Katori_Bussei_SS09_HP1.dvi

Size: px
Start display at page:

Download "Katori_Bussei_SS09_HP1.dvi"

Transcription

1 SLE (18 May 2009 (version 1)) SLE Bessel [13] N Hermite N 2 Hermite N N N N N [7] Riemann Brown 2000 Schramm-Loewner Evolution (SLE) [10] [14] SLE [5, 17] 2006 Werner SLE [22] [16] : katori@phys.chuo-u.ac.jp HP 1

2 Brown Bessel Itô Karlin-McGregor Brown Schur Selberg Hermite Bru Markov Schramm-Loewner Evolution (SLE) Riemann Loewner SLE κ : Brown Bessel Itô Schramm-Loewner evolution (SLE) Virasoro 2

3 Part I : Brown Bessel (Ω, F, P) 1 Brown {B(t, ω)} t [0, ) 2 1. B(0,ω)= ω Ω ω B(t, ω) t 3. t 0 0 <t 1 < <t M,M=1, 2,..., {B(t j+1 ) B(t j )} j=0,1,...,m 1 0 t j+1 t j Gauss p(t, y x) = 1 } (y x)2 exp {, t > 0, x,y R (1.1) 2πt 2t R Brown t j, 1 j M [a j,b j ] ( ) b1 bm M 1 P B(t j ) [a j,b j ],j =1,...,M = dx 1 dx M p(t j+1 t j,x j+1 x j ) a 1 a M p(t s, y x) Brown 3 s 0 Brown B(s) Brown B(u),u<s Brown B(t),t>s 1 Ω Ω A Ω F σ (i) Ω F, (ii) A F A A c F, (iii) A 1,A 2,..., F n A n F, 3 2 filtration, {F t } t 0 (i) F s F t F, 0 s<t, (ii) t F t σ (Ω, F, P; {F t } t 0 ) 3 (1.1) t p(t, y x) =1 p(t, y x) p(0,y x) = 2 x2 δ(y x) heat kernel) Green propagator, 3 j=0 2

4 Markov τ Markov τ u u Markov Brown Markov s Markov τ Markov Markov s x t (> 0) y g(s, x; t, y) Brown g(s, x; t, y) t s g(s, x; t, y) y x d d N {1, 2, } d Brown B(t) =(B 1 (t),...,b d (t)) X (d) (t) = B(t) = B 1 (t) 2 + B 2 (t) B d (t) 2 (1.2) d Bessel d Bessel X (d) (t),d N p (d) (t, y x) ν = d 2 2 d =2(ν + 1) (1.3) p (d) (t, y x) = yν+1 1 ( x ν t exp x2 + y 2 2t p (d) (t, y 0) = y 2ν+1 exp 2 ν Γ(ν +1)tν+1 ) ( xy I ν t ( y2 2t ), t > 0, x > 0, y 0 ), t > 0, y 0 (1.4) I ν (z) Bessel Γ(z) : Γ(z) = I ν (z) = 0 n=0 e u u z 1 du Re u>0, (1.5) (z/2) 2n+ν Γ(n + 1)Γ(ν + n +1). (1.6) Bessel X (d) (t) Bessel (1.3) d =1, 2, 3, 4,... ν = 1/2, 0, 1/2, 1,... 4

5 (1.4) ν (1.4) (1.3) d 1 d Bessel Bessel (d 2) (1 d<2) [3] 1.2 Itô s>0 B(s) Brown B(u),u<s B(t) B(s) t 4 Brown X(s)dB(s) Z(t) (quadratic variation) Z t : Z t = P- lim n n (Z(t j+1 ) Z(t j )) 2 j=0 P- lim [0,t] 0 t 0 <t 1 < <t n t n 5 Z(t) Z t =0 Z(t), Ẑ(t) Z, Ẑ t 1 4 { } Z + Ẑ t Z Ẑ t 0 dz(t)dẑ(t) =d Z, Ẑ t Brown db(t)db(t) =dt dt Brown B 1 (t) B 2 (t) Brown db 1 (t)db 2 (t) =0 4 ) 5 {X n } n=1 X (Ω, F, P) n {X n } X ε>0 lim n P( X n X >ε)=0 P- lim n 5

