Microsoft PowerPoint - 構造設計学_2006

Size: px
Start display at page:

Download "Microsoft PowerPoint - 構造設計学_2006"

Transcription

1 [7] 建築振動学入門 振動の基礎地震動に対する振動 建物の耐震性を考えようとすれば 地震によって建物がどのように揺れるのかを知らなければなりません そのためには 建築振動学の基礎を皆さんは学ばなければなりません しかし 建築振動学は 皆さんにとっては難しいかもしれません この講義読本は 初心者にもわかるようにできるだけ易しく解説していますので 途中で投げ出さずに 最後までよく読んでみてください そして 細かいことはともかく何が大事なのかを理解していただければ十分です 46

2 構造物の振動系へのモデル化 質点 建築物骨組み質点系モデル 建物は大変複雑な構造をしています そこで 皆さんは 静定力学や不静定力学で 建物をはりや柱の骨組みに理想化して考えることを学びましたね しかし 建物の振動を考えるときは そのような骨組みに理想化しても複雑でやっかいなのです そこで もっと思い切った理想化モデルを考えてやる必要があります それが 質点系モデルと呼ばれるものです 質点系モデルは 上の図に示すように串団子のようなモデルをしています しかし 建物を質点系モデルに理想化しても不都合がないのでしょうか それを次に説明します 47

3 建築構造物をなぜ質点系モデルに置換するのか 構造物の重量分布を各層とも床面に集中させて考える 振動理論が簡単に 工学的に見て 実際の挙動を十分再現できる 建物に生ずる変位が同一層内にある限りどこでも等しい運動をしていると考えられる場合は 層の動きを床面の重心の変位のみに代表させることができる 建物の多くは ラーメン構造で造られています この構造物は はりや柱 床スラブなどで構成されていますが 各部材は部材内の至る所に質量を持っています 慣性力は この質量とその質量部分に生じる加速度の積になりますから 厳密な挙動を再現しようとするとスーパーコンピューターが必要になります そこで 次のように理想化します ラーメン構造の場合 高さ方向の質量分布は 床スラブの重量が大きいので 床面位置で大きくなっています そこで 建物の質量分布を各層とも床面位置に集中させて考えます この集中させた点を質点と呼んでいます この質点系のモデル化によって 振動理論は飛躍的に簡単になります また 高層以下のラーメン構造では 水平外力を受けたときの柱の伸びや縮みは 一般的に小さいので 床面は水平方向のみに振動すると考えても問題はありません しかもその床面に生じる変位は その床面位置のどこでも同じであると考えて差し支えないでしょう つまり 層の動きを床面の重心の変位のみに代表させることができます このような質点系のモデル化による建物の挙動は 工学的にみて 実際の挙動を十分再現できるのです 48

4 せん断形構造物と曲げ形構造物 せん断形構造物とは 床面が水平にのみ動くと考えられるもの 通常のラーメン構造物 ラーメン構造のように水平方向にのみに変位を起こす構造物のことをせん断形構造物と呼んでいます 一方 高層建築物や超高層建築物では 建物の中心にコアと呼ぶ昇降施設や給排水管を納めた平面区域があります このコア部分の壁を耐震壁にすることが多いのですが そのようにすると 建物全体がしなるために コア壁の両側最下層柱の伸び縮みが大きくなり 上下方向の変位が無視できなくなります このような構造物を曲げ形構造物と呼んでいます せん断形構造物は 曲げ形構造物よりも 振動理論は単純になります 49

5 しかし 多質点系の振動は複雑 しかし 多質点系の振動はそれでも複雑 振動の基本を把握するには 1 質点系で しかし せん断形構造物を取り扱うにしろ 多層建物では 通常 その層数分だけ質点が存在しますので 応答は大変複雑になります そこで 現実的には少し無理がありますが 多質点系の振動モデルを1 質点系の振動モデルに置き換えて考えます そうすると 実際の挙動とは当然異なる面も出てくるのですが 単純なだけに振動の基本を把握しやすくなります そこで 最初に 1 質点系の振動を考えていきます 50

6 D Alembert( ダランベール ) の原理 振動は 刻一刻と変化する現象 いったいどう考えれば良いのか 加速度 α を生じている質量 m の質点は これに接している物体に -mα の慣性力を及ぼす 従って 運動している物体のある瞬間をとらえて 慣性力を含む力の釣り合い式を立てればよい 1 質点系の振動現象を考える前に 振動現象をどう考えれば良いのかについて 説明しておきましょう 振動現象は 時間の関数を持っています つまり 振動は 刻一刻と変化する現象です このような現象をどのように考えればよいのでしょうか ダランベールというフランスの学者がそのことについて解答を見いだしました 彼は 加速度 (a) を生じている質量 (m) の質点は これに接している物体に-maの慣性力を及ぼすことを発見したのです この文章だけだと 何を言っているのかよくわかりませんね これは 運動している物体のある瞬間をとらえて 慣性力を含む力の釣り合い式を立てて解けばよい ということを言っているのです つまり 動的な ( 時間関数を含んだ ) 問題を 静的な ( 時間関数を含まない ) 力の釣り合い方程式をたてることによって 振動現象を解き明かすことができるのです しかし 加速度は 距離を時間で2 回微分した物理量ですから 得られる方程式は微分方程式になってしまいます 微分方程式の解法は 大変難しいものがあります しかし ここでは 解き方を勉強しようというのではありません 微分方程式を解いた結果を使って 基本的な振動現象を学んでいきます 51

7 1 層建物の自由振動 -mx 慣性力 x 加速度 -mx=kx mx+kx=0 一質点系の方程式 m: 質量 k: ばね定数 それでは ダランベールの原理を1 層建物の振動系に適用してみましょう 質量 mの質点に 今 加速度 x が生じているとすれば 慣性力は-m x となります この質点はばね定数 kを持つ層で支えられています 層にはkxの力が生じますので 慣性力はこの力と等しいことになります すなわち -m x =kx 移行すると mx +kx=0 という方程式が得られます この方程式は 減衰を含まない1 層建物の自由振動を表しています 減衰については 後で説明します 自由振動というのは 建物をロープで引っ張っておいて 急にロープを放してやったときの建物の振動を言います 52

8 一質点系方程式の解 一般解 x=acosy t+bsiny t A,Bは任意定数で 初期条件から決まる 例えば t=0, x=x o, x=v o の条件を与えれば 次式が決定される x= x o cosyt+ y v o sinyt k y= m この微分方程式の一般解は 上の図に示すような正弦波を関数に持つ式で表されれます 一般解の中のA Bは 初期条件を与えてやると 決定することができます たとえば 初期変位 xoと 初速度 voが与えられていれば x=xocosωt+(vo/ω)sinωt というように決定してやることができるのです 皆さんは 一般解からこの式を導くことができますか 試しに挑戦してみてください この変位は正弦波関数を持ちますので この振動系はある振幅 ( 振動する系の最大応答変位の大きさ ) をいったりきたりすることがわかります 53

