Size: px
Start display at page:

Download ""

Transcription

1

2

3 MKSA

4 ii Nd:YAG

5 iii He-Ne

6 iv n

7 1 1 optics geometric optics physical optics quantum optics ray optics imaging aberration wave optics propagation interference diffraction polarization scattering laser spectroscopy quantum electronics opto-electronics Maxwell s equations electromagnetic wave ν λ λν = c (1.1) c c = m/s 380 nm 780 nm visible light 10 nm ultraviolet 100 µm infrared x ray γ ray radiowave 0.1 THz 10 THz 30 µm 3 mm terahertz wave duality photon E = hν (1.2)

8 2 1 p = h λ (1.3) h Planck constant h = J s frequency wavenumber ν ν = 1 λ = ν c (1.4) cm 1 E = hc ν (1.5) cm 1 wavenumber reciprocal centimeter inverse centimeter K kayser

9 3 1. (a) γ (b) X (c) (d) (e) (f) nm 780 nm

10 laser light amplification by stimulated emission of radiation, coherent coherence CVD laser chemical vapor deposition laser cooling laser fusion

11 L L L E(r, t) = A exp[i(k r ωt)] (2.1) E(r, t) = A exp[i(ωt k r)] (2.2) (2.1) (2.1) k r x y z ˆx ŷ ẑ k = k x ˆx + k y ŷ + k z ẑ (2.3) r = xˆx + yŷ + zẑ (2.4) k r k r = k x x + k y y + k z z (2.5) z y L 0 L x 2.1: L 2.1 L E(x = 0) = E(x = L) E(y = 0) = E(y = L) E(z = 0) = E(z = L) (2.6)

12 6 2 exp(ik x L) = 1 exp(ik y L) = 1 exp(ik z L) = 1 (2.7) k n x n y n z k x = 2πn x /L k y = 2πn y /L k z = 2πn z /L (2.8) (n x, n y, n z ) k (n x, n y, n z ) k = ( k 2 x + k 2 y + k 2 z ) 1/2 = 2π L ( n 2 x + n 2 y + n 2 z ) 1/2 (2.9) λ λ = 2π k (2.10) ( L ) 2 n 2 x + n 2 y + n 2 z = (2.11) λ L n 2 x + n 2 y + n 2 z 1 (2.12) ω ω = kc (2.13) c ( ) 2 2πc ( ) ω 2 = n 2 x + n 2 y + n 2 z L (2.14) 0 ω n 2 x + n 2 y + n 2 z < ( Lω ) 2 (2.15) 2πc (n x, n y, n z ) 2 n 1 n 2 x + n 2 y + n 2 z < n 2 (2.16)

13 (n x, n y, n z ) n 4πn 3 /3 4π ( Lω ) 3 2 = ω3 L 3 (2.17) 3 2πc 3π 2 c 3 ω ω + dω ω ω 2 L 3 dω (2.18) π 2 c3 L 3 D(ω) D(ω)dω = ω2 dω (2.19) π 2 c3 ω ν = ω/2π D ν (ν) D(ω)dω = D ν (ν)dν (2.20) D ν (ν)dν = 8πν2 dν (2.21) c T W W + dw p(w)dw = 1 k B T exp( W/k BT)dW (2.22) k B Boltzmann constant k B = J/K W = 0 W p(w)dw = k B T (2.23) principle of equipartition ω ω + dω U(ω)dω (2.19) U(ω)dω = D(ω)k B Tdω = ω2 π 2 c 3 k BTdω (2.24) Rayleigh-Jeans ω ω

14 8 2 M. Planck quantum hypothesis ω ν W = n ω = nhν (n = 0, 1, 2, ) (2.25) h/2π W = n ω ω n photon ω n p(n) p(n) exp( n ω/k B T) (2.26) U th U th = n=0 n ωe n ω/k BT n=0 e n ω/k BT (2.27) 1 r e ω/k BT (2.27) n=0 r n = 1 1 r (2.28) (2.29) ω nr n = ωr r n=0 r n 1 = ωr (2.30) (1 r) 2 n=0 U th = ω r 1 r = ω 1 1 = ω e ω/k BT 1 r 1 (2.31) Bose-Einstein distribution ω k B T (2.23) ω ω + dω D(ω)dω U(ω)dω = ω2 ωdω π 2 c 3 e ω/k BT 1 (2.32) hν k B T (2.24) 2.2

15 U(ω) hω/ k B T 2.2: (2.32) ν ν + dν U ν (ν)dν = 8πν2 c 3 hνdν e hν/k BT 1 λ + dλ dλ U λ (λ)dλ = 8πhc λ 5 dλ e hc/λk BT 1 (2.33) (2.34) (2.32) 0 T I = π 2 c 3 0 ω 3 dω e ω/k BT 1 = π2 k 4 B 15c 3 3 T 4 (2.35) 0 x 3 π4 e x dx = 1 15 (2.36) T 4 Stefan-Boltzmann law of radiation (2.34) T λ m d dλ U λ(λ) = 0 (2.37) 1 1 ( hc 5 λ m k B T = exp hc ) λ m k B T (2.38) x = hc λ m k B T (2.39)

16 10 2 U (λ) λ (nm) 2.3: 6000K 1 x = exp( x) (2.40) 5 x = 0 x = x = λ m = hc k B T = 2.90 mm K T (2.41) T = 300 K λ m = 9.66 µm K λ m = 483 nm W 2 hω W 1 2.4: W 1 W ω = (W 2 W 1 )/

17 absorption ω ω rate ω U(ω) B 12 U(ω) (2.42) W 2 hω W 1 2.5: 2.5 ω ω = W 2 W 1 ω ω emission A T N 2 N 1 ( N 2 = N 1 exp ω ) k B T (2.43) N 1 B 12 U(ω) = N 2 A (2.44) U(ω) = A ( exp ω ) B 12 k B T (2.45)

18 12 2 U(ω) U(ω) (2.45) A + B 21 U(ω) (2.46) A (2.43) N 1 B 12 U(ω) = N 2 [A + B 21 U(ω)] (2.47) U(ω) = A B 12 e ω/k BT B 21 (2.48) T U(ω) B 12 = B 21 (2.49) B B 12 = B 21 (2.50) (2.24) A B = ω3 π 2 c 3 (2.51) (2.48) (2.32) W 2 B U( ) A B U( ) 12 ω 21 ω W 1 2.6:

