu,sigma] 0 (PDF) (CDF) (ICDF) normpdf(x[,mu,sigma])) normal_pdf chipdf chi_pdf F fpdf(x,,) f_pdf normcdf normal_cdf chicdf chi_cdf fcdf f_cdf norminv normal_inv chiinv chi_inv finv f_inv

-9- t tpdf(x,) tcdf tinv t_pdf t_cdf t_inv.7.. (normal distribution) (Gaussian distribution) (pdf) ( x µ ) W( x) = exp πσ σ (.4) µ σ σ µ (, ) (µ, σ ) 0 (0, ) (standard normal distribution) x(), x(),, x() 3 bi-modal x (), x (), x () (µ, σ ) x = x()/ i n (µ, σ /) n Q. n A. (µ, σ /n) σ / n 3 996

-0- (log normal distribution) (x) (log(x)).7.. χ ( ) (0, ) x (), x (), x () Y = x() i i = χ 4 (PDF) ( /) y/ W ( y, ) = y e (.5) χ / Γ( /) (Gamma function) λ x Γ ( λ) = x e dx (.6) 0 Γ ( λ+ ) = λγ ( λ) (.7) Γ () = (.8) λ Γ ( n+ ) = n! / Γ ( /) = π (.9) (µ, σ ) x Y = ( x ( i ) µ ) / σ Y χ Y = ( x ( i ) x ) / σ - ( 996, p. ) 5 4 996, p. 69-78, 973 p. 7-7 5 996, p. 78-79

--. χ = = 0.5, 3 = 3.7.3. (ICDF) Matlab chiinv chiinv chiinv ICDF ( ) x a b wγ ( x a, b) = x e a b Γ( a) (.5) PDF a = /, b= ICDF Matlab gaminv(p, a, b) a,b chiinv(p,v) chiinv_nint(p,v) chiinv chiinv_nint function icdf = chiinv_nint(p,v); % v chi % % p: (0<=p<=) % v: (0<v) % % icdf: inverse of cumulative distribution function

-- % statistical toolbox chiinv v % a % 00//0 if isempty(p); error('*chiinv_nint* p is empty'); end if isempty(v); error('*chiinv_nint* v is empty'); end if sum(p<0); error('*chiinv_nint* p '); end if sum(p>); error('*chiinv_nint* p '); end if sum(v<0); error('*chiinv_nint* v '); end if sum(v==0); error('*chiinv_nint* v '); end if (ndims(p)~=ndims(v)); error('p v '); end if (sum(size(p)~=size(v)); error('p v '); end % icdf = gaminv(p,v/,);.7.4. F Y, Y, Y = ( Y/ )/( Y / ) (, )F (F-distribution) F, F (Snedecor's F-distribution), (Fisher distribution) (, )F PDF 6 ( /) ( /) + Γ ( /) y W( y,, ) = ( + )/ Γ( / ) Γ ( / ) ( y+ ) (.0) ( /) ( /) ( /) y = ( + )/ ( y + ) B, y>0 y 0 W=0 B a 0 b B( a, b) = B( b, a) = t ( t) dt Γ( a) Γ( b) Bab (, ) = (.) Γ ( a + b) 6 996, p. 80-84 993, p.76-79

-3-.3. =5 F PDF.7.5. t- (0,) Z Y / T = Z Y / t (t-distribution) t t (Student s t-distribution) 7 8 t PDF ( 996, p. 89; 973, p. 8) t = + B, + + Γ (( + )/) t WT (, t ) = + π Γ( /) Γ( α) Γ( β) B ( α, β) = Γ ( α + β) Γ(/ ) Γ( / ) Γ( / ) B, = = π Γ (( + )/) Γ (( + )/) t- F t t- t =F F (,)F 9 t- F- (.) 7 Student W. L. Gossett (Thiebaux, p. 55) 8 t- 9 (973), p. 83

-4-.4.,,0,00 t PDF.8. (estimation) (estimator) (point estimation) 95% (interval estimation) 95% ( θl, θu) l,u lower, upper 95%0.95 (confidence level) (confidence coefficient) 0 (confidence interval), θl θ u (confidence limits).8.. (consistency) 00 0 Emery and Thomson 997 p. 6 confidence level significance level 95%=-

-5-00 00 0 00 00 (unbiased estimator) biased.8.. s = ( xi µ ) i xi i = x = ( ) (.3) V = xi x i = ( ) V = ( xi ( ) x) = [ ( x µ ) ( x µ )] = ( xi ( ) µ ) ( xi ( ) µ )( x µ ) + ( x µ ) = σ ( x µ ) σ / V = σ