9 周期と振動数と円振動数 周期 (T) 振動数 (f) x 円振動数 (ω) o t π ωt o 0 2π ωt=2π T=1/f つまり 上の右側に示す図のような応答を繰り返すことになります そして 一方に振れてから反対の方向に振れ それから最初の出発点に帰るまでの時間を周期 (T) と呼んでいます また 周期の逆数を振動数と言います 振動数は 単位時間に 何回いったり来たりを繰り返したかを表しています この振動現象は 円の曲線上を動く点になぞらえることができます 点が一回転すると 一方に振れてから反対の方向に振れ それから最初の出発点に戻ってくることを表しますから このとき 点は一周期分の運動をしたことになります 点の運動を表す角度をωtとすると 一回転の角度は2πですから 固有周期 Tは ωt=2πすなわちt=2π/ωとなります ここで ωを円振動数と言います 54

10 固有振動数と固有周期 固有振動数 y= 固有周期 k m T= 2p y =2p m k 1 質点系の振動では 円振動数は 微分方程式の解法から ω= k/m で表されることがわかっていますので 固有周期は T=2π m/k となります 55

11 減衰を伴う振動系 粘性減衰 : 空気抵抗や内部摩擦角によって 速度に比例した抵抗を受けて 振動が弱まると考えられている減衰 -mx=cx+kx mx+cx+kx=0 しかしながら 実際に地震動を受けた建物は 揺れ続けずに次第に揺れは収まってしまいます これは 振動を弱める力が存在するからです このように振動が弱まる現象を減衰と呼んでいます 減衰には いくつかの種類があります 代表的な減衰に粘性減衰があります 粘性減衰は 空気抵抗や内部摩擦によって 速度に比例した抵抗を受けて 振動が弱まると考えられている減衰です このときの減衰力は 速度 x に比例するので減衰の能力を表す係数 c( 減衰係数 ) を用いて cx と表せます ダランベールの原理を適用すれば 慣性力 -m x は 復元力 kxと減衰力 cx の和と等しくなります すなわち -m x =cx +kx 移行して m x +cx +kx=0 となります この微分方程式の一般解を 次ページに示します 56

12 減衰を伴う場合の一質点系運動方程式の解 一般解 x=e -(c/2m)t Acos k - 2m c 2t+Bsin m k - 2m c 2 m t c 2 m k のときは振動現象を示さな 2m いことがわかる 大変複雑な式ですね もちろん この式を覚える必要はありません 大事なのは 平方根の中の値です 平方根の中が正の値を持てば振動現象を起こしますが 零か負の値を持てば振動現象を起こしません この振動を起こすか起こさないかの境の減衰を臨界減衰と呼んでいます 57

13 臨界減衰と減衰定数 臨界減衰 c c 2= m k 2m c c =2 mk 減衰定数 ( 減衰比 ) h=c/c c c c =2 mk =2my o,h= 2my o 減衰係数 cと臨界減衰 ccとの比を減衰定数と呼んで hで表します 減衰係数は Nsec/mの次元を持っていますが 減衰定数は減衰の比ですから 次元がありません ですから 通常 減衰の能力を表すときは減衰定数 hを用います ここで 減衰定数が1.0 以上になれば 建物は振動しないことになります ということは そのような減衰定数を持つ建物を造ればよいことになります しかし 残念ながら 現実にはそう簡単にはいきません 鋼構造や鉄筋コンクリート造建物の減衰定数は わずか0.02~0.05(2~5%) 程度の減衰能力しかないのです 58

14 無次元化した運動方程式とその一般解 運動方程式 x+2hy ox+y o 2 x=0 一般解 x=e -hyot (Acos 1-h 2 y ot+bsin 1-h 2 y ot) 最後に 運動方程式を 減衰定数と固有振動数で表す方がより一般性があります このときの一般解も示しておきましょう 59

15 減衰を伴う一質点系の自由振動 上の図は 減衰を伴う一質点系の自由振動の例です 減衰定数が0.1(10%) を超えると比較的早く振動が収まることがわかりますね 減衰定数を1.0(100%) にすることはできませんが 0.1~0.2(10~20%) 程度にすることは可能です このように 減衰定数を何らかの方法で高める ( 例えばダンパーと呼ばれる減衰装置を取り付ける ) ことによって 振動を抑えようとする構造はすでに考えられています 例えば 制震 ( 振 ) 構造とか免震構造と呼ばれている構造です 60

16 地動を受ける一層建物 運動方程式 m(x+y)+cx+kx=0 mx+cx+kx=-my x+2hy ox+y o 2 x=-y y: 地動加速度 これまでは 自由振動について説明してきました しかし 実際の建物の振動は 地盤が振動を起こしていることに起因しています そこで 地動を受ける建物について見ていきましょう 上の図を見てください 変位 xは 地盤上の基準軸からの変位量を表しています これを相対変位と言います しかし この地盤も振動を起こしています そこで 地盤の動きとは無関係の基準軸を考えて そこから地盤の動き (y) を観察します 建物の変位は 地盤の動きとは関係ないこの基準軸からみますとx+yになります この変位を絶対変位と呼んでいます 質点の運動を絶対変位で考えれば 運動方程式は m(x +y )+cx +kx=0 となりますから 移行して mx +cx +kx=-my 両辺を質量 mで割って x +2hωox +ωo^2x=-y を得ます このような運動方程式による振動を強制振動と呼んでいます 61

17 地動が正弦波の場合 地動の加速度 y y=ae i(yt+x) o t 運動方程式 x+2hy ox+y o 2 x=-ae i(yt+x) 運動方程式の解 a x=y o (y/y o) 2 +4h 2 (y/y o) 2 2h(y/y o) e i(yt+x- ) =tan -1 1-(y/y o ) 2 最初に 地動が正弦波の場合を考えてみましょう 地動加速度として正弦波を入力したときの振動を調和振動と呼んでいます 式は難しいのですが この微分方程式は解くことができます 結果は 上の図に示す通りです もちろんこの式を覚える必要はありません 62

18 変位応答倍率 (1) -a/y o 2 は慣性力に等しい外力が静的に加わったときの変位を表す 静的変位 x s =-a/y o 2 変位応答倍率 x 1 = x s 1-(y/y o) 2 +4h 2 (y/y o) 2 一般解の中の-a/ωo^2は 慣性力に等しい外力が静的に加わったときの変位を表しています また e 関数部分は減衰振動を表しています そこで -a/ωo^2を静的変位 xsとおけば x/xsは 変位の倍率を表しています その最大値は 上の図に示す式となります これを変位応答倍率と呼んでいます 変位応答倍率は 建物に対する地盤の振動数比 (ω/ωo) と減衰定数 (h) を関数に含んでいます 63