19 g 1, g 2 (2.43) N 2 = g ( 2 N 1 exp ω ) (2.52) g 1 k B T g 1 B 12 = g 2 B 21 (2.53) A B 12 = g 1 g 2 ω 3 π 2 c 3 (2.54) 2.6 spontaneous emission stimulated emission A B A B A B (2.51) W 1 W 2 N 1 N 2 N 1 BU(ω) (2.55) N 2 BU(ω) (2.56) N 1 > N 2 N 1 < N 2 population inversion inverted population T (2.43) T pumping

20 W 3 γ 32 Γ γ 21 γ 31 W 2 W 1 2.7: 2.7 n (n = 1, 2, 3) W n W 1 < W 2 < W 3 pumping rate Γ N n (n = 1, 2, 3) dn 1 dt dn 2 dt dn 3 dt = ΓN 1 + γ 21 N 2 + γ 31 N 3 (2.57) = γ 21 N 2 + γ 32 N 3 (2.58) = ΓN 1 (γ 31 + γ 32 )N 3 (2.59) rate equation γ mn m n N N 1 + N 2 + N 3 dn dt = 0 (2.60) dn 1 dt = dn 2 dt = dn 3 dt = 0 (2.61)

21 N 1 = N 2 = γ 21 (γ 31 + γ 32 ) γ 21 (γ 31 + γ 32 ) + (γ 32 + γ 21 )Γ N (2.62) γ 32 Γ γ 21 (γ 31 + γ 32 ) + (γ 32 + γ 21 )Γ N (2.63) N 2 > N 1 ( Γ > γ γ ) 31 γ 32 (2.64) γ 32 γ 31 Γ > γ 21 (2.65) W 3 Γ γ 32 γ 21 W 2 γ 10 γ 01 W 1 W 0 2.8: 2.8 n (n = 0, 1, 2, 3) W n (n = 0, 1, 2, 3) W 0 < W 1 < W 2 < W

22 16 2 N n (n = 0, 1, 2, 3) dn 1 dt dn 2 dt dn 3 dt dn 0 dt = γ 01 N 0 γ 10 N 1 + γ 21 N 2 + γ 31 N 3 (2.66) = γ 2 N 2 + γ 32 N 3 (2.67) = ΓN 0 γ 3 N 3 (2.68) = dn 1 dt dn 2 dt dn 3 dt γ mn m n (2.69) γ 2 γ 20 + γ 21 (2.70) γ 3 γ 30 + γ 31 + γ 32 (2.71) γ 01 γ 01 = γ 10 exp[ (E 1 E 0 )/k B T] (2.72) ( γ01 N 1 = + γ ) 21γ 32 + γ 2 γ 31 Γ N 0 (2.73) γ 10 γ 10 γ 2 γ 3 N 2 = γ 32Γ N 0 (2.74) γ 2 γ 3 N 3 = N 2 > N 1 Γ > Γ γ 3 N 0 (2.75) γ 01 γ 2 γ 3 γ 32 γ 10 γ 21 γ 32 γ 2 γ 31 (2.76) γ γ 10 γ 2 Γ > γ 2 exp[ (W 1 W 0 )/k B T] (2.77) 4 W 1 W 0 k B T k B T laser cavity Fabry-Perot

23 2.3. ¾ iˆê ß j 0 L z 2.9: 2.9 L 1% 100% z z z E(z, t) = A exp(ikz iωt) + B exp( ikz iωt) (2.78) +z z 0 E(z = 0) = 0 (2.79) E(z = L) = 0 (2.80) 1 B = A 2 A sin(kl) = 0 (2.81) kl = nπ (n = 1, 2, 3, ) (2.82) k n = nπ L (n = 1, 2, 3, ) (2.83) k n E n (z, t) = A sin(k n z) exp( iωt) (2.84) E n (z, t) (n = 1, 2, 3, ) n

24 18 2 k n E n (z, t) λ n = 2L n ω n = ck n = nπc L ω = ω n+1 ω n = πc L (2.85) (2.86) (2.87) 2.10 ω ω ω 2.10: laser oscillation gain medium laser medium L l R 1 R 2 100% 80% 99% G I 1 (z) d dz I 1(z) = GI 1 (z) (2.88) I 1 (z) = I 1 (0) exp(gz) (2.89) exp(gl)

25 R 1 R 2 exp(2gl) > 1 (2.90) G > 1 2l ln(r 1R 2 ) (2.91) R 1 R 2 1 T 1 = 1 R 1 (2.92) T 2 = 1 R 2 (2.93) 1 ln(1 x) x (2.94) (2.91) T 1 T 2 G > 1 2l (T 1 + T 2 ) (2.95) 100% threshold G th G th = 1 2l (T 1 + T 2 ) (2.96) ω 2.11

26 ω ω 2.11: Φ 1 Φ 2 γ 1 γ 2 ω ω U(ω) N 1 N 2 dn 2 dt dn 1 dt = Φ 2 γ 2 N 2 (N 2 N 1 )BU(ω) (2.97) = Φ 1 γ 1 N 1 + (N 2 N 1 )BU(ω) (2.98) B B du(ω) dt = 2κU(ω) + ω(n 2 N 1 )BU(ω) (2.99) κ 2L/c (1 T 1 )(1 T 2 ) T 1, T 2 1 2κ = T 1 + T 2 2L/c (2.100) T 1 T 2 κ (2.97)-(2.99) U(ω) = 0 N (0) 2 Φ 2 γ 2 (2.101) N (0) 1 Φ 1 γ 1 (2.102)

27 N N 2 N 1 (2.103) N (0) N (0) 2 N (0) 1 (2.104) du(ω) dt N th = = 0 (2.105) 2κ ωb (2.106) dn 2 = dn 1 = 0 dt dt (2.107) du(ω) = 0 dt (2.108) (2.107) (2.97) γ 2 (2.98) γ 1 τ 1 ( ) 2 γ 1 γ 2 ( 1 N (0) N + 1 ) NBU(ω) = 0 (2.109) γ 1 γ 2 (2.110) (2.108) N = N (0) 1 + 2τBU(ω) (2.111) N = N th (2.112) U ss (ω) = 1 ( ) N (0) 1 2τB N th (2.113) 2.12 N (0) quality value Q = ωw P L (2.114)