6 d Brown B(t) =(B 1 (t),b 2 (t),...,b d (t)) db j (t)db k (t) =δ jk dt dm j (t)dm k (t), 1 j, k d M(t) =(M 1 (t),m 2 (t),...,m d (t)) Z(t) = (Z 1 (t),z 2 (t),...,z d (t)) M(t) A(t) =(A 1 (t),a 2 (t),...,a d (t)) d F R d F (Z(t)) df (Z(t)) = d j=1 F x j (Z(t)) (dm j (t)+da j (t)) 15j,k5d Itô [12, 3] F (x) = d j=1 x2 j 2 F x j x k (Z(t))dM j (t)dm k (t) (1.7) (1.2) d Bessel dx (d) (t) =db(t)+ d 1 dt (1.8) 2X (d) (t) d >1 d Bessel Brown d 1 t ds 2 0 X (d) (s) 6. (1.8) t u(t, x) =1 2 1 u(t, x)+d u(t, x). (1.9) 2 x2 2x x Kolmogorov [12, 3] (1.4) d Bessel p (d) (t, y x) t =0 δ(x y) 1.3 Karlin-McGregor X 1,X 2 X 1 (τ) =X 2 (τ) τ x = X 1 (τ) =X 2 (τ) 2 N 6 (1.4) d =1 ν = 1/2 I 1/2 (z) = 2/(πz) cosh z p (1) (t, y x) = p(t, y x)+p(t, y x) p (1.1) Brown X (1) (t) = B(t) (1.2) d =1 6

7 [7] Karlin-McGregor Lindström-Gessel-Viennot Fermi Slater [4, 7, 20] 1.1 (Karlin-McGregor ) g(s, x; t, y) N x j, j =1, 2,...,N N y j, j =1, 2,...,N x 1 <x 2 < <x N y 1 <y 2 < <y N N [ ] [s, t] det g(s, x j ; t, y k ) [ ] det g(s, x j ; t, y k ) = N sgn(σ) g(s, x j ; t, y σ(j) ). (1.10) σ S N j=1 S N {1, 2,...,N} (s, x) (t, y) Ω(s, x; t, y) π j Ω(s, x j ; t, y σ(j) ),j =1, 2,...,N (1.10) σ N (σ, π 1,...,π N ) (σ, π 1,...,π N ) { } τ = sup s<u<t: π 1,...,π N u 7 v R τ π l1,π l2 1 π l1 = π l1 ( v)π l1 (v ), π l2 = π l2 ( v)π l2 (v ) 2 v π l 1 = π l1 ( v)π l2 (v ), π l 2 = π l2 ( v)π l1 (v ) j l 1,l 2 π j = π j σ (l 1,l 2 ) σ (σ, π 1,...,π N ) (σ,π 1,...,π N) (1.11) 7 sup (supremum) inf (infimum) 7

8 y σ(4) y σ(3) y σ(1) y σ(2) y σ(5) y π (k) y π (j) y π (k) y π (j) π ' 1 π ' 2 υ υ υ π 1 π 2 π 2 π 1 x j x k x j x k x 1 x 2 x 3 x 4 x 5 (a) (b) 1: (π 1,...,π N ) 2: (a) π l1 π l2 (b) π l v π l1 1 π l π l sgn(σ )= sgn(σ) (σ, π 1,...,π N ) (1.10) (1.11) (1.10) σ sgn(σ) =1 (1.10) 1.4 Brown R N W A N = {x RN : x 1 <x 2 < <x N } A N 1 Weyl W A N Brown 8 0 W A N x =(x 1,...,x N ) Brown W A N t WA N y =(y 1,...,y N ) 1.1 Karlin-McGregor [ ] f N (t, y x) = p(t, y j x k ) det (1.12) 8 (0, ) Brown p (1.1) g abs (s, x; t, y) =p(t s, y x) p(t s, y x), 0 <s<t,x,y 0 Brown [7] (1.4) d =3 ν =1/2 I 1/2 (z) = 2/(πz) sinh z p (3) (t s, y x) =(y/x)g abs (s, x; t, y) (1.12) (1.14) N 8

9 0 x Brown t W A N N N (t, x) = f N (t, y x)dy (1.13) dy = W A N N dy j j=1 T>0 (0,T] Brown Z(t) =(Z 1 (t),z 2 (t),...,z N (t)) gn T (s, x; t, y) T s x W A N N Brown t y W A N g T N (s, x; t, y) = N N(T t, y) N N (T s, x) f N(t s, y x), 0 s<t T, x, y W A N (1.14) Schur [4, 20] N N (t, x) C 2(N) C 1 (N) h N [6, 8] h N (x) ( h N (x) = det x j 1 k ( x t ), ) = 1 j<k N C 1 (N),C 2 (N) (1.6) C 1 (N) =(2π) N/2 N j=1 x t 0 (1.15) (x k x j ) (1.16) N Γ(j), C 2 (N) =2 N/2 Γ(j/2) (1.17) x =(x 1,x 2,...,x N ) x = N x 2 j (1.15) Brown Z(t) T p N (t, y x) = h N(y) h N (x) f N(t, x, y), t > 0, x, y W A N (1.18) j=1 j=1 9