19 変位応答倍率 (2) 剛構造 柔構造 横軸に建物に対する地盤の振動数比を 縦軸に変位応答倍率をとると 上の図のようになります この図から ω/ωo 0になると 応答倍率は1.0になります これは 地盤の振動数が小さい すなわち 地盤がゆっくりと振動し 建物の振動数が大きい すなわち固い構造 ( 剛構造 ) であればあるほど 建物と地盤の相対変位は0になることを示しています 逆に ω/ωo になると 応答倍率は0になります これは 地盤の振動数が大きい すなわち 地盤が激しく振動し 建物の振動数が小さい すなわち柔らかい構造 ( 柔構造 ) であればあるほど 建物の絶対変位は小さくなる すなわち 建物と地盤の相対変位は 地盤の変位に等しくなります 64

20 共振 建物の固有周期 ( 振動数 ) と地動の周期 ( 振動数 ) が等しくなると増幅率は非常に大きくなる これを共振という 共振状態の時 増幅率は 1/2h となる また ω/ωo 1.0であれば 応答倍率は 1/2hになります 減衰定数が0であれば応答倍率は無限大になります 減衰定数 0.05で10 倍 0.1で5 倍です すなわち 建物の固有振動数 ( 周期 ) と地盤の振動数 ( 周期 ) が等しいと 応答倍率はきわめて大きくなります この現象を共振と呼んでいます 建物が共振現象を起こすと きわめて甚大な被害を被ることがあります 最悪の場合は 倒壊することも 従って 共振現象は 建物にとって大変危険な現象と言えます 65

21 地震動に対する振動 相対変位 x 質点 質点での応答値 K m 剛性 質量 変位速度加速度 xo 地動加速度 非常にたくさんの周期成分を持った波 それでは 地震動に対する振動を考えてみましょう 運動方程式は x +2hωox +ωo^2x=-y で表されます ここで 右辺の項は 地動の加速度を表しています 各地に設置されている強震計は 地動の加速度を時系列で測定します その記録地震波を使えば 地震動に対する建物の振動を調べることができます しかし 記録地震波は無数にありますし 地震波は 非常に多くの周期成分を持った波です 記録地震波を地動加速度として入力する場合は 地動加速度として正弦波を入力した場合 ( 調和振動 ) のように簡単に微分方程式を解くことはできません そこで 微分方程式を近似的に解く数値解法が様々に考案されました この数値解法を活用することで 地震動の場合の建物の応答を近似的に求めることができます もちろん 記録地震波は無数にありますので 代表的な記録地震波を抽出して 数値解析が行われてきました その研究成果から地震動による建物の基本的な応答が次第に明らかになってきたのです それでは その成果の一部を見ていきましょう 66

22 速度 V とエネルギー E との関係 E= mv2 2 応答速度が大きい 建物に入力されるエネルギーが大きい 建物を揺らし続けるエネルギーが大きい 建物の地震応答解析の結果を見ていくのですが その前に基本的な事柄を勉強しておきましょう 地震応答解析の結果は 質点での応答変位 応答速度 応答加速度の値を時系列で求めることになります ここで 速度はエネルギーと深い関係があります 応答速度が大きいということは 建物に入力される地震エネルギーが大きいということです これは 言い換えれば 建物を揺らし続けるエネルギーが大きいということを意味します 67

23 加速度 α と力 F との関係 F=m a 応答加速度が大きい 建物が受けるパンチ力が大きい また 加速度は力と深い関係にあります 応答加速度が大きいということは 建物が受ける力が大きいということを意味します ある記録地震波について 建物の減衰定数を決めておいてから 建物の固有振動数 ωoを少しずつ変えながら 何度も微分方程式の近似解を求めていきます 設計では 最大応答値が問題になってきます ( 最大応答値に対して建物が安全になるように設計すれば良いので ) そこで 横軸に建物の固有周期 ( または固有振動数 ) をとって 建物の固有周期 ( または固有振動数 ) に対する最大応答値をプロットしていくと 地震動による建物の振動特性を浮かび上がらせることができます このような最大応答値をプロットした図のことを 応答スペクトルと呼んでいます 応答値は 変位と速度 加速度の3 種類がありますので それぞれ変位応答スペクトル 速度応答スペクトルおよび加速度応答スペクトルと呼んでいます 様々な記録地震波に対してこれらの応答スペクトルを作成した結果 地震動による建物の振動特性の特徴がわかってきました 68

24 変位応答スペクトル 柔らかい ( 固有周期が長い ) 建物ほど応答変位は大きくなる SD h=0.00 h=0.05 O T まず 変位応答スペクトルですが その一例を上の図に示します ( 固有周期の小さい ) 固い建物では応答変位は小さく 超高層建築物のように ( 固有周期の長い ) 柔らかい建物では 応答変位は大きくなります これは 想像できますね 69

25 速度応答スペクトル (1) SV h=0.00 h=0.05 O T 次に 速度応答スペクトルはどのようになっているのでしょうか その一例を上の図に示します 速度応答スペクトルは 固有周期の小さい範囲では固有周期が大きくなるに従って 最大応答速度も大きくなってきますが ある周期以上になると 応答スペクトルはほぼ一定になる傾向にあります これは どういうことを意味しているのでしょうか 70

26 速度応答スペクトル (2) 固い ( 固有周期の短い ) 建物では 入力エネルギーは小さい 建物の固有周期が長くなるほど入力エネルギーは大きくなる しかし 長周期構造物では 入力エネルギーは一定になる 低層建築物のように固有周期の短い建物では 地震入力エネルギーは小さく 地震による建物の揺れはすぐに収まることを意味しています 一方 超高層建築物のように固有周期の長い建物では 地震入力エネルギーは大きく 地震による建物の揺れは収まりにくいことを意味します しかし 長周期構造物では 地震入力エネルギーは一定になることに着目してください このことが日本で超高層建築物を建てることのできる理由の一つです 一方 先に示した変位応答スペクトルからは 超高層建築物では 建物頂部での変位は きわめて大きくなります しかし 一層分の最大変位は 建物頂部の最大変位を層数分で割った大きさになりますから 一層の変位としては小さくなります これも超高層建築物の成立理由の一つです そして 超高層建築物の成立の決め手となるのが 最後の加速度応答スペクトルです 71

27 加速度応答スペクトル (1) SA h=0.00 h=0.05 O 卓越周期 T 加速度応答スペクトルの例を上の図に示します 長周期構造物では 応答加速度の最大値は小さくなります すなわち 超高層建築物に加わる力は小さくなるのです つまり 柳の木のように地震による力を受け流すことができるのです 以上が 日本で超高層建築物を建てることができる理由です 72