28 22 2 U ss è í U o Í 0 N th N (0) iƒ ƒ ƒsƒ ƒo Ì ³ j 2.12: ω W P L V U(ω)V U(ω)V(1 R 1 R 2 ) (2.115) P L = U(ω)V(1 R 1R 2 ) 2L/c Q = 100% Q = 2ωL c(1 R 1 R 2 ) 2ωL c(t 1 + T 2 ) (2.116) (2.117) (2.118) Q = ω 2κ (2.119) (2.106) (2.119) 2.13 Q switching

29 pƒxƒcƒbƒ` OFF p l pƒxƒcƒbƒ` ON ½ ] ª z Œõ x ŽžŠÔ 2.13: Pockels effect mode locking ω ω N E(t) = E n cos{(ω 0 + n ω)t + φ n } (2.120) n= N 2N ω 0 n E n φ n φ n φ n = 0 E n = E 0

30 24 2 E(t) = N E 0 cos{(ω 0 + n ω)t} n= N N = E 0 Re exp[ i(ω 0 + n ω)t] n= N N ( = E 0 Re ) e iω 0t e i ωt n n= N ( = E 0 Re ) e iω 0t e i ωt N 1 ( e i ωt) 2N+1 1 e i ωt = E 0 Re {e iω e 0t i(n+1/2) ωt + e i(n+1/2) ωt } e i ωt/2 + e ) ] i ωt/2 ωt = E 0 sin [( N sin ( ωt/2) cos(ω 0 t) (2.121) cos(ω 0 t) ) ] ωt sin [( 2 N I(t) = I 0 sin 2 ( ωt/2) (2.122) T = 2π (2.123) ω (2N + 1) 2 I 0 pulse train (2.87) T = 2L c (2.124) cavity round trip time N = Œõ x ŽžŠÔ 2.14: 21 T/(2N + 1) = 2π (2N + 1) ω (2.125)

31 (2N + 1) ω/2π 100 fs m T = 10 ns (2.125) 10 5 active mode locking passive mode locking ω ± ω Acousto-optic effect synchronous pumping saturable absorber Kerr lens mode locking 1. m λ 10.2 ev

32 half mirror optical damage 2 beam splitter ; dichroic mirror filter chirped mirror dispersion compensation mirror SiO TiO intra-cavity extra-cavity diffraction grating

33 π birefringent filter Electro-optic effect; EO effect Electro-optic modulator; EO modulator 1 Pockels effect 2 Kerr effect Acousto-optic effect; AO effect Acousto-optic modulator; AO modulator Nd:YAG cavity dumper Brewster surface 3.1 n θ i tan θ i = n (3.1) p (3.1) θ i Brewster angle 90 p

34 28 3 p ÎŒõ θ i 1 n θ d 3.1: p s p

35 nm 400 nm 2A E nm 3.2: ruby laser 1960 T. H. Maiman Al 2 O 3 Al 3+ 3 Cr Cr 3+ 3s 2 3p 6 3d 3 Cr 3+ O 2 Nd 3+ f d d 550 nm 400 nm nm Hz Nd:YAG Nd neodymium 3 Nd 3+ Nd 3+ 4f 3 5s 2 5p 6 4f 4f 5s5p Nd 3+ f 3.3 Nd mn 800 nm

36 nm Nd 3+ Nd 3+ YAG yttrium aluminum garnet, Y 3 Al 5 O 12 Nd:YAG kw Hz khz 10 ns 532 nm 355 nm 266 nm Nd:YAG Nd:YLF LiYF 4 Nd:YVO 4 Nd: 4 4 3/2 [ S, F ] 7/2 4 [ F, H ] 5/2 3 9/ µm 4 I9/2 0.8 µm 4 F3/2 4 I11/ µm 3.3: Nd:YAG Ti:sapphire Al 2 O 3 Cr 3+ Ti 3+ Ti:Al 2 O 3 Ti 3+ 3s 2 3p 6 3d 1 d Ti 3+ d 700 nm 1 µm 10 fs

37 Er µm EDFA: erbium-doped fiber amplifier Er 3.3 He-Ne 3.4: He-Ne He-Ne He Ne He Ne 3.4

38 nm 3.5: Ar Ar-ion laser Kr-ion laser 3.5 Ar nm nm Kr nm Ar Kr excimer 3.1 F 2

39 : ArF KrCl KrF XeCl XeF F nm 222 nm 249 nm 308 nm 351 nm, 353 nm 157 nm CO µm nm copper vapor laser nm nm He-Cd He Cd nm nm nm nm nm nm µm CH 3 OH µm 2.52 THz 3.4 dye

40 3.7: : singlet 1 triplet intersystem crossing S 0 S 1 S 2 T 1 T laser diode

41 free electron laser chemical laser

42 Maxwell equations permeability µ 0 H E = µ 0 t (4.1) E H = ɛ 0 + J t (4.2) ɛ 0 E = ρ (4.3) H = 0 (4.4) E H J ρ ɛ 0 vacuum permittivity H = 0 (4.2) (4.3) equation of continuity J + ρ t = 0 (4.5) polarization P ρ = P (4.6) J = P (4.7) t electric displacement D ɛ 0 E + P H E = µ 0 t (4.8) H = D t (4.9) D = 0 (4.10) H = 0 (4.11) E electric susceptibility χ P = ɛ 0 χe (4.12)

43 χ 3 3 permittivity ɛ D = ɛe = ɛ 0 E + P = ɛ 0 (1 + χ)e (4.13) ɛ ɛ 0 = 1 + χ (4.14) (4.12) x, y, z E x, E y, E z P x, P y, P z ( ) P i = ɛ 0 χ i j E j = ɛ 0 χix E x + χ iy E y + χ iz E z (4.15) j i j x, y, z χ i j D i = ɛ i j E j = ( ) ɛ ix E x + ɛ iy E y + ɛ iz E z (4.16) χ xx χ xy χ xz χ i j = χ yx χ yy χ yz χ zx χ zy χ zz j ɛ i j = ɛ xx ɛ xy ɛ xz ɛ yx ɛ yy ɛ yz ɛ zx ɛ zy ɛ zz P x χ xx χ xy χ xz P y = ɛ 0 χ yx χ yy χ yz χ zx χ zy χ zz P z D x D y D z = ɛ xx ɛ xy ɛ xz ɛ yx ɛ yy ɛ yz ɛ zx ɛ zy ɛ zz E x E y E z E x E y E z (4.17) (4.18) (4.19) (4.20) x, y, z 1,2,3

