Katori_SLE_Feb2010_s1.dvi

Size: px
Start display at page:

Download "Katori_SLE_Feb2010_s1.dvi"

Transcription

1 Schramm-Loewner Evolution H H H H H. H γ H t t U t U t g t (z) t = g t (z) U t, g 0 (z) =z, t 0 t g t (z) t 0 g t (z) H t γ(0,t] B t κ >0 Schramm 000 U t = κb t H U t = κb t κ Schramm- Loewner Evolution (SLE κ ) SLE κ κ SLE κ κ 006 Werner SLE κ SLE κ Summer School 009 ( ) Loewner SLE (00-4 ) : katori@phys.chuo-u.ac.jp HP

2 d- (BES d ) BES d SLE κ SLE κ BES d SLE κ Schramm A 37 A A A.3 capacity A.4 Φ t (z), Φ t (z) (Φ t (U t)) b SDE A.5 SLE C (S = Z Z),. z S, n Wn ω z = =(ω(0),...,ω(n)) : ω(0) = z,ω(i) S, ω(i) ω(i ) =, i n (RW) Wn z =4 n ω Wn z 4 n C D 0 = x + y : <x<, 0 <y<, D 0 O =0( ), P = N N,,... N NO =0 NP =N RW ND 0 Ω N (D 0 ; O, P) () : Z N (D 0 ; O, P) = ω Ω N (D 0 ;O,P ) ω ω N 4 ω. (.) Z N (D 0 ; O, P) C(D 0 ; O, P)N, N (.)

3 f(n) g(n), N f(n) g(n), N C(D 0 ; O, P) D 0 H D0 (,P) O D 0 NP=N - NP ND O P= - O D O N O : [ ] D 0 N [ ] NO = O NP =N ND 0 (loop-erased RW: LERW) Ω N (D 0 ; O, P) ω =(ω(0),ω(),...) ω(i) =ω(j),i < j ω ω ω =( ω(0), ω(),...) (i) t 0 =0, ω(0) = ω(t 0 )=0 (ii) m t m = max l>t m : ω(l) = ω(t m +), ω(m) = ω(t m )= ω(t m +) ND 0 O NP Ω 0 N (D 0; O, P) RW Ω 0 N (D 0; O, P) RW ω 4 w (LERW) LERW LERW ω =(ω(0),...,ω( ω )) ν>0 ( ) i ω /N = ω(i), 0 i ω (.3) N N /ν 3

4 ω /N O, ω /N /ν P = D 0 ( /N ) ν N, P γ P t γ = lim N ω /N /ν : γ :(0,t γ ) D 0, lim t 0 γ(t) =O, lim γ(t) =P, t γ (0, ). (.4) t tγ γ d LERW = ν γ, γ(t ) γ(t ), 0 t <t t γ LERW (.4) K LERW (D 0 ; O, P) μ LERW (D 0 ;O,P ) C(D 0; O, P) μ LERW (D 0 ;O,P ) ( )=C(D 0; O, P)μ LERW (D 0 ;O,P ) ( ) (.5) K LERW (D 0 ; O, P) μ LERW (D 0 ;O,P ) (self-avoiding walk : SAW) Wn z Wn,0 z = ω Wn. z : 0 i<j n ω(i) ω(j) W z n,0 < W z n =4 n <e β < 3 W z n,0 e βn, n f(n) g(n), n log f(n) log g(n), n ω e β ω (SAW) (.) SAW ZN SAW (D 0 ; O, P) = e β ω ω Ω 0 N (D 0;O,P ) b SAW > 0 Z SAW N (D 0 ; O, P) C SAW (D 0 ; O, P)N b SAW, N (.6) LERW RW (.) (.) (.6) LERW b LERW =. SAW γ d SAW LERW d LERW (.5) SAW μ SAW (D 0 ;O,P ) ( )=CSAW (D 0 ; O, P)μ SAW (D 0 ;O,P ) ( ) e β SAW connective constant S S.638 4

5 (critical percolation model) NP _ Λ Ν + Λ Ν 0 : T H. 0 C T τ = exp(π /3), a = 3, z 0 = a T = z 0 +(i + jτ) 3a : i, j Z. T a H O NP =N,N N z T η(z) 0, Bernoulli ν p, 0 p ν p (η(z) = ) = p, ν p (η(z) =0)= p. T 0 p / p >/ p c = (.7) ( p c T (.7). Bernoulli N b per =0 5

6 N N T ND 0 =Λ N N =6 Λ N z T O NP Λ + N, Λ N η(z) =, z Λ + N, η(z) =0, z Λ N (Dobrushin ) η. Λ N ν p η 0, Λ N H ND 0 O ω 0 ( ) ( ). percolation exploration process) ν>0 (.3) N d per = ν (.4) γ 3 γ μ per (D 0 ;O,P ) ( ) (B) 3: N γ (critical Ising model) Λ N =Λ N Λ + N Λ N z Λ N σ(z), ( ). σ(z) =, z Λ + N, σ(z) =, z Λ N (Dobrushin ) 6

7 σ Λ N Λ N ( Λ + N )c ( Λ N )c Dobrushin σ, Λ N E(σ) = β>0 Gibbs z,z Λ N : z z = 3a π N,β (σ) = e βe(σ) Z N,β, Z N,β = σ(z)σ(z ) σ, Λ N e βe(σ) β ω ( + ) H ND 0 (Ising interface) β T β c = 4 log 3 = e βc = 3 d Ising (.4). γ μ Ising (D 0 ;O,P ) ( ). f D 0 C f (z) 0, z D 0 f : D 0 f(d 0 ) (.8) f, D 0 O, P f(d 0 ) f(o),f(p ) 4. γ μ (D0 ;O,P )( )=C(D 0 ; O, P)μ (D0 ;O,P )( ) (.9) (conformal covariance) (conformal invariance) (.8) f μ (D0 ;O,P )( )= f (O) b f (P ) b μ (f(d0 );f(o),f(p ))( ) (.0) b. N (.0) (boundary scaling exponent) (.0) : C(D 0 ; O, P) = f (O) b f (P ) b C(f(D 0 ); f(o),f(p )) : μ (D0 ;O,P )( )=μ (f(d0 );f(o),f(p ))( ).. (.) (.6) ND 0 /N D 0 f f (z) /N b. N b 7

8 f (P) P f O f (O) 4: f D 0 f(d 0 ) D 0 O P f(d 0 ) f(o),f(p ) O P f(o) f(p ) (domain Markov property) μ (D0 ;O,P ) γ γ(0,t],t (0,t γ ) D 0 γ(0,t] γ(t) γ(t γ )=P ( ) γ(0,t] = μ (D0 \γ(0,t];γ(t),p )( ). μ (D0 ;O,P ) 5 P P γ (t) γ (t) O O 5: [ ] γ γ(0,t] P γ(t, t γ ) [ ] D 0 γ(0,t] γ(t) P.. γ (.4) ( ) t [0,t γ ] (.8) 8