28 加速度応答スペクトル (2) 地震波は多くの周期成分を持った波で構成されている 固い地盤では 短い周期成分を持った波が勢力を増し 逆に柔らかい地盤では 長い周期成分を持った波が勢力を増す 地震波において 勢力を増した周期帯を卓越周期と呼んでいる 卓越周期帯にある建物は共振を起こして揺れやすいので注意を要する 地震波は 多くの周期成分を持った波で構成されています 固い地盤では 短い周期成分を持った波が勢力を増し 逆に柔らかい地盤では 長い周期を持った波が勢力を増します 地震波において 勢力を増した周期帯を卓越周期と呼んでいます 卓越周期帯にある建物は 共振を起こしやすいので注意を要します 昔 関東大震災がありました 関東地方の下町は 関東ローム層と呼ばれる非常に軟らかい地盤の上にあります 一方 山の手は岩盤がすぐ下にありますので 固い地盤の上にあります 大正時代なので 東京の町には 木造の住宅がたくさん建っていました また 当時の住宅には お倉が併設されていました 住宅は比較的柔らかい固有周期を 一方 倉はそれ比べると短い固有周期を持っています 震災による被害を調べると 山の手では倒壊した倉が多く 下町では住宅がたくさん倒壊していたと言われています すなわち 固い地盤の上では短い固有周期を持った倉の被害が多く 柔らかい地盤の上では長い固有周期を持った木造住宅の被害が多かったということです 73

29 Rt: 振動特性係数 地震動の卓越周期帯は 1 秒以下であることが多いので 設計では 長周期建築物に対して 層せん断力係数の低減率を大きくとれるように振動特性係数の中で決めてあります また 柔らかい地盤では長い固有周期を持った建築物はよく揺れるので 層せん断力係数の低減は固い地盤より軟らかい地盤の方が小さくなるように振動特性係数の中で決めてあります 74

30 多質点系の振動は複雑だけど 多質点系の振動は大変複雑だが 固有モードに分けることができる 固有モードは質点数 ( 自由度数 ) だけ存在し 通常は高次モードになるほど応答値の全体に占める割合は小さくなる これまで 1 質点系の振動を扱ってきましたが 実際の建物は多層建築になっています 多質点系の振動について 要点を説明しましょう 実際には 多質点系の運動方程式を解き明かしながら説明していかなければなりませんが それは少し内容的に難しいので ここでは大事なことだけを述べておきます それは 多質点系の振動は 固有モード ( 振動の形状 ) に分けることができるということです 上の図は 3 質点系の振動モードについて 描いています 3 質点系であれば 3つの固有モードに分けることができます N 質点系であれば N 個の固有モードに分けることができます 通常高次モードほど 全体の応答値に占める割合は小さくなります しかも 通常のラーメン構造であれば 一般に1 次モードの成分が他のモード成分よりも大きくなります 75

Q

Q 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 自由振動と強制振動 -1/6 テーマ H3: 自由振動と強制振動 振動の形態には, 自由振動と強制振動の 種類があります. 一般に, 外力が作用しなくても固有振動数で振動を継続する場合は自由振動であり, 外力が作用することによって強制的に振動が引き起こされる場合は強制振動になります. 摩擦抵抗の有無によって減衰系と非減衰系に区分されるため, 振動の分類は次のようになる.

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合

木村の物理小ネタ   単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合 単振動と単振動の力学的エネルギー. 弾性力と単振動 弾性力も単振動も力は F = -x の形で表されるが, x = の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合いの位置 である たとえば, おもりをつるしたばねについて, ばねの弾性力を考えるときは, ばねの自然長を x = とし, おもりの単振動で考える場合は, おもりに働く力がつり合った位置を

More information

Microsoft PowerPoint - 構造設計学_2006

Microsoft PowerPoint - 構造設計学_2006 [8] 耐震設計 皆さんは 構造設計の手法として 許容応力度設計を学んできましたね この許容応力度設計は どこから生まれたのでしょうか また 許容応力度設計はわかりやすく 構造設計者にとっては便利な設計法ですが この設計法には欠点はないのでしょうか 許容応力度設計に欠点があるとすれば 建物の耐震設計は どのように考えるべきなのでしょうか ここでは 耐震設計の考え方と構造計画の重要性についてお話しします

More information

Microsoft PowerPoint - zairiki_10

Microsoft PowerPoint - zairiki_10 許容応力度設計の基礎 はりの断面設計 前回までは 今から建てようとする建築物の設計において 建物の各部材断面を適当に仮定しておいて 予想される荷重に対してラーメン構造を構造力学の力を借りていったん解き その仮定した断面が適切であるかどうかを 危険断面に生じる最大応力度と材料の許容応力度を比較することによって検討するという設計手法に根拠を置いたものでした 今日は 前回までとは異なり いくつかの制約条件から

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt とは何か 0 年 月 5 日目次へ戻る 正弦波の微分 y= in を時間 で微分します は正弦波の最大値です 合成関数の微分法を用い y= in u u= と置きますと y y in u in u (co u co になります in u の は定数なので 微分後も残ります 合成関数の微分法ですので 最後に u を に戻しています 0[ra] の co 値は [ra] の in 値と同じです その先の角

More information

Microsoft PowerPoint - zairiki_7

Microsoft PowerPoint - zairiki_7 許容応力度設計の基礎 曲げに対する設計 材料力学の後半は 許容応力度設計の基礎を学びます 構造設計の手法は 現在も進化を続けています 例えば 最近では限界耐力計算法という耐震設計法が登場しています 限界耐力計算法では 地震による建物の振動現象を耐震設計法の中に取り入れています しかし この設計法も 許容応力度設計法をベースにしながら 新しい概念 ( 限界設計法 ) を取り入れて発展させたものです ですから

More information

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8 [N/m] m[g] mẍ x (N) x. f[hz] f π ω π m ω πf[rd/s] m ω 4π f [Nm/rd] J[gm ] J θ θ (gm ) θ. f[hz] f π ω π J J ω 4π f /8 θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ

More information

Microsoft Word - 4_構造特性係数の設定方法に関する検討.doc

Microsoft Word - 4_構造特性係数の設定方法に関する検討.doc 第 4 章 構造特性係数の設定方法に関する検討 4. はじめに 平成 年度 年度の時刻歴応答解析を実施した結果 課題として以下の点が指摘 された * ) 脆性壁の評価法の問題 時刻歴応答解析により 初期剛性が高く脆性的な壁については現在の構造特性係数 Ds 評価が危険であることが判明した 脆性壁では.5 倍程度必要保有耐力が大きくなる * ) 併用構造の Ds の設定の問題 異なる荷重変形関係を持つ壁の

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

2015/11/ ( 公財 ) 建築技術教育センター平成 27 年度普及事業第 4 回勉強会於 : 大垣ガスほんのりプラザ 近似応答計算の要点 (1 質点系の応答 ) 齋藤建築構造研究室齋藤幸雄 現行の耐震規定 ( 耐震性能評価法 ) 超高層建築物等を除いて 静的計算 (