44 38 4 H E = µ 0 t (4.21) H = ɛ E t (4.22) E = 0 (4.23) H = 0 (4.24) J = σe (4.25) σ electric conductivity Ohm s law H E = µ 0 t (4.26) H = ɛ E + σe t (4.27) E = 0 (4.28) H = 0 (4.29) (4.21) rotation E = µ 0 ( H) t 2 E = ɛµ 0 (4.30) t 2 E = ( E) 2 E 2 E = ɛµ 0 2 E t 2 (4.31) ɛ wave equation v p = 1 ɛµ0 (4.32) v p phase velocity c = 1 ɛ0 µ 0 (4.33)

45 (4.12) E(r, ω) = P(r, ω) = E(r, t) exp( iωt)dt (4.34) P(r, t) exp( iωt)dt (4.35) P(r, ω) = ɛ 0 χ(ω)e(ω) (4.36) ɛ(ω) = ɛ 0 [1 + χ(ω)] (4.37) E(r, ω) = iωµ 0 H(r, ω) (4.38) H(r, ω) = iωɛ(ω)e(r, ω) (4.39) E(r, ω) = 0 (4.40) H(r, ω) = 0 (4.41) 2 E(r, ω) = ω 2 ɛµ 0 E(r, ω) (4.42) z E(r, t) = E 0 exp[i(kz ωt)] (4.43) k 2 = ω 2 ɛµ 0 (4.44) dispersion relation (4.43) v p v p = ω k (4.45) ɛ v p = 1 ɛµ0 (4.46)

46 40 4 (4.33) v p = c ɛ0 ɛ (4.47) refractive index n = ɛ ɛ 0 (4.48) v p = ω k = c n (4.49) wave packet group velocity v g = dω dk (4.50) n [ ] 1 [ dω dk d ( nω dk = = dω dω c group refractive index n g )] 1 [ = c n + ω dn ] 1 (4.51) dω v g = c n g (4.52) λ n g = n + ω dn dω n g = n λ dn dλ (4.53) (4.54) (4.48) ñ ɛ ɛ 0 = 1 + χ (4.55) n κ ñ = n + iκ (4.56) n κ extinction coefficient n (4.48) (4.55)

47 (4.43) (4.44) (4.43) k = ñω c (n + iκ)ω = c (4.57) E(r, t) = E 0 exp[i(kz ωt)] [ ( n ) = E 0 exp iω c z t ωκ ] c z v p = c n (4.58) (4.59) κ I(z) I(z) = I(0) exp( αz) (4.60) α absorption coefficient α α = 2ωκ c (4.61) κ λ = 2πc ω α = 4πκ λ (4.62) (4.63) χ χ χ χ = χ + iχ (4.64) ñ 2 = (n + iκ) 2 = 1 + χ = 1 + χ + iχ (4.65) 1 + χ = n 2 κ 2 (4.66) χ = 2nκ (4.67) n κ n 2 = 1 [ ] (1 + χ ) + (1 + χ 2 ) 2 + 4(χ ) 2 κ = χ 2n (4.68) (4.69)

48 42 4 κ 1 n = 1 + χ (4.70) κ = χ χ (4.71) ɛ ɛ ɛ, ɛ = ɛ + iɛ (4.72), (4.14) ɛ = ɛ 0 (1 + χ ) (4.73) ɛ = ɛ 0 χ (4.74) causality Kramers-Kronig relations χ(ω) ɛ(ω) χ ɛ χ ɛ χ (ω) = 2 π P ω χ (ω ) 0 (ω ) 2 ω 2 dω (4.75) χ (ω) = 2ω π P χ (ω ) 0 (ω ) 2 ω 2 dω (4.76) ɛ (ω) ɛ 0 = 2 π P ω ɛ (ω ) (ω ) 2 ω 2 dω (4.77) ɛ (ω) = 2ω π P ɛ (ω ) (ω ) 2 ω 2 dω (4.78) n(ω) 1 = 2 π P ω κ(ω ) (ω ) 2 ω 2 dω (4.79) κ(ω) = 2ω π P 0 n(ω ) (ω ) 2 ω 2 dω (4.80) P Cauchy P 0 f (ω ( ) ω δ (ω ) 2 ω 2 dω = lim δ 0 0 f (ω ) (ω ) 2 ω 2 dω + ω+δ f (ω ) ) (ω ) 2 ω 2 dω (4.81) π/2 (4.7) π/2 π/2

49 E(r, ω) = iωµ 0 H(r, ω) (4.82) H(r, ω) = iωɛ(ω)e(r, ω) + σ(ω)e(r, ω) (4.83) E(r, ω) = 0 (4.84) H(r, ω) = 0 (4.85) ɛ(ω) σ(ω) = ωɛ (ω) = ɛ 0 ωχ (ω) (4.86) 4.3 (4.58) H = H 0 exp[i(kz ωt)] (4.87) x E 0 = (E 0, 0, 0) y H 0 = (0, H 0, 0) H 0 = k ω (4.44) k µ 0 ω E 0 (4.88) H 0 = ɛ µ 0 E 0 = ɛ0 µ 0 (n + iκ)e 0 (4.89) Z 0 µ 0 /ɛ 0 = ( ɛ 0 /µ 0 ) Ω ( ) E E ( H) = ɛ 0 P (E E) + E 2 t t 1 E (E E) = E 2 t t H (4.90) (4.91) H ( E) = µ 0 2 (H H) (4.92) t