9 (.3) f γ f(γ[t,t ]), 0 <t <t <t γ, t t f (γ(s)) d ds d γ θ :[0,t γ ] [0,t γ ] γ(t) γ(θ(t)).3 (.9) / (restriction property) D 0 D D 0 O, P D. LERW μ LERW (D ;O,P ), O P RW RW LERW LERW Radon-Nikodym dμ LERW (D ;O,P ) dμ LERW (γ) <, D D 0, D D 0 (D 0 ;O,P ) SAW dμ SAW (D ;O,P ) dμ SAW (γ) =γ(0,t γ ) D, D D 0 (.) (D 0 ;O,P ) ω ω ω ω =, ω = 0). (.) η Bernoulli η- μ per. ( μ Ising ) (locality property) D D 0 O, P D μ per (D ;O,P )(γ(0,t]) = μper (D 0 ;O,P ) (γ(0,t])γ(0,t) D, t (0,t γ ). (.) (.) γ(0,t γ ) (.) γ(0,t],t (0,t γ ). (Ω, F, P) Ω Ω A Ω F σ- ( (i) Ω F, (ii) A F A A c F, (iii) A,A,..., F n A n F, 3.) P 9

10 () Ω f F- a ω Ω:f(ω) a F [6, 4] (filtration, ) F t t 0, (i) F s F t F, 0 s<t, (ii) t F t σ (Ω, F, P; F t t 0 ) F t - (Brownian motion) B t (, BM.) (i) 0 <s<t B t B s F t - F s 0, t s ( ) b P B t B s [a, b] = exp x dx. (.) π(t s) (t s) a (ii) t B t Ω Ω s.t. P( Ω) =, ω Ω Bt (ω) t. (i) c>0 c B c t B t c B c t (d distribution.) property) d = B t c>0 (.) BM (scaling B t,b t,,b d t BM B t =(B t,b t,,b d t ) d BM B t B t BM B t = B t + B t ( ) BM.. P(B 0 =0)=, (d )BM z R d ( z C) z (d )BM z P z (B t ) P(B t + z ) P z (B 0 = z) = P ( P z ) (expectation) E ( E z ) Z t E[Z t F s ],s <t [ ] E E[Z t F s ],A = E[Z t A], A F s, s t. (.3) Z t (F t -) (martingale) Z t, t 0 E[ Z t ] <, E[Z t F s ]=Z s, s t (.4) (.3) (.4) E[Z t,a]=e[z s,a], A F s (.5) 0

11 τ F t - (stopping time) t τ t F t Z t (local martingale) F t - τ <τ < (τ j,j ) j Z t τj a b = mina, b. τ F t - F t - f E x [f(z τ+t ) F τ ]=E Zτ [f(z t )] t 0 (.6) Z t (strong Markov property).. (d )BM ( ). Z t quadratic variation) Z t : Z t = P- lim n j=0 n (Z(t j+ ) Z(t j )) P- lim n [0,t] 0 t 0 <t < <t n t 3 Z t Z t =0. Z t, Ẑt Z, Ẑ t 4 Z + Ẑ t Z Ẑ t, dz t dẑt = d Z, Ẑ t. BM db t db t = dt, dt BM.. Bt B t BM dbt db t =0, d BM B t =(Bt,B t,...,bd t ) dbi t dbj t = δ ijdt. dmt idm j t, i, j d M t = (Mt,M t,...,md t ). Z t =(Z t,z t,...,z d t ) M t, A t =(A t,a t,...,a d t ) d. F R d F (Z t ), df (Z t )= d j= F ( ) (Z t ) dm j t x + daj t + j.. j,k d F x j x k (Z t )dm j t dm k t (.7), 3 X n n= X (Ω, F, P) n X n X ε>0 lim P( Xn X >ε)=0 n P- lim n

12 . d- (BES d ) d =,, 3,, d B t =(Bt,Bt,,Bt d ) R d (B t B t ) X t = d (B j t ) (.8) j= j= X t R + x R : x > 0 F (x,x,,x d )= d x j, F = x k x k F, F x = k F x k F 3 d k= F x k = F d F d k= x k = d F (.7), B t,,b d t dx t = X t (.9) d k= ( B k t dbk t + d X t k= ) d Bt k dbt k = db k t dbl t = δ kldt, k, l d (.9) dt X t X t d (Bt k ) (dbt k ) = k= X t d (Bt k ) dt = dt B j t d j= BM, B t db t X t (stochastic differential equation, SDE) dx t = db t + d k= dt (.0) X t [6, 4, 8, 9] d (.0) SDE (d = : X t = B t ) d- (Bessel process) BES d (.0) (BM) ( ) BES d.3. X t ( ) I ν SDE (.0) (Kolmogorov backward equation) t p(t; x, y) = p(t; x, y)+d p(t; x, y) (.) x x x d, d< BES d (p(t; x, y) =p(t; y, x) ) (.) p(t; x, y) = t (xy) ν exp ( x + y ) ( xy ) I ν (.) t t

13 , ν = d I ν (z) d =(ν +) (.3) I ν (z) = n=0 Γ(z) Γ(z) = ( z ) n+ν Γ(n + )Γ(n ++ν) 0 e u u z du, Rz >0 m ν (dy) =y ν+ dy (.4) (.) m ν (dy)/dy =y ν+ BES d t 0 x>0 y 0 ( x + y ) p(t, y x) = t y ν+ x ν exp t ( xy ) I ν t (.5).3 BES d x >0 BES d X x t dx x t = d dt X x t + db t, t 0, X x 0 = x>0 (.6). x>0 x Xx x t d = X t (.7). BM (.) Y t = x Xx x t dy t = x ( db x t + d = x db x t + d = d B t + d dt. Y t d(x ) t) Xx x t x X x x t dt 3

14 B t = B x t/x = d B t Y 0 = X0 x /x = x/x = x>0 BES d T x T x = inf t>0:xt x =0. (.8) SDE (.6) t<t x well-defined. (i) d = T x =, x>0 (ii) d> = lim t X x t =, x>0 (iii) d = = inf t>0 Xx t =0, x>0 x >0 BES (iv) d< = T x <, x>0 0 <x <x<x < σ = inf t >0:Xt x = x or Xt x = x φ(x) =φ(x; x,x )=P(Xσ x = x ) φ(x )=0, φ(x ) = (.9) t σ mint, σ, M t = φ(xt σ) x. ] M t = E [φ(x σ x ) Ft E[M t F s ]=M s, 0 s t (.0) M t (φ(x) ) (.7) BES d SDE (.6) t σ [ M t = φ(x)+ φ (Xs x ) db s + d ] ds t σ 0 Xs x + 0 φ (Xs x )(db s) t σ t σ [ = φ(x)+ φ (Xs x )db s + φ (Xs x )+ d ] 0 0 Xs x φ (Xs x ) ds. (f (x) = d dx f(x).) M t ( ) φ (x)+ d x φ (x) =0, x <x<x (.) 4