2015/11/ ( 公財 ) 建築技術教育センター平成 27 年度普及事業第 4 回勉強会於 : 大垣ガスほんのりプラザ 近似応答計算の要点 (1 質点系の応答 ) 齋藤建築構造研究室齋藤幸雄 現行の耐震規定 ( 耐震性能評価法 ) 超高層建築物等を除いて 静的計算 ( 2015.11.29 ( 公財 ) 建築技術教育センター平成 27 年度普及事業第 4 回勉強会於 : 大垣ガスほんのりプラザ 近似応答計算の要点 (1 質点系の応答 ) 齋藤建築構造研究室齋藤幸雄 現行の耐震規定 ( 耐震性能評価法 ) 超高層建築物等を除いて 静的計算 ( 地震時の応力計算や保有水平耐力の算定等 ) によっており 地震時の応答変位等を直接算定 ( 動的応答計算 ) するものではない

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

Microsoft PowerPoint - zairiki_11

Microsoft PowerPoint - zairiki_11 許容応力度設計の基礎 圧縮材の設計 ( 座屈現象 ) 構造部材には 圧縮を受ける部材があります 柱はその代表格みたいなものです 柱以外にも トラス材やブレース材 ラチス材といったものがあります ブレースは筋交いともいい はりや柱の構面に斜め材として設けられています この部材は 主に地震などの水平力に抵抗します 一方 ラチス材は 細長い平鋼 ( 鉄の板 ) を組み合わせて はりや柱をつくることがありますが

More information

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 剛体過去問解答例. 長さの棒の慣性モーメントは 公式より l G l A 点のまわりは平行軸の定理より A l l l B y 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 運動方程式は 方向 : R f, y 方向 : y N l 回転 : G { N f R cos } A 静止しているとき 方向の力と 力のモーメントがつり合うので y ~ より R ' また 摩擦力が最大静止摩擦力より大きいとはしごは動き出すので

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r 第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無

More information

<4D F736F F D2089F082AF82E997CD8A7796E291E A282EB82A282EB82C8895E93AE2E646F63>

<4D F736F F D2089F082AF82E997CD8A7796E291E A282EB82A282EB82C8895E93AE2E646F63> いろいろな運動. 自由落下. 投げ上げ 3. 放物運動 4. 標的にボールを当てる 5. 斜面に向かって投げ上げる 6. ブレーキをかけた自動車 7. 摩擦のある斜面上を滑り落ちる物体 8. ばね振り子 ( 単振動 ) 9. 摩擦を受けるばね振り子. 補足 : 微分方程式の解き方 自由落下質量 の質点を高さ h の地点から初速 で落とした. 鉛直上向きを 軸正 の向き, 地表を原点とし, 重力加速度の大きさを

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

施設・構造1-5b 京都大学原子炉実験所研究用原子炉(KUR)新耐震指針に照らした耐震安全性評価(中間報告)(原子炉建屋の耐震安全性評価) (その2)

施設・構造1-5b 京都大学原子炉実験所研究用原子炉(KUR)新耐震指針に照らした耐震安全性評価(中間報告)(原子炉建屋の耐震安全性評価) (その2) 原子炉建屋屋根版の水平地震応答解析モデル 境界条件 : 周辺固定 原子炉建屋屋根版の水平方向地震応答解析モデル 屋根版は有限要素 ( 板要素 ) を用い 建屋地震応答解析による最上階の応答波形を屋根版応答解析の入力とする 応答解析は弾性応答解析とする 原子炉建屋屋根版の上下地震応答解析モデル 7.E+7 6.E+7 実部虚部固有振動数 上下地盤ばね [kn/m] 5.E+7 4.E+7 3.E+7

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63> -1 ポイント : 材料の応力とひずみの関係を知る 断面内の応力とひずみ 本章では 建築構造で多く用いられる材料の力学的特性について学ぶ 最初に 応力とひずみの関係 次に弾性と塑性 また 弾性範囲における縦弾性係数 ( ヤング係数 ) について 建築構造用材料として代表的な鋼を例にして解説する さらに 梁理論で使用される軸方向応力と軸方向ひずみ あるいは せん断応力とせん断ひずみについて さらにポアソン比についても説明する

More information

小野測器レポート「振動の減衰をあらわす係数」

小野測器レポート「振動の減衰をあらわす係数」 振動の減衰をあらわす係数 振動の減衰をあらわす係数 はじめに 機械が稼働していれば振動は避けられない現象ですが 振動は不快なだけでなく故障の原因ともなり 甚だしい場合には機械の破壊に至ることもあります 振動が起きてから対策を施していたのでは手間と費用がかかるため 機械を設計する際には振動について予め十分な検討を行い 振動を起こさないあるいは減らすための対策を施すこと重要となってきます またビルや橋梁などの建造物においては振動対策が必須です

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63> 11-1 第 11 章不静定梁のたわみ ポイント : 基本的な不静定梁のたわみ 梁部材の断面力とたわみ 本章では 不静定構造物として 最も単純でしかも最も大切な両端固定梁の応力解析を行う ここでは 梁の微分方程式を用いて解くわけであるが 前章とは異なり 不静定構造物であるため力の釣合から先に断面力を決定することができない そのため 梁のたわみ曲線と同時に断面力を求めることになる この両端固定梁のたわみ曲線や断面力分布は

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

[ 振動の発生 ] 第 1 章 土木振動学序論 [ 振動の発生 ] 外力と内力内力が釣り合って静止釣り合って静止した状態 :[: [ 平衡状態 ] 振動の発生振動の発生 :[ 平衡状態 ] が破られ 復元力復元力が存在すると振動が発生する つまり (1) 平衡 ( 静止 ) 状態が破られる (2)

[ 振動の発生 ] 第 1 章 土木振動学序論 [ 振動の発生 ] 外力と内力内力が釣り合って静止釣り合って静止した状態 :[: [ 平衡状態 ] 振動の発生振動の発生 :[ 平衡状態 ] が破られ 復元力復元力が存在すると振動が発生する つまり (1) 平衡 ( 静止 ) 状態が破られる (2) [ 振動の発生 ] 第 1 章 土木振動学序論 [ 振動の発生 ] 外力と内力内力が釣り合って静止釣り合って静止した状態 :[: [ 平衡状態 ] 振動の発生振動の発生 :[ 平衡状態 ] が破られ 復元力復元力が存在すると振動が発生する つまり (1) 平衡 ( 静止 ) 状態が破られる (2) 運動が発生する (3) 復元力があると 振動状態になる 自由度 (degree of freedom)

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小 折戸の物理 演習編 ttp://www.orito-buturi.co/ N..( 等加速度運動目的 : 等加速度運動の公式を使いこなす 問題を整理する能力を養う ) 直線上の道路に,A,B の 本の線が 5. の間隔で道路に 垂直に交差して引かれている この線上を一定の加速度で運 動しているトラックが通過する トラックの先端が A を通過してか ら後端が B を通過するまでの時間は.8s であった