10 X(t) =(X 1 (t),x 2 (t),...,x N (t)) N 2 h N (x) =0 x 2 j=1 j p N (t, y x) t p N(t, y x) = 1 2 N 2 x 2 j=1 j p N (t, y x)+ 1 k N k j 1 x j x k x j p N (t, y x). (1.19) (1.9) d =3 Bessel Kolmogorov N (1.9) Bessel (1.8) (1.19) Brown X(t) =(X 1 (t),...,x N (t)) dx j (t) =db j (t)+ β 2 1 k N k j 1 dt, 1 j N (1.20) X j (t) X k (t) β =2 β (1.20) Dyson [7] 1.5 Schur Selberg μ 1 μ 2 μ N 0,μ j N 0 N {0} = {0, 1, 2,...} μ =(μ 1,...,μ N ) N μ μ j {μ j } j=1 l(μ) 1 j N μ j =0 (0, 0,...,0) = μ N x =(x 1,...,x N ) s μ (x) = det [ det x μ k+n k j [ x N k j ] ] (1.21) [4, 20] Vandermonde (1.16) [ ] = (x j x k )=( 1) N(N 1)/2 h N (x). (1.22) det x N k j 1 j<k N 10

11 s μ (x) x 1,...,x N μ Schur μ = s (x) =1 s μ (x) N Z[x 1,...,x N ] Taylor 1.1 ρ ψ(x) x =0 ψ(x) = x =(x 1,...,x N ), y =(y 1,...,y N ) [ ] det ψ(x j y k ) = h N (x)h N (y) N (x j y j ) ρ j=1 x 0 y 0 μ:l(μ) N c n x n+ρ n=0 s μ (x)s μ (y) N c μj +N j. (1.23) j=1 [ ] det ψ(x j y k ) = h N (x)h N (y) N N (x j y j ) ρ c j 1 j=1 j=1 { } 1+O( x, y ) (1.24) [ ] det ψ(x j y k ) = det = [ ] (x j y k ) ρ c n (x j y k ) n n=0 N (x j y j ) ρ j=1 n=(n 1,...,n N ) N N 0 N j=1 c nj [ ] det (x j y k ) n j. n =(n 1,...,n N ) σ S N σ(n) = (n σ(1),...,n σ(n) ) f(n) n f(σ(n)) = f(n), σ S N n N N 0 f(n) det [ ] (x j y k ) n j = 1 N! = n N N 0 f(n) [ ] det (x j y k ) n σ(j) σ S N [ ] det (x j y k ) n σ(j) f(n) 0 n 1 < <n N σ S N σ S N [ ] [ det (x j y k ) n σ(j) = det x n k j ] det 1 l,m N [ y nm l ] 11

12 N j=1 c nj n [ ] det ψ(x j y k ) = N (x j y j ) ρ j=1 N 0 n 1 < <n N j=1 c nj [ det x n k j ] det 1 l,m N μ j = n j N + j, 1 j N Schur (1.21) (1.23) s μ (x) x 1,...,x N μ s (x) =1 x 0 y 0 (1.24) [ y nm l ]. [ ] 1 f N (t, y x) = det e (x j y k ) 2 /(2t) 2πt = (2πt) N/2 e ( x 2 + y 2 )/(2t) det [ ] e x jy k /t ψ(x) =e x/t = x n /(n!t n ) 1.1 (1.24) x=0 x / t 0 y / t 0 f N (t, y x) = t N 2 /2 C 1 (N) e ( x 2 + y 2 )/(2t) h N (x)h N (y) { ( x 1+O, y )} t t (1.25) C 1 (N) (1.17) N N (t, x) = f N (t, y x)dy = W A N 1 C 1 (N) h N ( x t ) { ( )} x C 2 (N) 1+O, t x t 0 C 2 (N) = W A N e x 2 /2 h N (x)dx (1.26) Selberg [11] N h N (x) 2γ =(2π) N/2 (2a) N(γ(N 1)+1)/2 R N e a x 2 j=1 Γ(1 + jγ) Γ(1 + γ) (1.27) a =1/2,γ =1/2 (1.17) (1.15) 12

13 2 Hermite 2.1 Bru N N Hermite H(N) N N S(N) A t A A A t A Bru H(N) Wishart ξ jk (t), 1 j, k N [6, 7] Bru 9 λ(t) =(λ 1 (t),λ 2 (t),...,λ N (t)) H(N) Ξ(t) =(ξ jk (t)) 15j,k5N λ 1 (t) λ 2 (t) λ N (t) U(t) =(u jk (t)) ( ) U(t) Ξ(t)U(t) =Λ(t) = diag λ 1 (t),λ 2 (t),,λ N (t) Ξ(t) ( ) ( ) Γ jk,lm (t)dt = U(t) dξ(t)u(t) U(t) dξ(t)u(t) (U(t) dξ(t)u(t)) jj dυ j (t) (λ 1 (t),λ 2 (t),...,λ N (t)) τ : { } τ = inf t>0:λ j (t) =λ k (t) 1 j k N jk lm 2.1 [ Bru ] ξ jk (t), 1 j, k N Ξ(t) λ(t) dλ j (t) =dm j (t)+dj j (t), t (0,τ), j =1, 2,...,N. (2.1) M(t) =(M 1 (t),m 2 (t),...,m N (t)) dm j (t)dm k (t) =Γ jj,kk (t)dt J(t) =(J 1 (t),j 2 (t),...,j N (t)) dj j (t) = 15k5N k j 1 λ j (t) λ k (t) 1 {λ j (t) λ k (t)}γ jk,kj (t)dt + dυ j (t) 1 {ω} ω ω Itô (1.7) M M N N d(m M) =(dm) M + M (d M)+(dM) (d M) 13