15 ( d dx + d ) φ (x) =0c x φ (x) =cx (d ) (.9) φ(x )=0 d φ(x) =c d = φ(x) =c x y (d ) dy = c x d (x d x d ) dy y = c(log x log x ) x x φ(x )= c x d x d φ(x) =φ(x; x,x )= x d x d log x log x log x log x d d = (i) d> d<0 (.) x = L>x (.) φ(x;0,l) lim,l) x 0 = x d x d lim x 0 L d x d x >0 BES d L>0 T x = inft >0:Xt x =0 = d = (.) =. log x log x φ(x;0,l) = lim = x 0 log L log x T x = (ii) α> x k = α k x, k =,, 3,... d > d β<0 (.) φ(x k ; x k,x k+ ) = xβ k xβ k x β k+ xβ k = αkβ α (k )β α (k+)β α (k )β = αβ α β = α β + >. Z,,, 0,,, n>0,n Z p =/(α β + ), p BES d Xt x, x>0 (iii) (.) d = x =/n < x < x = e n, n φ(x;/n, e n )= log x + log n n + log n 5 0

16 n>0 Xt x /n (iv) d<, lim x 0 x d =0(.) L T x < φ(x;0,l)= x d 0. L d d< x R + BM, B t X x t = x + B t + d t ds 0 Xs x BES d X x t x>0, t T x (.3) x<y = X x t <X y t, t<t x = T x T y. x<y T x = T y, x y q(x, y) =P(T x = T y ) (.) q(x, y) =q(,y/x) t>0 lim r P(T r <t)=0 lim q(,r) = 0 (.4) r.3 0 <x<y T x = T y 0 y Xt sup Xx t t<t x Xt x <. (.5). (.5) X y t Xx t X x t c<, 0 <t<t x X y t Xx t cx x t, 0 <t<t x X y t ( + c)x x t, 0 <t<t x Xt x =0= X y t =0, (.5) = T x = T y. T x = T y (.5) 0 ( p r = P T x = T y sup y Xt Xx t t<t x X x t ) r 6

17 τ r = inf (X y t t<t Xx t )/Xt x = r τ r x X y t /Xx t =+r BES d p r q(, +r) (.4) lim r q(, +r) =0 p = lim r p r = P ( T x = T y sup y Xt Xx t t<t x X x t ) = =0. x <y T x = T y.4 (i) 3 <d< = x<y 4, P(T x = T y ) > 0. (ii) d 3 = x<y, T x <T y. 0 <x<y ( X y t Z t = log ) Xx t Xt x, t < T x. (.6) dx x t = d dt X x t + db t, dx y t = d dt X y t + db t BM, B t. f(x, y) = log(y x)/x f x (x, y) = f(x, y)/ x f x (x, y) = y x x, f y(x, y) = y x f xx (x, y) = (y x) + x, f yy(x, y) = (y x), f xy(x, y) =f yx (x, y) = (.7) [ dz t = f x (Xt x,x y t ) db t + d ] [ dt Xt x + f y (X xt,x yt ) db t + d ] [f xx (Xt x,x y t )+f xy(xt x,x y t )+f yy(xt x,x y t ) + = Xt x db t + [( ) 3 d (Xt x + d ) X y t Xx t (Xt x) X y t t r r(t) 4 P(T x = T y) A. 0 ] dt X y t (y x) dt ] dt (.7) ds (Xs x = t. (.8) ) 7

18 dr(t)/(x x r(t) ) = dt. (.7) r(t) [ (3 dz r(t) = ) Xr(t) x db r(t) + d + d X y r(t) ] Xx r(t) X y r(t) dr(t) (X x r(t) ) (d B t ) = r(t) db s B t = 0 Xs x (Xr(t) x (db r(t)) = dr(t) ) (Xr(t) x = dt ) B t BM Z t = Z r(t) [ (3 ) d Z t = d B t + d SDE 3 (i) <d< d (3/,d) + d ε = (d d ) d X y r(t) ] Xx r(t) dt (.9) X y r(t) y =(+ε/)x σ = inf t>0:x y r(t) Xx r(t) = εxy r(t) 0 t<t x σ (X y r(t) Xx r(t) )/Xy r(t) ε (.9) ( ) 3 d + d X y r(t) ( ) Xx r(t) 3 X y r(t) d + d (d d ) = 3 d d d Z t = d B t + ( ) 3 d dt, Z 0 = Z 0 = log ε Z t Zt Z t, 0 t<t x σ d > 3/ Z t. Z t log(ε/) log ε Z t log ε log ( X y t Xx t X x t ) < log ε Xy t Xx t X x t (.5).3 ( ( P(T x = T y )=q x, + ε ) ) ( x = q, + ε ) > 0 <ε 8

19 (ii) d 3 3/ d 0 X y r(t) Xx r(t) X y r(t) > 0, 0 t<t x sup Zt = sup e e y Z t Xt = sup Xx t t<t x t<t x t<t x X x t =.3 P(T x = T y )=0 3 SLE κ 3. Ĉ C D ( ) Ĉ Ĉ \ D Ĉ, D (simply commected domain) C D = z C : z < 3. (Riemann mapping theorem) D C D ω D D D [] f(w) =0 f (w) > 0 (3.) H = z C : I(z) > 0 H A A = H A H\A A compact H-hull compact H-hull Q A Q A Q H \ A C ( 3.) f () A : H \ A D Möbius f () (z) = αz αβ, β =,α H (3.) z β f () : D H f () (0) = α ). f (3) A f (3) A : H \ A H = f () f () 9

20 H \ A A f () A : H \ A D z C : z = f () : D H H ) f (3) A : H \ A H ( A ) (3.) f () A f () z = β f () β [ ] lim f (3) z A (z) z =0 f (3) A (hydrodynamic condition) H \ A z R, A (/z) f (3) A /f (3) f (3) A (/z) = a z + a z + z 3 z 3 +, a j R. f (3) A (z) =b z + b 0 + b z + b z +, b j R z R f (3) A (z) a j,b j R H H Möbius f (4) (z) =d z + d 0, d > 0,d 0 R f (3) A [ ] f (4) f (3) A (z) = f (4) (f (3) A (z)) = d b z +(d b 0 + d 0 )+d b z + d b z + d b =,d b 0 + d 0 =0 d = b,d 0 = b 0 b d 0,d g A : H \ A H (3.3) lim z [ g A (z) z ] = 0 (3.4) g A (z) =z + c z + c z +, c j R (3.5) 0