50 44 4 x y z 4.1: (E H) + t ( ɛ0 2 E E + µ ) 0 2 H H + E P = 0 (4.93) t (E H) = H ( E) E ( H) (4.94) (4.93) Poynting vector S = E H (4.95) U = ɛ 0 2 E E + µ 0 2 H H (4.96) (4.7) E J (4.97) ω (4.36) (4.93) E P t = 1 (E P) (4.98) 2 t U ɛ 0 2 E E + µ 0 2 H H E P (4.99)

51 r ( E(r) = E 0 exp ωκ ) c z (4.100) E x = 1 ( n )] [iω 2 E(r) exp c z t + c.c. (4.101) c.c. complex conjugate P x = 1 [ ( n )] 2 ɛ 0(χ + iχ )E(r) exp iω c z t + c.c. (4.102) H y = 1 2 ɛ0 [ ( n )] (n + iκ)e(r) exp iω µ 0 c z t + c.c. (4.103) U U = 1 2 ɛ 0n 2 E(r) 2 (4.104) intensity W/cm 2 I I = S (4.105) I 2ω 2ω Ī = 1 2 ɛ0 µ 0 n E(r) 2 = 1 2 ɛ 0cn E(r) 2 (4.106) Ī = U c n (4.107) U c/n (4.93) E P t = 1 2 ɛ 0χ ω E(r) 2 (4.108) dz α αu dz = 1 2 ɛ 0αn 2 E(r) 2 dz (4.109)

52 46 4 dz (n/c)dz (4.108) α χ 1 2 ɛ 0χ ω E(r) 2 (n/c)dz (4.110) α = ω nc χ (4.111) 4.5 α N α = σ a N (4.112) σ a absorption cross section σ a z I(z) S dz NS dz σ a dz σ a NS dz di(z) = σ ans dz I(z) = Nσ a I(z)dz (4.113) S I(z) = I 0 exp( Nσ a z) (4.114) (4.112) I I 0 = 10 A (4.115) A absorbance I 0 I A optical density Lambert Beer Lambert-Beer law I I 0 = 10 εcl (4.116) C l ε molar extinction coefficient C mol/l l cm ε L/(cm mol)

53 χ(ω) ( d 2 ) X m dt + ΓdX 2 dt + ω2 0 X = ee (4.117) X E m e ω 0 Γ Lorentz model E ω E = E 0 exp( iωt) (4.118) X X = X 0 exp( iωt) (4.119) X = ee 0 exp( iωt) m ( ω 2 0 ω2 iωγ ) (4.120) p p = ex (4.121) N P = N p = enx = Ne 2 E m ( ω 2 0 ω2 iωγ ) ω = ɛ 0 χe (4.122) Ne 2 χ(ω) = ɛ 0 m ( ω 2 0 ω2 iωγ ) (4.123) χ (ω) = Ne2 ω 2 0 ω2 ɛ 0 m ( ω 2 0 ω 2), (4.124) 2 + ω2 Γ 2 χ (ω) = Ne2 ωγ ɛ 0 m ( ω 2 0 ω 2) (4.125) 2 + ω2 Γ 2

54 48 4 χ χ'' ω ω Γ 4.2: χ χ ω 0 Γ ω 0 ω ω ω 0 χ(ω) = Ne2 1/(2ω 0 ) ɛ 0 m (ω 0 ω) iγ/2 (4.126) χ (ω) = Ne2 (ω 0 ω)/(2ω 0 ) ɛ 0 m (ω 0 ω) 2 + (Γ/2), 2 (4.127) χ (ω) = Ne2 Γ/(4ω 0 ) ɛ 0 m (ω 0 ω) 2 + (Γ/2) 2 (4.128) 1 3 χ (ω) ω Γ Lorentzian function χ (ω) 4.2 χ (ω) χ (ω) Γ ω dispersion ω normal dispersion ω anomalous dispersion χ(ω) = Ne2 f j ɛ 0 m ω 2 j j (4.129) ω2 iωγ j

55 f j oscillator strength 4.7 ω 0 ω 0 ω ω ω 0 Γ exp( γt) ( E(t) = E 0 exp γt ) 2 iω 0t E(ω) = 0 I(ω) E(ω) 2 γ (t > 0) (4.130) E(t) exp(iωt)dt (4.131) 1 (ω 0 ω) 2 + (γ/2) 2 (4.132) Γ γ homogeneous broadening Doppler effect ω 0 v z = ω = ω 1 v z /c (4.133) v z v z v z 1km/s ( ω ω v ) z c (4.134)

56 Gaussian Lorentzian (ω ω 0 )/ω h 4.3: v z = c(ω 0 ω) ω 0 (4.135) T m v z ( ) P(v z ) exp mv2 z 2k B T (4.136) (4.135) I(ω) exp mc2 (ω 0 ω) 2 (4.137) 2k B T ω 0 Gaussian function Doppler broadening inhomogeneous broadening Al 2 O 3 Cr 3+ FWHM; full width at half maximum ω h ω 2 0 L(ω) = 1 ω h /2 π (ω ω 0 ) 2 + (ω h /2), (4.138) 2

57 G(ω) = 2 ln 2 exp [ ] (4 ln 2)(ω ω 0 ) 2 /ω 2 h πωh (4.139) ln convolution Voigt

58 52 5 semi-classical 5.1 W n (n = 1, 2, 3, ) Hamiltonian H 0 Ψ n (r, t) = exp ( iw n t/ ) φ n (r) (5.1) φ n (r) H 0 H 0 φ n (r) = W n φ n (r) (5.2) φ m(r)φ n (r)dr = δ mn (5.3) H = H 0 + H (5.4) H Ψ(r, t) Schrödinger equation Ψ(r, t) H Ψ(r, t) = i t Ψ(r, t) = b n (t)ψ n (r, t) = n (5.5) b n (t) exp ( iw n t/ ) φ n (r) (5.6) n b n (t) b n (t) 2 b n (t) 2 = 1 (5.7) n

59 (5.5) (5.6) (H 0 + H ) b n (t) exp ( iw n t/ ) φ n (r) n = i n b n (t) t exp ( iw n t/ ) φ n (r) + i n ( b n (t) iw n ) exp ( iw n t/ ) φ n (r) (5.8) φ m(r) r i b m(t) t = n ( b n (t)h mn exp i W m W n ) t (5.9) b n (t) H mn H H mn = φ m(r)h φ n (r)dr (5.10) 5.2 H er E (5.11) e r E +e electric dipole moment µ = er (5.12) H = µ E (5.13) dipole approximation X µ µ mn φ m(r) µ φ n (r)dr (m n) (5.14) transition dipole moment µ mn = e φ m(r) r φ n (r)dr = er mn (5.15)