14 2.2 Bjk R (t), BI jk (t), 1 j, k N 2N 2 Brown 1 j, k N 1 Bjk R (t), j < k 1 Bjk 2 I (t), j < k 2 s jk (t) = Bjj(t), R j = k a jk(t) = 0, j = k 1 Bkj R (t), j > k 1 Bkj I (t), j > k 2 2 (i) GUE Ξ GUE (t) = ( s jk (t)+ ) 1a jk (t), t [0, ) (2.2) 15j,k5N H(N) t [0, ), Ξ GUE (t) H(N) H(N) U(dH) μ GUE (H, t) = t N 2 /2 ( c 1 (N) exp 12t ) TrH2, H H(N) Tr c 1 (N) =2 N/2 π N 2 /2 N N U(N) U U(N) μ GUE (H, t)u(dh) H U HU H(N) Gauss (Gaussian unitary ensemble, GUE) [11, 13] GUE x 1 <x 2 < <x N x =(x 1,x 2,,x N ) g GUE (x,t)= t N 2 /2 C 1 (N) exp ) ( x 2 h N (x) 2 (2.3) 2t [11, 13] h N (x) N N Vandermonde (1.22) C 1 (N) (1.17) Bru Ξ GUE (t) dξ jk (t)dξ lm (t) dξ jj (t)dξ jj (t) =dbjj R(t)dBR jj (t) =dt j<k dξ jk (t) =dbjk R (t)/ 2+ 1dBjk I (t)/ 2=dξ kj (t) dξ jk (t)dξ jk (t) =dt/2 dt/2 =0,dξ jk (t)dξ kj (t) =dt/2 +dt/2 =dt (j, k) (l, m), (m, l) dbjk R (t)dbr lm (t) = dbjk I (t)dbi lm (t) =0 dξ jk(t)dξ lm (t) =0 14

15 dξ jk (t)dξ lm (t) =δ jm δ kl dt, 1 j, k, l, m N dm j (t)dm k (t) ( ) ( ) Γ jj,kk (t)dt = U(t) dξ(t)u(t) U(t) dξ(t)u(t) jj kk = u lj dξ lm u mj u pk dξ pq u qk l,m p,q = l,m u lj u lk u mj u mk dt = δ jk dt U(t) U(t) U(t) =U(t)U(t) = I N N Brown Γ jk,kj (t) =1, 1 j, k N (U(t) dξ(t)u(t)) jj (dυ j (t) =0) Bru λ(t) dλ j (t) =db j (t)+ 15k5N k j 1 dt, 1 j N (2.4) λ j (t) λ k (t) τ = (2.4) Dyson (1.20) β =2 (ii) GOE ( ) Ξ GOE (t) = s jk (t), t [0, ) (2.5) 15j,k5N S(N) t [0, ) Ξ GOE (t) S(N) V(dS) μ GOE (S, t) = t N(N+1)/4 c 2 (N) exp ( 12t ) TrS2, S S(N) S(N) c 2 (N) = 2 N/2 π N(N+1)/4 N N O(N) V O(N) μ GOE (S, t)v(ds) S t VSV S(N) Gauss (Gaussian orthogonal ensemble, GOE) GOE x 1 < x 2 < < x N x =(x 1,x 2,,x N ) g GOE (x,t)= t N(N+1)/4 C 2 (N) 15 exp ) ( x 2 h N (x) (2.6) 2t

16 C 2 (N) (1.17) [11, 13] GUE λ(t) dλ j (t) =db j (t) k5N k j 1 λ j (t) λ k (t) dt, 1 j N τ = Dyson (1.20) β = (i) GUE λ(t) =(λ 1 (t),...,λ N ) Brown X(t) =(X 1 (t),...,x N (t)) β =2 Dyson 3.1 Brown X(t) =(X 1 (t),...,x N (t)) GUE λ(t) =(λ 1 (t),...,λ N (t)) Dyson (1.20) N Brown β =2 Dyson (1.20) log log- Dyson 1 Coulomb (1.20) β β =1/k B T T =1/(2k B ) β 2 2 N 16