More information

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63> 力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を

More information

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫りにするために スペクトルを滑らかにする操作のことをいう 6.1 合積のフーリエ変換スペクトルの平滑化を行う際に必要な 合積とそのフーリエ変換について説明する 6.2 データ

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度

More information

Microsoft Word - 2_0421

Microsoft Word - 2_0421 電気工学講義資料 直流回路計算の基礎 ( オームの法則 抵抗の直並列接続 キルヒホッフの法則 テブナンの定理 ) オームの法則 ( 復習 ) 図 に示すような物体に電圧 V (V) の直流電源を接続すると物体には電流が流れる 物体を流れる電流 (A) は 物体に加えられる電圧の大きさに比例し 次式のように表すことができる V () これをオームの法則 ( 実験式 ) といい このときの は比例定数であり

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

計算機シミュレーション

計算機シミュレーション . 運動方程式の数値解法.. ニュートン方程式の近似速度は, 位置座標 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます. 本来は が の極限をとらなければいけませんが, 有限の小さな値とすると 秒後の位置座標は速度を用いて, と近似できます. 同様にして, 加速度は, 速度 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます.

More information

スライド 1

スライド 1 センサー工学 2012 年 11 月 28 日 ( 水 ) 第 8 回 知能情報工学科横田孝義 1 センサー工学 10/03 10/10 10/17 10/24 11/7 11/14 11/21 11/28 12/05 12/12 12/19 1/09 1/16 1/23 1/30 2 前々回から振動センサーを学習しています 今回が最終回の予定 3 振動の測定教科書 計測工学 の 194 ページ 二つのケースがある

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63> 降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ

More information

ここで, 力の向きに動いた距離 とあることに注意しよう 仮にみかんを支えながら, 手を水平に 1 m 移動させる場合, 手がした仕事は 0 である 手がみかんに加える力の向きは鉛直上向き ( つまり真上 ) で, みかんが移動した向きはこれに垂直 みかんは力の向きに動いていないからである 解説 1

ここで, 力の向きに動いた距離 とあることに注意しよう 仮にみかんを支えながら, 手を水平に 1 m 移動させる場合, 手がした仕事は 0 である 手がみかんに加える力の向きは鉛直上向き ( つまり真上 ) で, みかんが移動した向きはこれに垂直 みかんは力の向きに動いていないからである 解説 1 1 仕事と仕事の原理 仕事の原理 解説 1 エネルギー電池で明かりをともすことができる 音を出すことやモーターを動かすことにも利用できる 電池には光, 音, 物を動かすといった能力がある 車の燃料はガソリンが一般的だが, 水素を燃料とするもの, 太陽光で動くものもある ガソリン, 水素, 太陽光それぞれには, 車を動かすという能力がある 電池, ガソリン, 水素, 太陽光 には, 光, 音, 物を動かす,

More information

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した . はじめに 資料 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した全体座標系に関する構造 全体の剛性マトリックスを組み立てた後に, 傾斜支持する節点に関して対応する剛性成分を座標変換に よって傾斜方向に回転処理し, その後は通常の全体座標系に対して傾斜していない支持点に対するのと

More information

Microsoft PowerPoint - 1章 [互換モード]

Microsoft PowerPoint - 1章 [互換モード] 1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

Microsoft PowerPoint - 5yamazaki.pptx

Microsoft PowerPoint - 5yamazaki.pptx 地震と雪の荷重組み合わせについて - 鋼構造大スパン建物の動的解析結果から - 日本建築学会荷重運営委員会信頼性 学利 委員会 2017/2/15 公開小委員会 山﨑賢二 ( 竹中工務店 ), 小檜山雅之 ( 慶應義塾大学 ) 1 1-1. 背景 2 近年, 本では地震と雪の複合災害が増加 建築基準法施 令多雪区域の短期設計積雪荷重の組合せ係数 :0.35 建築基準法では中程度の地震と中程度の積雪のような荷重の組合せについては構造安全性検証を要求しない

More information

Microsoft PowerPoint - 卒業論文 pptx

Microsoft PowerPoint - 卒業論文 pptx 時間に依存するポテンシャルによる 量子状態の変化 龍谷大学理工学部数理情報学科 T966 二正寺章指導教員飯田晋司 目次 はじめに 次元のシュレーディンガー方程式 3 井戸型ポテンシャルの固有エネルギーと固有関数 4 4 中央に障壁のある井戸型ポテンシャルの固有エネルギーと固有関数 3 5 障壁が時間によって変化する場合 7 6 まとめ 5 一次元のシュレディンガー方程式量子力学の基本方程式 ψ (

More information

耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る

耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る 格子桁の分配係数の計算 ( デモ版 ) 理論と解析の背景主桁を並列した鋼単純桁の設計では 幅員方向の横桁の剛性を考えて 複数の主桁が協力して活荷重を分担する効果を計算します これを 単純な (1,0) 分配に対して格子分配と言います レオンハルト (F.Leonhardt,1909-1999) が 1950 年初頭に発表した論文が元になっていて 理論仮定 記号などの使い方は その論文を踏襲して設計に応用しています

More information

航空機の運動方程式

航空機の運動方程式 過渡応答 定常応答 線形時不変のシステムの入出力関係は伝達関数で表された. システムに対する基本的な 入力に対する過渡応答と定常応答の特性を理解する必要がある.. 伝達関数の応答. 一般的なシステムの応答システムの入力の変化に対する出力の変化の様相を応答 ( 時間応答, 動的応答 ) という. 過渡応答 システムで, 入力がある定常状態から別の定常状態に変化したとき, 出力が変化後の定常状態に達するまでの応答.

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

ジャイロスコープの実験

ジャイロスコープの実験 振動実験 2018 年版 目的 : 機械及び電気工学実験における 機械振動の測定 では 1 自由度振動系に関して自由振動より固有振動数および減衰比を 強制振動より振幅倍率と位相差の周波数変化を求めた 本実験では

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

木村の理論化学小ネタ 理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく 22.4L のはずである しかし, 実際には, その体積が 22.4L より明らかに小さい

木村の理論化学小ネタ   理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく 22.4L のはずである しかし, 実際には, その体積が 22.4L より明らかに小さい 理想気体と実在気体 A. 標準状態における気体 1mol の体積 標準状態における気体 1mol の体積は気体の種類に関係なく.4L のはずである しかし, 実際には, その体積が.4L より明らかに小さい気体も存在する このような気体には, 気体分子に, 分子量が大きい, 極性が大きいなどの特徴がある そのため, 分子間力が大きく, 体積が.4L より小さくなる.4L とみなせる実在気体 H :.449