21 3. γ(0) R t [0, ) γ = γ[0,t], t [0, ) γ(0, ) H Möbius t>0 z + a ( ) (t) + O z z, a (t) R, z (3.6) H \ γ(0,t] H g γ(0,t] (z) g t (z) g 0 (z) =z 3.. g t H \ γ(0,t] γ(0,t] R R 3. t (0, ) B j s,j =, BM C BM B s = B s + B s, s [0, ) (3.7) H \ γ(0,t] z BM γ(0,t] R τ t = inf s 0:B s γ(0,t] R (3.8) z g t (z) H \ γ(0,t] φ t (z) =I(z g t (z)), z H \ γ(0,t] φ t (z) =E z [φ t (B τt )], z H \ γ(0,t] φ t (z) =E z [I(B τt )] E z [I(g t (B τt ))] = E z [I(B τt )] B τt H \ γ(0,t] 3. g t (B τt ) R I(g t (z)) = I(z) E z [I(B τt )], z H \ γ(0,t] (3.9) R t = sup γ(s) γ(0) : s (0,t] (3.0)

22 γ(0,t] γ(0) R t B(γ(0),R t ) H H z H \ B(γ(0),R t ) BM BM B(γ(0),R t ) H σ ; σ = inf s 0:B s B(γ(0),R t ) R. B σ p(z,γ(0) + R t e θ ),θ (0,π) BM E z [I(B τ )] = π 0 p(z,γ(0) + R t e θ )E γ(0)+rte θ[i(b τ )]R t dθ (3.) B(γ(0),R t ) H D = z H : z γ(0) >R t p(z,γ(0) + R t e θ )= π n= [ sin(nθ)rt n Im (z γ(0)) n ], z D, θ (0,π) (3.) ( A. ). γ[0,t] γ(0) R t γ(0) /R t γ[0,t] τ t = inf s 0:B s γ(0,t] R (3.3) BM τ t /R t E γ(0)+rte θ [I(B τt )] = R t E e θ[i(b eτt )], θ (0,π) (3.9) ( ) a n+ (t) I(g t (z)) = I z + (z γ(0)) n a n (t) =R n t n= π sin((n )θ)e θ[i(b e π eτt )]dθ, n =, 3, 4, (3.4) 0 g t (3.6) g t (z) =z + n= a n+ (t), z H \ γ(0,t] (3.5) (z γ(0)) n

23 0 θ π n =, 3, sin(nθ) c n sin θ c n a n (t) Rt n π sin((n )θ) E θ[i(b e π eτt )]dθ 0 c n Rt n π sin θe θ[i(b e eτt )]dθ π 0 c n Rt n a (t), n =3, 4, 5, (3.6) 3.. (3.4) n = a (t) =R t π sin θ E θ[i(b e π eτt )]dθ (3.7) 0 a (t) = lim y ye y [I(B τt )] (3.8) ( A.3 ) γ(0,t] capacity (hcap(γ(0,t]) ) 3.3. H t = H \ γ(0,t] p Ht (z,w),z H t,w H t = γ(0,t] R E θ[i(b e eτt )] = p Ht (e θ,w)i(w)dw H t = p Ht (e θ I(w),w) eγ(0,t] I(e θ ) dw I(e θ ) = sin θ p Ht (e θ,w)dw eγ(0,t] p D (z,w) p D (z,w) I(w), z D, w D (3.9) I(z) H-excursion B s [0]: B s = B s + X s, s [0, ). (3.0) B s BM ( X s ) BES 3 (3 ) sin θ P e θ B[0, ) γ(0,t] a n (t) a n (t) =R n t π ( ) sin((n )θ) sin θ P e θ B[0, ) γ(0,t] dθ (3.) π 0 H-excursion γ(0,t] 3

24 H γ g t (x) ε >0 t + ε γ(0,t+ ε] g t+ε (z) g t+ε (z) = g γ(0,t+ε] (z) ] = [g gt(γ(t,t+ε]) g t (z) =g gt(γ(t,t+ε])(g t (z)). (3.) g t+ε (z) H \ γ(0,t+ ε] H H \ γ(0,t+ ε] g t+ε (z) g t (z) H H\g t (γ(t, t+ε]) H g t (γ(t, t+ε]) U t U 0 = γ(0) (3.5) U t = lim s t g s (γ(t)) (3.3) g t+ε (z) = g gt(γ(t,t+ε])(g t (z)) a n+ ((t, t + ε]) = g t (z)+ (g t (z) U t ) n (3.4) Rt ε = sup g t (γ(s)) U t : s [t, t + ε], (3.5) n= a n ((t, t + ε]) c n (R ε t ) n a ((t, t + ε]), n =3, 4, 5, (3.6). (3.4) g t (z) (3.5) (3.5) t t + ε /z a ((t, t + ε]) = a (t + ε) a (t). (3.7) capacity ( A.3 ) g t+ε(z) g t (z) a (t + ε) a (t) g t (z) U t c n (Rt ε)n g t (z) U t n (a (t + ε) a (t)) ε g t+ε (z) g t (z) a (t + ε) a (t) ε g t (z) U t ε c n (Rt ε ) n g t (z) U t n a (t + ε) a (t) ε ε 0 capacity a (t) = hcap(γ(0,t]) t n= n= a (t + ε) a lim ε 0 ε = da (t) dt = d hcap(γ(0,t]) (3.8) dt 4

25 lim ε 0 R ε t =0 g t+ε (z) g t (z) lim = g t(z) ε 0 ε t g t (z) t = da (t), a (t) = hcap(γ(0,t]). (3.9) g t (z) U t dt g 0 (z) =z (Loewner differential equation) 3.4. (3.8) a (t) = hcap(γ(0,t]) a (t) t [0] γ ( t ) capacity γ(t) =γ(a (t)) a (t) = hcap(γ((0,t])) = t (3.30) g t (z) t = g t (z) U t, g 0 (z) =z (3.3) ( (3.30) γ γ ) g t Loewner chains U t (3.5) a n (t) d dt a n(t) =P n (a (t),a (t), ), n =, 3, 4,. (3.3) a (t) = U t (3.33) P n (x,x, ) ( P = ) P n (x,x, )= m: m =n l(m) ( ) l(m) j= x mj. (3.34) m =(m,m, ),m j N,, 3, l(m) m m l(m) j= m j []. P =0, P =, n P n = x j P n j, n. (3.35) j= 5