60 54 5 (5.14) m = n n H 0 φ n (r) φ n ( r) = φ n (r) (5.16) φ n ( r) = φ n (r) (5.17) (5.15) selection rule allowed transition forbidden transition 5.3 n = 1, 2 ω ω ω 0 ω W 2 W 1 ω 0 (5.18) µ 11 = µ 22 = 0 µ 21 = µ 12 (5.19) µ 12 = µ 21 (5.9) b 1 (t) t b 2 (t) t E(t) = E 0 cos ωt (5.20) = i µ12 E 0 b 2 (t) [ e i(ω0 ω)t + e ] i(ω 0+ω)t (5.21) 2 = i µ12 E 0 b 1 (t) [ e i(ω0 ω)t + e ] i(ω 0+ω)t (5.22) 2 exp[±i(ω 0 + ω)t] exp[±i(ω 0 ω)t] rotating-wave approximation E(t) = E 0 cos ωt = 1 2 E [ ] 0 exp(iωt) + exp( iωt) (5.23)

61 E(t) = 1 2 E 0 exp(iωt) (5.24) E(t) = 1 2 E 0 exp( iωt) (5.25) ω ω b 1 (t) t b 2 (t) t = i X 2 b 2(t) exp( i t) (5.26) = i X 2 b 1(t) exp(i t) (5.27) ω 0 ω (5.28) X µ 12 E 0 (5.29) b 1 (0) = 1, b 2 (0) = 0 (5.27) t (5.26) b 2 (t) 2 2 b 2 (t) t 2 i b 2(t) t + X2 4 b 2(t) = 0 (5.30) b 2 (t) = exp(iλt) (5.31) Ω λ = 1 ( ± Ω) (5.32) 2 Ω 2 + X 2 (5.33) Rabi angular frequency (5.30) [ i ] [ i ] b 2 (t) = A exp 2 ( + Ω)t + B exp 2 ( Ω)t (5.34) A B b 1 (t) = exp ( i 2 ) [ ( Ω t cos 2 t b 2 (t) = i X Ω exp ( i 2 t ) sin ( Ω 2 t ) + i Ω sin ( Ω2 t )] ) (5.35) (5.36) ( ) b 2 (t) 2 = X2 Ω Ω 2 sin2 2 t (5.37)

62 Ω/2 X 2 /Ω 2 π/ω = 0 Ω = X Rabi oscillation coherent optical process π/ω phase relaxation, dephasing coherence Ψ(r, t) density matrix 5.4 p N p = µ = e r = e Ψ (r, t) r Ψ(r, t)dr (5.38) Ψ n(r, t) r Ψ n (r, t) = 0 (5.39) Ψ(r, t) = b 1 Ψ 1 (r, t) + b 2 Ψ 2 (r, t) (5.40) N p = Ne Ψ (r, t) r Ψ(r, t)dr [b = Ne 1 eiw 1t/ φ 1 (r) + b 2 eiw 2t/ φ 2 (r)] r [ b 1 e iw 1t/ φ 1 (r) + b 2 e iw 2t/ φ 2 (r) ] dr = Nµ 12 [ b 1 b 2 e i(w 2 W 1 )t/ + b 1 b 2 ei(w 2 W 1 )t/ ] = 2Nµ 12 Re { b 1 b 2e i(w 2 W 1 )t/ } (5.41)

63 ω 0 = (W 2 W 1 )/ 5.5 (5.22) b 1 (t) = 1 b 2 (t) = i X 2 = X 2 t 0 [ e i(ω 0 ω)t + e i(ω 0+ω)t ] dt [ e i(ω 0 ω)t ] 1 ω 0 ω + ei(ω0+ω)t 1 ω 0 + ω (5.42) ω 0 ω 2 b 2 (t) 2 = X2 sin 2 [(ω 0 ω)t/2] (ω 0 ω) 2 (5.43) ω ω = ω 0 X 2 t 2 /4 ω 0 ω < 2π/t ω 0 ω 2 b 2 (t) 2 ω t 2 1/t t ω 0 ω ω 0 δω U(ω) ɛ 0 E = ω0 +δω ω 0 δω X = µ 12 E 0 U(ω)dω (5.44) (5.45) X 2 = = 1 µ12 E µ E0 2 cos2 θ = µ2 12 E2 0 = 3 2 2µ ɛ 0 2 b 2 (t) 2 = 2µ2 12 3ɛ 0 2 ω0 +δω ω 0 δω ω0 +δω ω 0 δω U(ω)dω (5.46) U(ω) sin2 [(ω 0 ω)t/2] (ω 0 ω) 2 dω (5.47)

64 58 5 sin 2 [(ω 0 ω)t/2] (ω 0 ω) 2 dω = π 2 t (5.48) ω 0 ω < 2π/t U(ω) t (5.47) U(ω) b 2 (t) 2 = = 2µ 2 ω0 +δω 12 3ɛ 0 U(ω sin 2 [(ω 0 ω)t/2] 0) dω 2 ω 0 δω (ω 0 ω) 2 πµ ɛ 0 U(ω 0) t (5.49) 2 w 12 = d dt b 2(t) 2 = πµ2 12 3ɛ 0 2 U(ω 0) (5.50) U(ω 0 ) U(ω 0 ) B B = πµ2 12 3ɛ 0 2 (5.51) b 1 (0) = 0 b 2 (0) = 1 w 21 w 12 B 12 = B 21 µ B = π µ2 ɛ 0 2 (5.52) µ 2 = 1 3 µ2 12 (5.53) A B (2.51) A A = µ2 12 ω3 3πɛ 0 c 3 (5.54) f 2mωµ2 12 3e 2 (5.55) 1 A τ r = 2πc3 ɛ 0 m e 2 = f ν 2 1 f ω 2 s (5.56) cm 2