17 Part II : Schramm-Loewner Evolution (SLE) C S S = Z 1Z, Z S { z S n } Wn z = ω =(ω(0),...,ω(n)) : ω(0) = z, ω(j) S, ω(j) ω(j 1) =1, 1 j n (RW) Wn z =4n { ω Wn z 4 n C D 0 = x + } 1y : 1 <x<1, 0 <y<2, D 0 2 O =0 P =2 1 N N N NO =0 NP =2N 1 RW ND 0 Ω N (D 0 ; O, P) Z N (D 0 ; O, P) = 4 ω. (4.1) ω Ω N (D 0 ;O,P ) ω ω N Z N (D 0 ; O, P) C(D 0 ; O, P)N 2 0. f(n) g(n),n f(n)/g(n) 1,N C(D 0 ; O, P) D 0 Poisson H D0 (,P) O D 0 (loop-erased RW: LERW) Ω N (D 0 ; O, P) ω =(ω(0),ω(1),...) ω(j) =ω(k),j < k ω ω ω =( ω(0), ω(1),...) t 0 =0, ω(0) = ω(t 0 )=0 m 1 t m = max { } l>t m 1 : ω(l) = ω(t m 1 +1), ω(m) = ω(t m )= ω(t m 1 +1) Schramm-Loewner Evolution 17

18 ND 0 0 NP Ω 0 N (D 0; O, P) RW Ω 0 N (D 0; O, P) RW ω 4 w (LERW) LERW LERW ω =(ω(0),...,ω( ω )) ν>0 ( ) j ω 1/N = 1 ω(j), 0 j ω (4.2) N 1/ν N ω 1/N O ω /N 1/ν P =2 1 D 0 1/N ν N P γ P t γ = lim N ω /N 1/ν : γ :(0,t γ ) D 0, lim t 0 γ(t) =O, lim γ(t) =P, t γ (0, ). (4.3) t tγ γ d LERW =1/ν γ γ(t 1 ) γ(t 2 ), 0 t 1 <t 2 t γ LERW (4.3) K LERW (D 0 ; O, P) K LERW (D 0 ; O, P) μ LERW (D 0 ;O,P ) C(D 0; O, P) μ LERW (D 0 ;O,P ) ( )=C(D 0; O, P)μ LERW (D 0 ;O,P ) ( ) (4.4) μ LERW (D 0 ;O,P ) (self-avoiding walk : SAW) Wn z { Wn,0 z = ω Wn }. z : 0 j<k n ω(j) ω(k) 2 <e β < 3 Wn,0 z e βn,n 11 f(n) g(n),n log f(n) log g(n),n ω e β ω (SAW) (4.1) SAW ZN SAW (D 0 ; O, P) = e β ω ω Ω 0 N (D 0;O,P ) 11 e β SAW connective constant S

19 b SAW > 0 Z SAW N (D 0 ; O, P) C SAW (D 0 ; O, P)N 2b SAW, N (4.5) LERW b LERW =1 SAW γ d SAW LERW d LERW (4.4) SAW μ SAW (D 0 ;O,P ) ( )=CSAW (D 0 ; O, P)μ SAW (D 0 ;O,P ) ( ) (critical percolation model) NP _ Λ Ν + Λ Ν 0 3: T H 1 0 C τ = exp(2π { 1/3) T = z 0 +(j+kτ) 3a : } j, k Z. a =2/3 z 0 = a 1 T a H O NP =2N 1,N N z T η(z) {0, 1} Bernoulli ν p, 0 p 1 ν p (η(z) = 1) = p, ν p (η(z) =0)=1 p. T 1 0 p 1/2 19

20 1 p >1/2 p c =1/2 p c T p c =1/2 Bernoulli N 1 b per =0 N N T ND 0 =Λ N 3 N =6 Λ N z T O NP Λ + N Λ N η(z) =1, z Λ + N, η(z) =0, z Λ N Dobrushin Λ N ν p η {0, 1} T ND 0 H ND 0 O ω 0 1 ν>0 (4.2) N d per =1/ν (4.3) γ γ μ per (D 0 ;O,P ) ( ) Ising (critical Ising model) Λ N =Λ N Λ + N Λ N z Λ N σ(z) { 1, 1} z Λ ± N σ(z) =±1 Dobrushin o Λ N =Λ N ( Λ + N )c ( Λ N )c σ { 1, 1} Λ N E(σ) = 1 2 z,z Λ N : z z = 3a σ(z)σ(z ) k B β =1/(k B T ) β>0 Gibbs π N,β (σ) = e βe(σ) Z N,β, Z N,β = σ { 1,1} o Λ N e βe(σ) T 0 Ising ω 1 +1 H ND 0 β T Ising β c = (log 3)/4 = d Ising (4.3) γ μ Ising (D 0 ;O,P ) ( ) 20