26 d dt a (t) =, d dt a 3(t) = a (t), d dt a 4(t) = (a (t)) a (t), d dt a 5(t) = (a (t)) 3 +a (t)a (t) a 3 (t), (3.36) g 0 (z) =z a n (0) = 0, n=,, 3, a (t) = U t a n (t),n =, 3, g t (z) 3.4 SLE κ BES d Schramm [5], B t BM 5 U t = κb t, κ > 0, B 0 = 0 (3.37) t g t(z) = g t (z) κb t, g 0 (z) =z. (3.38) ( t 0 ) g t t 0 Schramm (chordal) (Schramm-Loewner evolution) [5] 6 κ SLE κ t [0, ) γ = γ(t) :t [0, ) t [0, ) H \ γ(0,t] H g t (z) g t (z) (3.3) U t = lim s t g s (γ(t)) (3.39) U t (3.37) (3.38), g t (z) (3.39) γ(t), 0 t< 3. SLE κ γ 3.5. SLE κ γ SLE κ (SLE κ path) SLE κ (SLE κ curve) 3. [0] 6

27 γ (t) H t g t 0 K t 0 U t = g t (γ (t)) = /κ B t 6: H SLE κ γ(0,t] hull K t g t H γ(t) H U t κb t SLE κ γ H t = H \ γ[0,t] K t = H \ H t (3.40) K t SLE κ γ[0,t] hull g t (z) H t H 6 H t g t K t g t SLE κ γ t hull K t g t H t z H T z = sup t 0: g t (z) well-defined g t (z) H = inf t 0:z K t (3.4) H t = K t = z H : T z >t z H : T z t (3.4) 7 SLE κ γ t>0 γ(t) g t κb t 6 g t (γ(t)) = κb t. (3.43) 5 BM (.) U d t = B κt κ BM 6 Oded Schramm [ 46 7 g t(z) H t H t pioneer point H pion t = H s SLE κ γ, γ(0) R H pion t = R γ(0,t]. 0 s t 7

28 g t H t γ(t) K t γ(t) / H t g t (γ(t)) H t H lim g t(z) = κb t (3.44) z γ(t) SLE κ γ = γ(t) :0 t< s 0 γ s γ s (t) =g s (γ(t + s)) κb s, t 0 γ s d = γ s 0 (3.45) SLE κ.3. BM (.) BES d SLE κ SLE κ 3.3 r>0 r g r t(rz) d = g t (z) (3.46) γ(t) r γ(r t) γ d = γ (3.47). g t (z) = r g r t(rz) g 0 (z) = r g 0(rz) = r rz = z g 0(z) = g 0 (z) =z B t = r B r t g t (z) dt g d t(z) = r d dt g r t(rz) = r r g r t(rz) κb r t = r g r t(rz) κ r B r t = g t (z) κ B t BM B t d = Bt g t (z) g t (z) SLE κ ĝ t (z) = g t(z) κb t κ (3.48) 8

29 ĝ t (z) dĝ t (z) = /κ ĝ t (z) dt + dw t, ĝ 0 (z) = z, W t = B t. (3.49) κ T z (3.4) SLE κ γ t = T z z H lim t Tz γ(t) = z γ(t) (3.43) κb Tz (3.48) lim ĝ t (z) =0 t T z T z z/ κ SDE (3.49) H 0 SDE (3.49) z x R 3. g t (x) R, t 0 ĝ t (x) R, t 0 SLE κ BES d dx x t = d X x t dt + dw t, X x 0 = x R \0 (3.50) κ = 4 d d = 4 κ + (3.5) T x = inft 0:Xt x =0.3 d x BM, W t x<y Xt x <X y t, t <T x T x T y.3..4 () d T x =, x >0. () d< T x <, x >0. (a) 3 <d< 0 <x<y, PT x = T y > 0. (b) d 3 0 <x<y T x <T y. SLE κ γ, κ, (i) 0 <κ 4 γ γ(0, ) H lim γ(t) =. (3.5) t (ii) 4 <κ<8 γ K t = H (3.53) t>0 γ(t) H. γ[0, ) H H (3.54) 9

30 (iii) κ 8 γ H γ[0, ) =H. (3.55) (a) (b) (c) 7: (a) 0 <κ 4 SLE (b) () H H 4 <κ<8 SLE (c) H κ 8 SLE 4 SLE κ 4. Schramm γ μ (D0 ;O,P ) / D, D C ( D, D C), z,w D, z,w D f : D D, f(z) =z, f(w) =w f (w) = μ (H;0, ) D C,D C, z,w D μ (D;z,w) H \ D D H w = f(w) = f (w) = w f(w ) w f μ (D;z, ) ( )= f (z) b μ (f(d);f(z), ) ( ), z D. (4.) Schramm U t γ μ (H;0, ) μ (H;0, ) γ(0,t] U t 30

31 [A] U t (U t+s U t ), s, t > 0 [B] (U t+s U t ) d = U t, s, t > 0 Schramm [C] U t c,c U t = c B t + c t [D] = c =0 U t = c B t c = κ capacity a (t) =t SLE κ t g t(z) = g t (z), g 0 (z) =z κb t Schramm [5] 4. (Lawler-Schramm-Werner [0]) Markov SLE κ, κ (0, ) 4. (Beffara[3]) κ 8 SLE κ γ(0, ) (Hausdorff ) d(κ) =+ κ H D = D H :, H \ D, dist(0, H \ D) > 0 D D D H Φ D ( ) Φ D (z) =z + o(),z. SLE κ γ τ D = inf t : dist(γ(t), H \ D) =0 t <τ D γ D 8 SLE γ(0,τ D ) Φ D Φ D (γ(0,τ D )) H 3

32 D = \ A γ (t) γ (τ D ) O A 8: H A D = H \ A t <τ D γ D D γ (t) Φ D 0 A Φ D (0) Φ D (A) g t g t * U t g t (A) 9: [ ] Φ D : A D = H \ A H. [ ] g t : SLE κ γ(0,t]. [ ] gt : γ (0,t]=Φ D (γ(0,t]). [ ] Φ t Φ gt(d), gt Φ D gt 3