-6- V /(-) S = ( x( i) x) (.4) (.3) (biased variance)(.4) (unbiased variance).8.3. σ (30 ) µ - σ σ x z( α /) < µ < x + z( α/) (.5) P σ σ P x z( α / ) < µ < x + z( α/ ) = α (.6) z( α /) PDF W zα / z α / zα / α + zα / W ( x) dx= W ( x) dx= /, W ( z) dz = α (.7) CDF F F ( z( α/)) = α/, F ( z( α/)) = α/ (.8) (.7)(.8) PDFCDF.5 PDF PDF z=0 z z -z z PDF (, z ) ( z, ) / - z z α / CDF F ( ( /)) z α PDF α / F ( ( /)) z α PDF α /

-7-.5. PDF CDF α= 0.05 (.7)(.8) α ICDF F z α / z( α /) F ( α /) = F ( α /) (.9) Matlab norminv Octave normal_inv α α = 0.05 α α = 0.0 z α / (.6) x = x()/ i ( µσ, / ) x µ µ x z = (0,) P z( α/ ) < < z( α/ ) = α σ / σ / (.6)

-8-.8.4. - t- s s P x t( α /, ) < µ < x + t( α /, ) = α (.30) S t( α /, ν) t- ICDF F t t( α /, ν) = F t ( α /, ν).8.5. σ S ( ) S ( ) P σ F α α χ, F χ, < < = (.3) χ = S ( )/ σ = ( xi ( ) x ) / σ α (.3) - χ α α χ P n < χ < χ n = α χ = S ( )/ σ.8.6. r ln + r z = r z (Fisher's z-transform) z ln + r, r n 3 z Z Z zˆ z zˆ, σ < < + = α/ α/ σ σ n 3 (.3) tanh( r = z) tanh( zˆ Z / σ ) < r < tanh( zˆ+ Z / σ ) (.33) α/ α/ 996 p. 0-4 996 p.77

-9- Emery and Thomson (997)p. 53 Storch and Zwiers (999)p.48.9. (statistical test) H 0 (reject) (null hypothesis) null-hypothesis test (significance level, level of significance)α( -α) 5% 95% H 0 t-, F- P (P-value) P 5% 0% 5% 0% P.9.. (error of the first kind, type I error) H 0 (error of the second kind, type II error) H 0 H 0 - (power of the statistical test) (Emery and Thomson, 998, p. 49) II I

-0-.9.. x(), x(),, x( x )y(), y(),, y( y ) S, S x y S / S x -, y - F x y S / S < F ( α/,, ) F ( α/,, ) < S / S (.34) x y F x y F x y x y σ = σ x y.9.3. x(), x(),, x( x )y(), y(),, y( y ) µ = µ x y T = x y ( nx ) Sx + ( ny ) Sy + n + n n n x y x y (.35) x+y+ t- T T = F ( α /, + ) t x y Welch x y T = x y S n x x S + n y y (.36) k t- k

-- Sx c ( c ) n, x = + c = k nx n S S x + n n (.36) t- (996) x y y.9.4. r (Degree of Freedom) t r ( ) = T r r ( ) t- F- F = (,-)F 3 r t- - -α/ ( T = F α /, ) T r = + T α T = F ( α /, ) T(r) F- F F = F F ( α,, ) t- -α/ F- -α F α F r = + F t t.. t- F- 40 5% t- F- 3 (958), 958: ( ) / [ ],, p. 6.

--.9.5. icholls (00) 0 5% 0.58 50, 00 0.8, 0.0 0.8 8% (996) icholls (00) 0.6 (996) 0.50.6 0.5, 0.6, 0.7 /4, /3, / 0.50.6 0.3 0.3 icholls (00) Gardner and Altman (989) icholls (00) icholls (00) icholls (00)

-3- Monte-Carlo.0. Emery, W. J., and Thomson, R. E., 997: Data analysis methods in physical oceanography. Pergamon press, pp. 634. Gardner,M. J., and D. G. Altman, 989: Statistics with confidence intervals and statistical guideline. British Medical Journal, pp40. 973:,, pp. 300. # (973) 970 970, 996: 30, p. 38. ISB4-87-094- icholls,. 00: The insignificance of significance testing. Bull, Am. Met. Soc., 8, 98-985., 996:,, pp.7. Trenberth, K., E., 984: Some effects of finite sample size and persistence on meteorological statistics. Mon. Wea. Rev., (Dec), 359-368. http://www.cas.lancs.ac.uk/glossary_v./alphabet.html von Stroch, H. and F. W. Zwiers, 999: Statistical analysis in climate research. Cambridge University Press, pp. 483 ISB: 0 5 4507 3