More information

Phys1_03.key

Phys1_03.key 物理学1/物理学A 第3回 速度と加速度 速度 加速度 関数の話 やりたいこと : 物体の運動を調べる 物体の位置と速度を調べる これらを時間の関数として表したい 関数とは? ある された変数に対して, 出 の値が決まる対応関係のこと inpu 関数 ( 函数 ) oupu 例 : y(x)=x 2 x=2 を inpu すると y=4 が得られる 時々刻々と変化していく物体の位置 をその時刻とともに記録する

More information

Taro-解答例NO3放物運動H16

Taro-解答例NO3放物運動H16 放物運動 解答のポイント 初速度, 水平との角度 θ で 高さ の所から投げあげるとき 秒後の速度 =θ =θ - 秒後の位置 =θ 3 ( 水平飛行距離 ) =θ - + 4 ( 高さ ) ~4 の導出は 基本問題 参照 ( 地上から投げた場合の図 : 教科書参照 ) 最高点の 高さ 最高点では において = 水平到達距離 より 最高点に到達する時刻 を求め 4に代入すると最高点の高さH 地上では

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

Microsoft Word - 漸化式の解法NEW.DOCX

Microsoft Word - 漸化式の解法NEW.DOCX 閑話休題 漸化式の解法 基本形 ( 等差数列, 等比数列, 階差数列 ) 等差数列 : d 等比数列 : r の一般項を求めよ () 3, 5 () 3, () 5より数列 は, 初項 3, 公差の等差数列であるので 5 3 5 5 () 数列 は, 初項 3, 公比 の等比数列であるので 3 階差数列 : f の一般項を求めよ 3, より のとき k k 3 3 において, を代入すると 33 となるので,は

More information

Microsoft PowerPoint - 静定力学講義(6)

Microsoft PowerPoint - 静定力学講義(6) 静定力学講義 (6) 静定ラーメンの解き方 1 ここでは, 静定ラーメンの応力 ( 断面力 ) の求め方について学びます 1 単純ばり型ラーメン l まず, ピンとローラーで支持される単純支持ばり型のラーメン構造の断面力の求め方について説明します まず反力を求める H V l V H + = 0 H = Y V + V l = 0 V = l V Vl+ + + l l= 0 + l V = + l

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

初めてのプログラミング

初めてのプログラミング Excel の使い方 2 ~ 数式の入力 グラフの作成 ~ 0. データ処理とグラフの作成 前回は エクセルを用いた表の作成方法について学びました 今回は エクセルを用いたデータ処理方法と グラフの作成方法について学ぶことにしましょう 1. 数式の入力 1 ここでは x, y の値を入力していきます まず 前回の講義を参考に 自動補間機能を用いて x の値を入力してみましょう 補間方法としては A2,

More information

第6章 実験モード解析

第6章 実験モード解析 第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法

More information

Microsoft PowerPoint - fuseitei_4

Microsoft PowerPoint - fuseitei_4 不静定力学 Ⅱ 固定法 今回から, 固定法について学びます 参考書 教科書 藤本盛久, 和田章監修 建築構造力学入門, 実教育出版 松本慎也著 よくわかる構造力学の基本, 秀和システム 参考書として,3つ挙げておきますが, 固定法に関しては松本慎也さんの書かれた本がわかりやすいと思います この本は, 他の手法についてもわかりやすく書いてあるので, 参考書としては非常に良い本です この授業の例題も,

More information

前期募集 令和 2 年度山梨大学大学院医工農学総合教育部修士課程工学専攻 入学試験問題 No.1/2 コース等 メカトロニクス工学コース 試験科目 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A

前期募集 令和 2 年度山梨大学大学院医工農学総合教育部修士課程工学専攻 入学試験問題 No.1/2 コース等 メカトロニクス工学コース 試験科目 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A No.1/2 数学 問 1 図 1 は, 原点 O の直交座標系 x,y,z に関して, 線分 OA,OB,OC を 3 辺にもつ平行六面体を示す. ここで, 点 A,B,C の座標はそれぞれ A (,6,-2), B (4,-5,3),C (-5.1,4.9,.9) である. 次の問いに答えよ. (1) を求めよ. (2) および の向きを解答用紙の図 1 に描け. (3) 図 1 の平行六面体の体積

More information

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動 / 平成 9 年 3 月 4 日午後 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 t t - x x - t, x 静止静止静止静止 を導いた これを 図の場合に当てはめると t - x x - t t, x t + x x + t t, x (5.) (5.) (5.3) を得る

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

日本地震工学会 大会 梗概集 建築基礎設計への利用を前提とした地盤変位の簡易評価法 新井洋 1) 1) 正会員国土交通省国土技術政策総合研究所建築研究部 主任研究官博士 ( 工学 ) 要約建築基礎設計への利用を前提に 主とし

日本地震工学会 大会 梗概集 建築基礎設計への利用を前提とした地盤変位の簡易評価法 新井洋 1) 1) 正会員国土交通省国土技術政策総合研究所建築研究部 主任研究官博士 ( 工学 )   要約建築基礎設計への利用を前提に 主とし 日本地震工学会 大会 -15 梗概集 建築基礎設計への利用を前提とした地盤変位の簡易評価法 新井洋 1) 1) 正会員国土交通省国土技術政策総合研究所建築研究部 主任研究官博士 ( 工学 ) e-mail : arai-h9ta@nilim.go.jp 要約建築基礎設計への利用を前提に 主として安全限界状態における地盤変位の簡易算定法を提案している 提案法の妥当性と有効性を 粘性土地盤と砂質土地盤の例題をとおして

More information

2010年度 筑波大・理系数学

2010年度 筑波大・理系数学 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f( x) x ax とおく ただしa>0 とする () f( ) f() となるa の範囲を求めよ () f(x) の極小値が f ( ) 以下になる a の範囲を求めよ () x における f(x) の最小値をa を用いて表せ -- 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ つの曲線 C : y six ( 0

More information

画像類似度測定の初歩的な手法の検証

画像類似度測定の初歩的な手法の検証 画像類似度測定の初歩的な手法の検証 島根大学総合理工学部数理 情報システム学科 計算機科学講座田中研究室 S539 森瀧昌志 1 目次 第 1 章序論第 章画像間類似度測定の初歩的な手法について.1 A. 画素値の平均を用いる手法.. 画素値のヒストグラムを用いる手法.3 C. 相関係数を用いる手法.4 D. 解像度を合わせる手法.5 E. 振れ幅のヒストグラムを用いる手法.6 F. 周波数ごとの振れ幅を比較する手法第

More information

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする 相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度

More information

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方 大阪大学物理 8 を解いてみた Ⅰ. 問 g 最高点の座標を y max とすると, 力学的エネルギー保存則より \ y m mgy 補足 max g max 小物体の運動方向に対する仕事は重力 ( 保存力 ) の斜面に沿った成分のみであり, 垂直抗力 ( 非保存力 ) の仕事は である よって, 力学的エネルギー保存則が成り立つ これを確かめてみよう 小物体は重力の斜面に沿った外力を受けながらその運動エネルギーを失っていく

More information

破壊の予測

破壊の予測 本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?