33 γ γ (0,t]=Φ D (γ(0,t]), t < τ D gt (z) Loewner (3.38) 9 Φ D γ (0,t] capacity ) ( ) a (γ (t) = hcap (0,t] = hcap Φ D (γ(0,t]) A.3 A.4 hcap(ra) =r hcap(a), SLE κ (3.38) (Φ t(u t )) d dt g t (z) = (Φ t(u t )) gt (z) U t (4.) U t = κb t Φ t Φ gt(d) = g t Φ D g t U t g t (γ (t)) = Φ t (U t ) 9 U t (.7) U t = κb t [ dut = Φt (U t )+ κ ] Φ t (U t )) dt + κφ t(u t )db t A.4 (A.50) Φ t (U t ) d dt Φ t(u t )= 3Φ t (U t ) du t = [ κ 3 ] Φ t (U t )dt + κφ t(u t )db t (4.3) t r(t) t = Ũ t U r(t) (4.3) r(t) 0 Φ s(u s ) ds dũ t = b(κ) Φ r(t) (U r(t)) Φ r(t) (U r(t)) κdt + κd B t (4.4) b = b(κ) = 6 κ κ. (4.5) B t r(t) 0 Φ s (U s )db s 33

34 g t (z) =gr(t) (z) (4.) d dt g t (z) = g t (z) Ũ t κ =6 b(κ) =0(4.4) dũ t = 6d B t D D g t (z) g t (z), U t d = 6Bt SLE 6, (3.38) κ =6 D γ γ (0,t]=Φ D (γ(0,t]), t<τ D SLE SLE κ μ κ (H;0, ) κ =6 κ 6 (4.4) U t, M t b (Φ t (U t)) b (.7) A.4 SDE d(φ t (U t)) b = b(φ t (U t)) b [ κ Φ t (U t ) Φ t (U t) db t + (b )κ + (Φ t (U t )) (Φ t (U t)) 8 3κ 6 Φ ] (U t ) Φ t (U dt. t) (4.6) b (4.5) b(κ) (4.6) d(φ t(u t )) b(κ) = b(κ)(φ t(u t )) b(κ) [ κ Φ t (U t ) Φ t (U t) db t 8 3κ 6 ] SΦ t (U t )dt (4.7), Sf f c M t =(Φ t(u t )) b(κ) exp Sf = f f 3 (f ) (f ) (4.8) c 6 t 0 SΦ s (U s )ds dm t = d(φ t(u t )) b(κ) exp c 6 0 (Φ t(u t )) b(κ) exp c 6 t SΦ s (U s )ds t 0 c SΦ s (U s )ds 6 SΦ t(u t )dt (4.7) dm t = b(κ) Φ t (U t ) Φ t (U t) M t κdbt c +(8 3κ)b(κ) SΦ t (U t )M t dt 6 34

35 0 c = c(κ) = (3κ 8)b(κ) = (3κ 8)(6 κ) κ dm t = b(κ) Φ t (U t) Φ t (U t) M t κdbt M t =(Φ t (U t)) b(κ) exp c(κ) 6 SΦ t (U t ) 0 t 0 SΦ s (U s )ds (4.9) (4.0) [0]. κ 8/3 c(κ) 0 M t. M t Girsanov SLE κ, (4.0) 8 SLE κ t γ(t), γ(0, ) D SLE κ γ t Φ t(u t ) κ 4 SLE κ H 3.4 (i) [] κ 4,D D dμ (D;0, ) dμ (H;0, ) (γ) =M = γ(0, ) D exp c(κ) 6 0 SΦ s (U s )ds. (4.) (4.9), κ 4 κ =8/3 c(κ) =0 (4.) γ(0, ) D (.) 4.4 SLE κ μ κ (H;0, ) κ = μ per (D 0 ;0,P ) μsaw (D 0 ;O,P ) μ 6 (H;0, ), μ8/3 (H;0, ) H D 0 Smirnov [8]. μ LERW (D 0 ;0,P ) c = μ (H;0, ), μising (D 0 ;0,P ) c = μ 3 (H;0, ). [5, 0] [9] = c. 4. (4.5) d LERW = d() = 5 4, d SAW = d(8/3) = 4 3, d Ising = d(3) = 8, d per = d(6) = 7 4, b LERW = b() =, b SAW = b(8/3) = 5 8, b Ising = b(3) =, b per = b(6) = 0. 8 (4.0) (4.) f (z) b (4.5) κ b(κ) b. 35

36 4.. ( ) SLE κ [5] 0. κ = (LERW) κ = 8 3 =. 6 (SAW) κ =3 κ =4 4 [Fortuin-Kasteleyn cluster] κ = 4 5 =4.8 3 [Fortuin-Kasteleyn cluster] κ = 6 3 =5. 3 [Fortuin-Kasteleyn cluster] κ =6 κ = 8 uniform spanning tree (UST) (4.) (q q =q =q =0 UST κ q = + cos(8π/κ), 4 κ 8.) c κ = 8. =.6 κ = 4 = SAW 3-state Potts (FK) κ =6 percolation 0 κ - - κ = LERW κ =3 Ising interface κ =4 4-state Potts (FK) κ = 6. =5.3 3 Ising (FK) κ =8 UST 0: SLE κ κ c c ) κ c 4.. (4.5) (4.9), κ c = b(5 8b) +b [3] [L n,l m ]=(n m)l n+m + c n(n ) δ n+m,0, n,m Z (4.3) L n b =0,n,L 0 b = b b (b, b ), H b = C[L,L,...] b ( ) ( ) b L L det b b L L L b 4b + c/ 6b = det =0 b L L L b b L L L L b 6b 4b( + b) 36

37 (Kac ). b 0 (4.3) [, 4]. A.5 A A. 3 <d< x 0 P(T +x = T ) > 0 x F (α, β, γ; z) =+ k= (α) k (β) k (γ) k z k k! (A.) (c) k =Γ(c + k)/γ(c) =c(c +) (c +(k )) A. 3 <d< x 0 P(T +x = T )= ( ) Γ(d ) x d 3 ( ) x F d 3,d, (d );. (A.) Γ((d ))Γ( d) +x +x.. g(x, y) =(y x)/x (.7) R t = X+x t X t Xt, x > 0 (A.3) g x (x, y) = y x, g y(x, y) = x g xx (x, y) = y x 3, g yy(x, y) =0, g xy (x, y) =g yx (x, y) = x dr t = R [ t 3 d Xt db t + d R t R t ( + R t ) t r(t) r(t) ( Rt ]( Rt X t ) dt (A.4) ) ds = t. (A.5) 0 X t r(t) B t = 0 R s Xs db s (A.6) 37