21 4.2 Markov f D 0 C f (z) 0, z D 0 f : D 0 f(d 0 ) (4.6) f D 0 O, P f(d 0 ) f(o),f(p ) 4.1 γ μ (D0 ;O,P )( )=C(D 0 ; O, P)μ (D0 ;O,P )( ) (4.7) (conformal covariance) (conformal invariance) (4.6) f μ (D0 ;O,P )( )= f (O) b f (P ) b μ (f(d0 );f(o),f(p ))( ) (4.8) b 4.1 N (4.8) (boundary scaling exponent) (4.8) 12 C(D 0 ; O, P) = f (O) b f (P ) b C(f(D 0 ); f(o),f(p )), (4.9) μ (D0 ;O,P )( ) = μ (f(d0 );f(o),f(p ))( ). (4.10) Markov (domain Markov property) μ (D0 ;O,P ) γ γ(0,t],t (0,t γ ) D 0 γ(0,t] γ(t) γ(t γ )=P ( ) γ(0,t] = μ (D0 \γ(0,t];γ(t),p )( ). μ (D0 ;O,P ) Markov γ (4.3) t [0,t γ ] (4.6) (4.2) f(z) =z/n,n N f (z) =1/N f (O) b = f (P ) b = N b (4.9) (4.5) 21

22 (4.2) f γ f(γ[t 1,t 2 ]), 0 <t 1 <t 2 <t γ, t2 t 1 f (γ(s)) d ds d γ θ :[0,t γ ] [0,t γ ] γ(t) γ(θ(t)) 4.3 (4.7) / Markov (restriction property) D 0 D 1 D 0 O, P D LERW μ LERW (D 1 ;O,P ) O P RW RW LERW LERW Radon-Nikodym dμ LERW (D 1 ;O,P ) dμ LERW (D 0 ;O,P ) < 1, D 1 D 0, D 1 D 0 SAW dμ SAW (D 1 ;O,P ) dμ SAW (D 0 ;O,P ) = 1{γ(0,t γ ) D 1 }, D 1 D 0 (4.11) 1{ω} ω (4.11) η Bernoulli η μ per μ Ising (locality property) D 1 D 0 O, P D 1 μ per (D 1 ;O,P )(γ(0,t]) = μper (D 0 ;O,P ) (γ(0,t])1{γ(0,t) D 1}, t (0,t γ ). (4.12) (4.11) γ(0,t γ ) (4.12) γ(0,t],t (0,t γ ) 22

23 5 Schramm-Loewner Evolution (SLE) 5.1 Riemann D, D C D, D C, z, w D, z,w D Riemann f : D D, f(z) =z, f(w) =w f (w) =1 H = {z C :Imz>0} μ (H;0, ) D C,D C, z, w D μ (D;z,w) H \ D D H w = f(w) = f (w) =1 w f(w ) w f μ (D;z, ) ( )= f (z) b μ (f(d);f(z), ) ( ), z D. (5.1) 5.2 Loewner γ :(0, ) H lim γ(t) =U 0 R lim γ(t) = t 0 t H t γ(0,t] H \ γ(0,t] t (0, ) H \ γ(0,t] H f lim f (z) =1 g t z a(t) > 0 g t (z) =z + a(t) + O( z 2 ), z z a(t) γ(0,t] (half-plane capacity) g t (z) (chordal) Loewner d dt g t(z) = da(t)/dt g t (z) U t, g 0 (z) =z. (5.2) U t = g t (γ(t)) R t U t U t a(t) Loewner (5.2) g t : H t H,t (0, ) H t H H t pioneer point H pion = H s 0 s<t γ(0) R γ :(0, ) H H pion t = R γ(0,t] g t γ 23

24 5.3 SLE κ γ a(t) =at, a > 0 U t Loewner (5.2) g t γ μ (H;0, ) / Markov U t γ U t U t 1.1 Brown B(t) Loewner d dt g t(z) = a g t (z) U t, g 0 (z) =z, U t = B(t) (5.3) Schramm Schramm-Loewner evolution [15] 13 Schramm κ (0, ) a = 2 κ SLE κ SLE κ g t SLE κ γ SLE κ μ κ (H;0, ) SLE κ lim γ(t) =B(0) = 0 lim γ(t) = t 0 t 5.1 (Lawler-Schramm-Werner [9]) 14 Markov SLE κ, κ (0, ) (5.3) h t (z) =g t (z) U t = g t (z) B(t) z H x dh t (x) =db(t)+ (1.8) a h t (x) dt, h 0(x) =x>0 (5.4) a = d 1 2 d =2a +1 d = 4 κ +1 κ = 4 d 1 (5.5) 13 Oded Schramm (ICM 2006) Wendelin Werner [16] John Charles Fields 1998 Andrew Wiles Fermat ICM 2006 Gauss 24