65 ν = ω (5.57) 2πc 500 nm 20,000 cm 1 τ r = 3.75 ns/ f b 2 (t) γ/2 b 2 (t) 2 γ (5.27) b 1 (t) = 1 db 2 (t) dt = i X 2 ei t γ 2 b 2(t) (5.58) t b 2 (t) = i X e i t e γ(t t )/2 dt 2 = i X e i(ω 0 ω)t 2 i(ω 0 ω) + γ/2 (5.59) b 1 (t) 1 d b 2 (t) 2 dt = db 2 (t) b 2 (t) + b 2 dt (t)db 2(t) dt = γ b 2 (t) 2 (5.60) (5.46) w 12 = γ b 2 (t) 2 = X2 4 γ (ω 0 ω) 2 + (γ/2) 2 (5.61) w 12 = πµ2 ω0 +δω 12 γ/2π U(ω)dω (5.62) 3ɛ 0 2 ω 0 δω (ω 0 ω) 2 + (γ/2) 2 γ γ δω γ/2π dω = 1 (5.63) (ω 0 ω) 2 + (γ/2) 2 w 12 = πµ2 12 3ɛ 0 2 U(ω 0) (5.64) (5.59) { } µ p = Re 12 X (ω 0 ω) iγ/2 exp( iωt) (5.65)

66 60 5 χ(ω) = N µ2 ɛ 0 1 (ω 0 ω) iγ/2 (5.66) N 5.6 three-dimensional harmonic oscillator m k ω 0 V = mω2 0 2 (x2 + y 2 + z 2 ) (5.67) k = mω 2 0 (5.68) ( ) H = 2 2 2m x y mω2 0 2 z 2 2 (x2 + y 2 + z 2 ) (5.69) φ(x, y, z) ε (5.69) H φ(x, y, z) = εφ(x, y, z) (5.70) H = H x + H y + H z (5.71) 2 H x = 2 2m x + mω x2 (5.72) 2 H y = 2 2m y + mω y2 (5.73) 2 H z = 2 2m z + mω z2 (5.74) x y z φ(x, y, z) = X(x)Y(y)Z(z) (5.75) x y z H x X(x) = ε x X(x) (5.76) H x Y(y) = ε y Y(y) (5.77) H x Z(z) = ε z Z(z) (5.78)

67 ε = ε x + ε y + ε z (5.79) x y z x (5.76) ( ) 1/2 ( ) 2mω0 /h mω0 ( X n (x) = 2 n H n n! x exp mω ) 0 2 x2 (5.80) ( ε n = n + 1 ) ω 0 2 (n = 0, 1, 2, ) (5.81) H n (ξ) Hermitian polynomial exp( t 2 + 2ξt) = (5.80) X n (x) n=0 1 n! H n(ξ)t n (5.82) X m (x)x n (x)dx = δ mn (5.83) δ mn m = n 1 0 y z m (m = 0, 1, 2, ) l (l = 0, 1, 2, ) Y m (y) Z l (z) (n, m, l) φ nml (x, y, z) = X n (x)y m (y)z l (z) (5.84) ( ε = n + m + l + 3 ) ω 0 (5.85) 2 creation operator a x annihilation operator a x ( a mω0 x x ) d 2 mω 0 dx ( mω0 a x x + ) d 2 mω 0 dx (5.86) (5.87) a xx n (x) = n + 1X n+1 (x) (5.88) a x X n (x) = nx n 1 (5.89) (5.86) (5.87) x = ( ) a 2mω x + a x 0 (5.90)

68 62 5 φ 000 (x, y, z) x φ 100 (x, y, z) φ 000 (x, y, z) x φ 100(x, y, z)dr = (5.91) 2mω 0 y z µ µ = e (5.92) 2mω 0 (5.66) χ(ω) = Ne2 1 2ɛ 0 mω 0 (ω 0 ω) iγ/2 (5.93) (4.126) 5.7 a b f ba f ba = 2mω ba e 2 µ ba 2 (5.94) m ω ba a b 3 1 N N sum rule f ba = N (5.95) b x i j [x i, p x j ] = i δ i j (5.96) b Σ i p xi a [p 2 xi, x i] = 2i p xi (5.97) [ ] H, Σi x i = i p xi (5.98) m = im b H Σi x i Σ xh a i = im { b H c c Σ x a i b Σ x c } i c H a i i c = im ω ba b Σ x a i i i (5.99)

69 [ Σi p xi, Σ i x i ] = i N (5.100) a [ Σi p xi, Σ i x i ] a { a = Σ p b xi b Σ x a i a Σ x b i b Σ p a } xi i i i i b = i 2m ω ba b Σ x a 2 i = i N (5.101) i b 2m e 2 ω µba 2 ba = N (5.102) b f ba = N (5.103) b density matrix W 1 W 2 W 1 < W 2 2 Ψ n (r, t) = exp ( iw n t/ ) φ n (r) (n = 1, 2) (5.104) Ψ(r, t) = c 1 (t)φ 1 (r) + c 2 (t)φ 2 (r) (5.105) ρ ρ = ρ 11 ρ 12 ρ 21 ρ, (5.106) 22 ρ i j = c i (t)c j (t) (i, j = 1, 2) (5.107) 2 2

70 64 5 O O = Ψ (r, t)o Ψ(r, t)dr = {c 1 φ 1 + c 2 φ 2} O {c1 φ 1 + c 2 φ 2 } dr = c 1 c 1 O 11 + c 1 c 2 O 21 + c 2 c 1 O 12 + c 2 c 2 O 22 (5.108) = ρ 11 O 11 + ρ 12 O 21 + ρ 21 O 12 + ρ 22 O 22 = Tr(ρO) O i j O O i j φ i (r, t)o φ j(r, t)dr (5.109) Tr trace ρ nn = c n (t)c n(t) = c n (t) 2 (n = 1, 2) (5.110) 2 ρ 11 + ρ 22 = 1 (5.111) H Liouville equation d dt ρ = 1 [ ] H, ρ i (5.112) [ ] [A, B] AB BA (5.113) ( ) c1 Ψ = c 2 ( ) c1 c ρ = 1 c 1 c 2 c 2 c 1 c 2 c 2 ( ) c1 (c ) = i d dt c 2 ( c1 c 2 1, c 2 ) = H ( c1 c 2 ) (5.114) (5.115) (5.116)