More information

国土技術政策総合研究所 研究資料

国土技術政策総合研究所 研究資料 3. 解析モデルの作成汎用ソフトFEMAP(Ver.9.0) を用いて, ダムおよび基礎岩盤の有限要素メッシュを8 節点要素により作成した また, 貯水池の基本寸法および分割数を規定し,UNIVERSE 2) により差分メッシュを作成した 3.1 メッシュサイズと時間刻みの設定基準解析結果の精度を確保するために, 堤体 基礎岩盤 貯水池を有限要素でモデル化する際に, 要素メッシュの最大サイズならびに解析時間刻みは,

More information

<4D F736F F D B4389F D985F F4B89DB91E88250>

<4D F736F F D B4389F D985F F4B89DB91E88250> 電気回路理論 II 演習課題 H30.0.5. 図 の回路で =0 で SW を on 接続 とする時 >0 での i, 並びに を求め 図示しなさい ただし 0 での i, 並びに を求めなさい ただし 0 とする 3. 図 3の回路で =0 で SW を下向きに瞬時に切り替える時 >0 での i,

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

Microsoft Word - kogi10ex_main.docx

Microsoft Word - kogi10ex_main.docx 機能創造理工学 Ⅱ 期末試験 追試験問題 ( 病欠等による ) 途中の計算を必ず書こう 答えのみでは採点できない 問. 二次元面内を運動する調和振動子のラグランジアン L ( ) ( ) を 極座標, に変換し 極座標でのオイラーラグランジュ方程式を書こう ( 解く必要はない ) 但し, は定数であり また 極座標の定義は cos, sin である 問. 前問において極座標, に共役な一般化運動量,

More information

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E >

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E > バットの角度 打球軌道および落下地点の関係 T999 和田真迪 担当教員 飯田晋司 目次 1. はじめに. ボールとバットの衝突 -1 座標系 -ボールとバットの衝突の前後でのボールの速度 3. ボールの軌道の計算 4. おわりに参考文献 はじめに この研究テーマにした理由は 好きな野球での小さい頃からの疑問であるバッテングについて 角度が変わればどう打球に変化が起こるのかが大学で学んだ物理と数学んだ物理と数学を使って判明できると思ったから

More information

断面の諸量

断面の諸量 断面の諸量 建設システム工学科高谷富也 断面 次モーメント 定義 G d G d 座標軸の平行移動 断面 次モーメント 軸に平行な X Y 軸に関する断面 次モーメント G X G Y を求める X G d d d Y 0 0 G 0 G d d d 0 0 G 0 重心 軸に関する断面 次モーメントを G G とし 軸に平行な座標軸 X Y の原点が断面の重心に一致するものとする G G, G G

More information

"éı”ç·ıå½¢ 微勃挹稉弑

"éı”ç·ıå½¢ 微勃挹稉弑 == 1 階線形微分方程式 == 次の形の常微分方程式を1 階線形常微分方程式といいます. '+P()=Q() (1) 方程式 (1) の右辺 : Q() を 0 とおいてできる同次方程式 ( この同次方程式は, 変数分離形になり比較的容易に解けます ) '+P()=0 () の1つの解を とすると, 方程式 (1) の一般解は =( Q() +C) (3) で求められます. 参考書には 上記の の代わりに,

More information

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1 代数 幾何 < ベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル :, 空間ベクトル : z,, z 成分での計算ができるようにすること ベクトルの内積 : os 平面ベクトル :,, 空間ベクトル :,,,, z z zz 4 ベクトルの大きさ 平面上 : 空間上 : z は 良く用いられる 5 m: に分ける点 : m m 図形への応用

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63> 9-1 第 9 章静定梁のたわみ ポイント : 梁の微分方程式を用いて梁のたわみを求める 静定梁のたわみを計算 前章では 梁の微分方程式を導き 等分布荷重を受ける単純梁の解析を行った 本節では 導いた梁の微分方程式を利用し さらに多くの静定構造物の解析を行い 梁の最大たわみや変形状態を求めることにする さらに を用いて課題で解析した構造を数値計算し 解析結果を比較 検討しよう 9.1 はじめに キーワード梁の微分方程式単純梁の応力解析片持ち梁の応力解析

More information

Microsoft Word - t02_中川(久).doc

Microsoft Word - t02_中川(久).doc 正弦曲線 ( サインカーブ ) と三角関数の合成について 石川県立七尾東雲高等学校中川久仁彦 ねらい 物理で学ぶ正弦波が表す波形は, 数学で学ぶ正弦曲線である. また, 重ね合わせの原理や波の干渉は, 三角関数の合成と関係が深い. 自然現象や実験結果を式やグラフに表すとき, 何を x とおくか. また, 何について文字を用いて表すかが重要であり, グラフでは, 何を軸として設定するかが大切です. t

More information

5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき, の値が極地をとるような関数 ( はどのような関数形であるかという問題を考える. そのような関数が求められたとし, そのからのずれを変分 δ と

5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき, の値が極地をとるような関数 ( はどのような関数形であるかという問題を考える. そのような関数が求められたとし, そのからのずれを変分 δ と Arl, 6 平成 8 年度学部前期 教科書 : 力学 Ⅱ( 原島鮮著, 裳華房 金用日 :8 限,9 限, 限 (5:35~8: 丸山央峰 htt://www.orootcs.mech.ngo-u.c.j/ Ngo Unverst, Borootcs, Ar L 5. 変分法 (5. 変分法 汎関数 : 関数の関数 (, (, ( =, = では, の値は変えないで, その間の に対する の値をいろいろと変えるとき,

More information

測量試補 重要事項

測量試補 重要事項 重量平均による標高の最確値 < 試験合格へのポイント > 標高の最確値を重量平均によって求める問題である 士補試験では 定番 問題であり 水準測量の計算問題としては この形式か 往復観測の較差と許容範囲 の どちらか または両方がほぼ毎年出題されている 定番の計算問題であるがその難易度は低く 基本的な解き方をマスターしてしまえば 容易に解くことができる ( : 最重要事項 : 重要事項 : 知っておくと良い

More information

Microsoft Word - 5章摂動法.doc

Microsoft Word - 5章摂動法.doc 5 章摂動法 ( 次の Moller-Plesset (MP) 法のために ) // 水素原子など 電子系を除いては 原子系の Schrödiger 方程式を解析的に解くことはできない 分子系の Schrödiger 方程式の正確な数値解を求めることも困難である そこで Hartree-Fock(H-F) 法を導入した H-F 法は Schrödiger 方程式が与える全エネルギーの 99% を再現することができる優れた近似方法である

More information