38 B t BM R t = R r(t) d R t = = [ 3 d d R t [ d + d R t ] R t ( R dt + db t t +) ] dt + db t R t + (A.7) ψ(x) =P(T +x = T )=q(, +x) (A.8) M t = ψ( R t ) (A.9) BES d (.7) M t E[M t F s ]=M s, 0 s<t. (A.0) (.7) (A.7) dm t = ψ ( R t )db t + ψ ( R t ) [ d R t + d ] dt + R t + ψ ( R t )dt. =0 ψ(x) [ d ψ (x)+ + d ] ψ (x) =0. x x + (A.) (A.) x = u u u = x +x x u ψ(u) =ψ(x) (A.) u( u) ψ (u)+ ( d) (3 d)u ψ (u) = 0 (A.3) u( u)f + γ (α + β +)u F αβf = 0 (A.4) α =0, β = d, γ = ( d) (A.5) (A.4) u =0 F (α, β, γ; u) u γ F ( γ + α, γ + β, γ; u) (A.5) α =0 u d 3 F (d 3,d, (d ); u) c,c ψ(u) =c + c u d 3 F (d 3,d, (d ); u) 38

39 ψ(0) = ψ(0) = P(T = T )= ψ() = ψ( ) = lim P(T +x = T ) = 0 x c = c = Γ(d ) F (d 3,d, (d ); ) = Γ((d ))Γ( d) (A.6) (A.7) A. D BM cb t τ D = inf t 0:B t / D (A.8) BM D D A. D F : D R D D F D(= D D) R u D z D u(z) =E z [F (B τd )] (A.9) D D z D D hm(z,d; ) hm(z,d; V )=P z [B τd V ], V D (A.0) (harmonic measure) (A.9) u(z) = F (w)hm(z,d; dw) (A.) D u(z) = F (w)h D (z,w) dw D D (A.) H D (z,w) (Poisson kernel) w D H D (z,w) z D w 0 D z D w 0 D H D (z,w) δ(w w 0 ) : lim H D (z,w) =δ(w w 0 ), z w 0 w 0,w D. 39

40 ( )BM A.3 f : D D D = D D z D, V D hm(f(z),d ; f(v ))=hm(z,d; V ) (A.3) (A.) H D (f(z),f(w)) = f (w) H D (z,w), z D, w D. (A.4) (half-infinite strip) D = z = x + y : x>0, 0 <y<π (A.5) D = q : q (0,π) H D (z, q),z D, q (0,π) q (0,π) H D (z, q) z x H D(x + y, q)+ y H D(x + y, q) =0, x+ y D (separation of variables) (q ) H D (x + y, q) =X(x)Y (y) c = X (x)y (y)+x(x)y (y) =0 X (x) X(x) = Y (y) Y (y) = c X (x) =cx(x), Y (y) = cy (y) (A.6) (A.7) (A.7) Y (y) =a sin( cy)+b cos( cy) y =0,π Y (y) =0 b =0, c = n, n =,, 3, (A.6) Y (y) =a sin(ny), n =,, 3, X (x) =n X (x) 40

41 x X(x) = const. e nx H D (x + y, q) = a n (q) q a n (q)e nx sin(ny) n= lim H D(x + y, q) =δ(y q) x 0 (A.8) a n (q) = π sin(nq) lim x 0 H D(x + y, q) = π sin(nq) sin(ny) n= = π δ(x) = π n= n= e n(q+y) + π e nx n= e n(q y) q, y > 0 (A.8) H D (x + y, q) = π e nx sin(ny) sin(nq), x+ y D, q (0,π) (A.9) n= r R, R > 0 z = x + y ζ = α + β : ζ = f(z) =r + Re z. (A.30) D D = ζ = α + β : ζ r >R,β>0 = H \B(r, R) (A.3) x : x>0 α : α>r+ R x + π : x>0 α : α<r R q : q (0,π) r + Re q ; q (0,π) 4

42 (A.30) e x+ y = ζ r R, ζ r ex = R, e y = ζ r ζ r e x e y = n R ζ r e nx e ( R ny = ζ r [( ) R n ] e nx sin(ny) = I ζ r [ ] = R n I (ζ r) n q (0,π) ) n f( q) =r + Re q, q D f ( q) =Re q f ( q) = R (A.4) H D (ζ,r + Re q ) = R [ R n I π (ζ r) n n= = [ sin(nq)r n I π n= (ζ r) n ] sin(nq) ] (A.3) A.3 capacity (3.4) z g A (z) φ A (z) =I(z g A (z)) H \ A A. A. τ = τ H\A = inf t : B t R A (A.33) (A.34) 4

43 ( )BM R compact H-hull A φ A (z) φ A (z) =E z [φ A (B τ )] (A.35) (A.33) φ A (z) =E z [I(B τ )] E z [I(g A (B τ ))] = E z [I(B τ )] B τ H \ A g A I(g A (B τ ))=0 I(g A (z)) = I(z) E z [I(B τ )] (A.36) z = y, y > 0 I( y) =y (3.5) (LHS) = I I(g A ( y)) = y E y [I(B τ )] ( y + c y + O y c y ( )) y = y c ( ) y + O y ( ) + O y = y E y [I(B τ )]. c = lim y ye y [I(B τ )] A Q capacity (half-plane capacity) hcap(a) A Q hcap(a) lim y ye y [I(B τh\a )], A Q. (A.37) g A (z) =z + hcap(a) z ( ) + O z, z (A.38) capacity C ( ) S = z : z S y C S + y = z + y : z S S r>0 ( ) rs A.4 r>0,x R A Q hcap(ra) =r hcap(a), hcap(a + x) = hcap(a). (A.39) (A.40) 43

44 . g A g ra (z) =rg A (z/r), g A+x (z) =g A (z x)+x (A.4) (A.4) (A.38) (A.4) = z + hcap(ra) z ( ) + O z z (A.4) = r r + hcap(a) ( + O z/r ) = z + r hcap(a) z + O z/r ( z ) /z (A.39) (A.4) = z + hcap(a + z) z + O ( ) z (A.4) = (z x)+ hcap(a) z x = z + hcap(a) + O z ( + O ) ( z z x ) + x (A.40) A, B Q A B g A H \ A H A B g A (B \ A) Q H \ g A (B \ A) H g ga (B\A) A.5 A, B Q,A B g B = g ga (B\A) g A, A B Q (A.43) hcap(b) = hcap(a) + hcap(g A (B \ A)) (A.44). (A.38) g A (z) = z + hcap(a) z ( ) + O z g ga (B\A)(z) = z + hcap(g A(B \ A)) z 44 + O, ( ) z, z.