25 0 0 0 (a) (b) (c) 4: (a) 0 <κ 4 SLE (b) H H 4 <κ<8 SLE (c) H κ 8 SLE h t (x) x>0 (2a +1)=(4/κ +1) Bessel Bessel (Bessel flow) 15 SLE κ κ (phase) 4 (5.5) d =2 κ =4,d =3/2 κ =8 5.2 (Lawler-Schramm-Werner [9]) (a) 0 <κ 4 SLE κ γ γ(0, ) H (b) κ>4 γ γ(0, ) R (c) κ 8 γ H γ[0, ) =H. 5.3 (Beffara[1]) κ 8 SLE κ γ(0, ) Hausdorff 16 d(κ) =1+ κ x>0 d Bessel T x (i) d 2 P(T x = ) =1, x >0. (ii) 1 d<2 P(T x < ) =1, x >0. (iii) 3/2 <d<2 0 <x<y P(T x = T y ) > 0. (iv) 1 d 3/2 0 <x<y P(T x <T y )=1. 16 d R d V ε >0 ε U 1,U 2,... diam(u n ) sup{ x y : x, y U n } <ε,n 1, V U n. α>0 n 1 25

26 5.4 H { } D = D H :, H \ D, 0 D D D D H Φ D Φ D (z) =z + o(1),z. SLE κ γ { } τ D = inf t : γ H \ D t <τ D γ D SLE γ(0,τ D ) Φ D Φ D (γ(0,τ D )) H = H R γ Φ D (γ(0,τ D )) gt (z) Loewner (5.3) Φ D Itô gt (z) U t (5.3) du t = b Φ t (U t ) dt + db(t). (5.6) Φ t(u t ) b(κ) = 3a 1 2 = 6 κ 2κ. (5.7) κ =6 b =0 D D g t (z) g t (z) t<τ D, U t = B(t) Brown SLE, (5.3) 5.4 SLE κ μ κ (H ;0, ) κ =6 κ 6 (5.6) U t Girsanov [12, 3] M t 17 f Schwarz H α ε (V ) = inf n 1(diam(U n )) α inf ε H α (V ) = lim ε 0 H α ε (V ) Hausdorff α V Hausdorff dim H (V ) = inf{α : H α (V )=0} = sup{α : H α (V )= }. 17 j τ j τ 1 <τ 2 < j Z(t τ j ) a b = min{a, b} Z(t) 26

27 Sf(z) = f (z) f (z) 3f (z) 2 2f (z) 2 c = 2b(3 4a) a = (3κ 8)(6 κ) 2κ (5.8) { t } a M t = exp c 0 12 SΦ s(u s )ds Φ t(u t ) b (5.9) dμ (H ;0, ) dm t = b Φ t (U t) Φ t(u t ) M tdb(t) 18 κ = 2 4,D D a { dμ } (D;0, ) a (γ) =M = 1{γ(0, ) D} exp c 0 12 SΦ s(u s )ds (5.10) (5.8) κ 4 κ =8/3 c =0 (5.10) 1{γ(0, ) D} (4.11) 5.5 SLE κ μ κ (H ;0, ) κ = μ per (D 0 ;0,P ) μsaw (D 0 ;O,P ) μ6 (H;0, ), μ 8/3 (H;0, ) H D 0 Smirnov [18, 21] μ LERW (D 0 ;0,P ) = μ2 (H;0, ) [15, 9] μising (D 0 ;0,P ) = μ3 (H ;0, ) [19] = 5.3 (5.7) 19 d LERW = d(2) = 5 4, d SAW = d(8/3) = 4 3, d Ising = d(3) = 11 8, d per = d(6) = 7 4, b LERW = b(2) = 1, b SAW = b(8/3) = 5 8, b Ising = b(3) = 1 2, b per = b(6) = (i) t γ(t) γ(0, ) D Φ t (U t) 1,t (ii) SΦ t (U t ) 0 κ 4 (i) [9] 19 t γ(t) (5.1) (5.9) (5.1) (5.7) b 27

28 a (a 0 =0) 0 a [a, a ]=1 L n (n =1, 2, 3, ) L n (n = 1, 2, 3, ), L 0 [L n,l m ]=(n m)l n+m + c n(n2 1) δ n+m,0, n,m Z (6.1) 12 c Virasoro [22] (L n b =0,n 1) b L n,n 1 L 0 b = b b b b n k,...,n 1 ; b = L nk L n1 b, 0 <n 1 n 1 n k Verma L 0 L 0 n k,...,n 1 ; b =(b + n n k ) n k,...,n 1 ; b. L 0 b k j=1 n j 2 L 1 L 1 b L 2 b ( ) ( b L 2 L 2 b b L 2 L 1 L 1 b 4b + c/2 6b det = det b L 1 L 1 L 2 b b L 1 L 1 L 1 L 1 b 6b 4b(1 + 2b) ) =0 (6.2) Kac ( ) 1 χ 2,1 = 2 L 2b +1 1L 1 L 2 b (6.3) 3 2 null vector L n,n 1 2 b 0 (6.2) c = 2b(5 8b) 1+2b 28 (6.4)