45 ] ( ) [g ga (B\A) g A (z) =g ga (B\A) g A (z) ( = g ga (B\A) z + hcap(a) ( )) + O z z = z + hcap(a) ( ) hcap(g A (B \ A)) + O z z + z + hcap(a) + O z = z + ( ) ( ) hcap(a) + hcap(g A (B \ A)) + O z z ( z ( ) ) + O z (A.44) g B (z) =z + hcap(b) z ( ) + O z, (A.44) A.4 Φ t (z), Φ t (z) (Φ t (U t)) b SDE SLE κ g t f t = g t f t (g t (z)) = z t (z t ) SLE κ d dt f t(g t (z)) + f t(g t (z)) d dt g t(z) =0 d dt g t(z) = g t (z) U t d dt f t(g t (z)) + f t (g t(z)) =0 g t (z) U t g t (z) z g t d dt f t(z) = f t (z), f 0 (z) =z (A.45) z U t Φ t Φ gt(h) (A.46) 9 Φ t = g t Φ H f t, h 0 =Φ H. (A.47) 45

46 d dt Φ t(z) = d dt g t (Φ H (f t (z))) = ġt (Φ H (f t (z))) + (gt ) (Φ H (f t (z))) Φ H(f t (z)) f t (z). (g t (z) ġ t (z) = d dt g t (z) z (gt ) (z) = d dz g t (z).) (4.) (A.45) d dt Φ t(z) = (Φ H (U t)) g t (Φ H(f t (z))) U t [ ] +(gt ) (Φ H (f t (z))) Φ H (f t(z)) f t (z) z U t Φ t t t =0 t =0 f 0 (z) =z,f 0 (z) =,g 0 (z) =z,(g 0 ) (z) = d dt h 0(z) = = (Φ H (U 0)) Φ H (z) Φ H (U 0 ) Φ H (z) z U 0 (h 0 (U 0)) h 0 (z) h 0 (U 0 ) h 0 (z) z U 0 t 0 d dt Φ t(z) = (Φ t (U t)) Φ t (z) Φ t (U t ) Φ t (z) z U t (A.48) z d dz Φ t(z) = (Φ t (U t)) Φ t (z) (Φ t (z) Φ t (U t )) + Φ t (z) (z U t ) Φ t (z) z U t (A.49) (A.48) (A.49) z U t d dt Φ d t(u t ) = lim z U t dt Φ t(z) = 3Φ t (U t) (A.50) d dt Φ t(u t ) = lim z U t b (.7) d dt Φ t(z) = (Φ t (U t)) Φ t (U t) 4 3 Φ t (U t ) (A.5) d(φ t(u t )) b = b(φ t(u t )) b Φ t (U t )du t + b(b )(Φ t(u t )) b (Φ t (U t )) + b(φ t(u t )) b Φ t (U t ) (du t ) +b(φ t(u t )) b d dt Φ t(u t )dt. 46

47 (A.5) du t = κdb t, (du t ) = κdt (RHS) = b(φ t (U t) b [ κ Φ t (U t ) + Φ t (U t) db t t (U t )) (b )κ(φ (Φ t (U t)) + κφ t (U t ) Φ t (U t) + Φ t (U t) = b(φ t (U t)) b [ κ Φ t (U t ) Φ t (U t) db t + (4.6) (b )κ + ( (Φ t (U t )) Φ t (U t) (Φ t (U t )) (Φ t (U t)) Φ ) Φ ( κ 4 3 ) t (U t) t (U t ) Φ t (U t) ] dt ] dt A.5 SLE g t (z) a n (t),n=,, 3, SLE κ a (t) = U t = κb t (A.5) a n (t) (a (t) =t ). a (t) (3.36) a n (t), n x =(x,x, ), a(t) =(a (t),a (t), ) Q(x) x n n Q(a(t)), (.7) dq(a(t)) = κdb t + dt κ x x + P n (x(t)) Q(x(t)) x n n x=a(t) (da (t)) = κdt (3.3) A = κ x + n P n (x) x n (A.53) AM(x) =0 M(x) M(a(t)) x n n a (t) (a (t)) κa (t) (a (t)) 3 3κa (t)a (t) a 3 (t)+a (t)a (t) (A.54) SLE []. Bauer Bernard, c =(3κ 8)(6 κ)/κ ( ) b =(6 κ)/κ ( ) [] : Summer School 009 Loewner SLE 47

48 [] L. V. Ahlfors, Complex Analysis, 3rd ed., (McGraw-Hill, 979). [] M. Bauer and D. Bernard, SLE matringales and the Virasoro algebra, Phys. Lett. B 557 (003) [3] V. Beffara, The dimension of the SLE curves, Ann. Probab. 36 (008) [4] R. Friedrich and W. Werner, Conformal restriction, highest-weight representations and SLE, Commun. Math. Phys. 43 (003) 05-. [5] W. Kager and B. Nienhuis, A guide to stochastic Löwner evolution and its application, J. Stat. Phys. 5 (004) [6] I. S. E. (00). [7], SLE, Vol.6, No.7 (007) [8] 6 ), (006) [9], Vol. 6, No.3 (009) [0] G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005). [] G. Lawler, Schramm-Loewner Evolution (SLE), arxiv: [math.pr]. [] G. Lawler, O. Schramm, and W. Werner, Conformal restriction: the chordal case, J. Amer. Math. Soc. 6 (003) [3] G. Lawler, O. Schramm, and W. Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab. 3 (004) [4] (999). [5] O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 8 (000) -8. [6],, No.545 (007 ), pp.46-5,. [7] SLE Schramm-Loewner Evolution,, No.546 (008 ), pp.7-, [8] S. Smirnov, Critical percolation in the plane: conformal invariance, Cardy s formula, scaling limit, C. R. Acad. Sci. Paris Sér. I Math. 333 (00) [9] S. Smirnov, Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model, arxiv:

49 [0] :,,, 006. [],, No.546 (008 ), pp.3-9. [] W. Werner, Conformal restriction and related questions, Probability Surveys (005) [3] 006). 49

Katori_SLE_Sep07_v2c.dvi

Katori_SLE_Sep07_v2c.dvi Schramm-Loewner Evolution (SLE) and Conformal Restriction 4 September 007 (version c) SLE [6] Lawler ( [7]), 3 Werner ( []), 4 Friedrich and Werner ( [3]) 3........................ 3. d-.................................

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

統計力学模型とSLE 中央大学理工学部 香取眞理

統計力学模型とSLE  中央大学理工学部 香取眞理 1 Loewner 0. 1. 1.1 (loop erased RW : LERW) (self avoiding walk : SAW) (critical percolation model) Ising (critical Ising model) 1.2 Markov (conformal cov./inv.) Markov (domain Markov property) 1.3 LERW

More information

Katori_Bussei_SS09_HP1.dvi

Katori_Bussei_SS09_HP1.dvi SLE (18 May 2009 (version 1)) SLE Bessel [13] N Hermite N 2 Hermite N N N N N [7] Riemann Brown 2000 Schramm-Loewner Evolution (SLE) [10] [14] SLE [5, 17] 2006 Werner SLE [22] [16] : katori@phys.chuo-u.ac.jp

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information