29 (5.7) (5.8) κ b c (6.4) L 1 x, L 2 1 x x 20 (6.3) b x + a 2 x x, a = 2 2b +1 = κ 3 (2a+1) Bessel (5.4) (generator) G (2a+1) Kolmogorov (1.9) t u = G(d) u. SLE κ (5.8) Virasoro (5.7) 2 [2] : [1] V. Beffara : The dimension of the SLE curves, Ann. Probab. 36, (2008); [2] R. Friedrich and W. Werner : Conformal restriction, highest-weight representations and SLE, Commun. Math. Phys. 243, (2003); [3] I. S. E. (2001). [4] : 13, No.4, ([296]-[307]) (2003). [5] SLE, 62, No.7, (2007). [6] M. Katori and H. Tanemura : Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems, J. Math. Phys. 45, (2004); { } (n 1)Δ 20 L n L n = (x z) n 1 (x z) n 1 x z =0, Δ=0 29

30 [7] 6 ), (2006) [8] M. Katori and H. Tanemura : Noncolliding Brownian motion and determinantal processes, J. Stat. Phys., 129, (2007); [9] G. F. Lawler : Conformally Invariant Processes in the Plane, (American Mathematical Society, 2005). [10] I, II (2004). [11] M. L. Mehta : Random Matrices, 3rd ed. (Elsevier Academic Press, London, 2004). [12] (1999). [13] (2005). [14] 2005). [15] O. Schramm : Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118, (2000); [16],, No.545 ( ), pp.46-51,. [17] SLE Schramm-Loewner Evolution,, No.546 ( ), pp.7-12, [18] S. Smirnov : Critical percolation in the plane: Conformal invariance, Cardy s formula, scaling limits, C. R. Acad. Sci. Paris, Sér. I Math. 333, (2001); Smirnov web page pdf file smirnov/papers/index.html. [19] S. Smirnov : Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model, [20] :,,, [21],, No.546 ( ), pp [22] 2006). 30

統計力学模型とSLE 中央大学理工学部 香取眞理

統計力学模型とSLE  中央大学理工学部 香取眞理 1 Loewner 0. 1. 1.1 (loop erased RW : LERW) (self avoiding walk : SAW) (critical percolation model) Ising (critical Ising model) 1.2 Markov (conformal cov./inv.) Markov (domain Markov property) 1.3 LERW

More information

Katori_SLE_Feb2010_s1.dvi

Katori_SLE_Feb2010_s1.dvi Schramm-Loewner Evolution H H H H H. H γ H t t U t U t g t (z) t = g t (z) U t, g 0 (z) =z, t 0 t g t (z) t 0 g t (z) H t γ(0,t] B t κ >0 Schramm 000 U t = κb t H U t = κb t κ Schramm- Loewner Evolution

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

Katori_SLE_Sep07_v2c.dvi

Katori_SLE_Sep07_v2c.dvi Schramm-Loewner Evolution (SLE) and Conformal Restriction 4 September 007 (version c) SLE [6] Lawler ( [7]), 3 Werner ( []), 4 Friedrich and Werner ( [3]) 3........................ 3. d-.................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1

More information

III Kepler ( )

III Kepler ( ) III 9 8 3....................................... 3.2 Kepler ( ).......................... 0 2 3 2.................................. 3 2.2......................................... 7 3 9 3..........................................

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

τ τ

τ τ 1 1 1.1 1.1.1 τ τ 2 1 1.1.2 1.1 1.1 µ ν M φ ν end ξ µ ν end ψ ψ = µ + ν end φ ν = 1 2 (µφ + ν end) ξ = ν (µ + ν end ) + 1 1.1 3 6.18 a b 1.2 a b 1.1.3 1.1.3.1 f R{A f } A f 1 B R{AB f 1 } COOH A OH B 1.3

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg ( 1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

III Kepler ( )

III Kepler ( ) III 20 6 24 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

RIMS98R2.dvi

RIMS98R2.dvi RIMS Kokyuroku, vol.084, (999), 45 59. Euler Fourier Euler Fourier S = ( ) n f(n) = e in f(n) (.) I = 0 e ix f(x) dx (.2) Euler Fourier Fourier Euler Euler Fourier Euler Euler Fourier Fourier [5], [6]

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

2

2 III 22 7 4 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information