71 i d dt ( c 1, ) ( c 2 = c 1, 2) c H (5.117) i d dt ρ = i d {( ) c1 (c dt c 1, ) } c 2 2 { ( )} d c1 (c = i dt c 1, ) ( ) { c1 d ( c 2 + i c 2 c 1 2 dt, ) } c 2 ( ) c1 (c = H c 1, ) ( ) c1 (c (5.118) c 2 2 c 1, c 2 2) H = H ρ ρh = [ H, ρ ] H = H 0 + H, (5.119) H 0 = W W 2 (5.120) H = 0 µ 12 µ cos ωt (5.121) i d dt ρ 11 ρ 12 ρ 21 ρ = W 1 µ 12 E 0 cos ωt ρ 11 ρ µ 12 E 0 cos ωt W 2 ρ 21 ρ 22 ρ 11 ρ 12 W 1 µ 12 E 0 cos ωt (5.122) ρ 21 ρ 22 µ 12 E 0 cos ωt W 2 d dt ρ 11(t) = iµ 12 E 0 cos ωt[ρ 12 (t) ρ 21 (t)] d dt ρ 12(t) = iω 0 ρ 12 (t) + iµ 12 E 0 cos ωt[ρ 22 (t) ρ 11 (t)] d dt ρ 21(t) = iω 0 ρ 21 (t) iµ 12 E 0 cos ωt[ρ 22 (t) ρ 11 (t)] = d dt ρ 12 (t) d dt ρ 22(t) = iµ 12 E 0 cos ωt[ρ 12 (t) ρ 21 (t)] = d dt ρ 11(t) (5.123)

72 66 5 ω 0 = W 2 W 1 d dt ρ 11(t) = iµ 12 E 0 cos ωt[ρ 12 (t) ρ 21 (t)] + ρ 22 (t)/t 1 d dt ρ 12(t) = iω 0 ρ 12 (t) + iµ 12 E 0 cos ωt[ρ 22 (t) ρ 11 (t)] ρ 12 (t)/t 2 d dt ρ 21(t) = iω 0 ρ 21 (t) iµ 12 E 0 cos ωt[ρ 22 (t) ρ 11 (t)] ρ 21 (t)/t 2 = d dt ρ 12 (t) d dt ρ 22(t) = iµ 12 E 0 cos ωt[ρ 12 (t) ρ 21 (t)] ρ 22 (t)/t 1 = d dt ρ 11(t) (5.124) T 1 T 2 longitudinal relaxation time transverse relaxation time dephasing time, phase relaxation time T 1 T 2 1 = T 2 2T 1 T2 (5.125) T 2 pure dephasing time ρ 12 ρ 21 ω 0 ω 0 ρ 12 ρ 21 ρ 12 (t) = ρ 12 (t)eiω 0t ρ 21 (t) = ρ 21 (t)e iω 0t (5.126) d dt ρ 21 (t) = iµ 12 E 0 [ e i(ω+ω 0 )t + e ] i(ω ω 0)t [ρ 22 (t) ρ 11 (t)] ρ 21 2 (t)/t 2 ρ 12 (t) = [ ρ 21 (t)] d dt ρ 22(t) = iµ 12 E 0 2 ( e iωt + e iωt) [ ρ 12 (t)eiω 0t ρ 21 (t)e iω 0t ] ρ 22 (t)/t 1 ρ 11 (t) = 1 ρ 22 (t) (5.127) ω 0 ω ±(ω 0 + ω) d dt ρ 21 (t) = iµ 12 E 0 e i(ω ω0)t [ρ 22 (t) ρ 11 (t)] ρ 21 2 (t)/t 2 ρ 12 (t) = [ ρ 21 (t)] d dt ρ 22(t) = iµ 12 E 0 2 [ ρ 12 (t)e i(ω ω 0)t ρ 21 (t)ei(ω ω 0)t ] ρ 22 (t)/t 1 ρ 11 (t) = 1 ρ 22 (t) (5.128) optical Bloch equations

73 p = µ = Tr {µρ} = Tr 0 µ 12 ρ 11 ρ 12 µ 12 0 ρ 21 ρ 22 = µ 12 (ρ 12 + ρ 21 ) = 2Re{µ 12 ρ 21 } (5.129) ρ 12 ρ perturbation (5.128) 1 ρ i j = ρ (n) i j n=0 (E 0 ) n ρ (n) i j, (5.130) (5.128) E 0 ρ (n) i j 0 (5.128) E 0 = 0 1 d dt ρ (1) ρ (0) 11 = 1 ρ (0) 22 = ρ (0) 12 = ρ (0) 21 = 0 21 (t) = iµ 12 E 0 2 ρ (1) 11 = ρ(1) 22 = 0 (5.131) e i(ω ω 0)t ρ (1) 21 (t)/t 2 (5.132) ρ (1) 21 (t) = µ 12 E 0 1 e i(ω ω 0)t 2 (ω 0 ω) i/t 2 ( ) { µ12 E 0 e iωt } p = µ 12 Re (ω 0 ω) i/t 2 1/T 2 = γ/2 (5.65) (5.133) (5.134)

74 P E P = ɛ 0 χe (6.1) χ linear optics E nonlinear optics 6.2 P = ɛ 0 [ χ (1) E + χ (2) E 2 + χ (3) E 3 + ] (6.2) = P L + P (2) + P (3) + (6.3) = P L + P NL (6.4) χ (1) = χ P L = ɛ 0 χ (1) E (6.5) P NL = P (2) + P (3) + (6.6) P (n) = ɛ 0 χ (n) E n (6.7) n n-th order χ (n) n nonlinear susceptibility (n + 1)

75 χ (n) χ (n) (6.7) χ (n) (6.2) NaCl Si r r χ (n) (6.7) P (n) E P (n) P (n) E E (6.7) P (n) = ( 1) n ɛ 0 χ (n) E n (6.8) n χ (n) = χ (2) P NL = P (2) = ɛ 0 χ (2) E 2 (6.9) E ω 1 ω 2 [ ] [ ] 1 1 E(t) = 2 E(ω 1) exp( iω 1 t) + c.c. + 2 E(ω 2) exp( iω 2 t) + c.c. (6.10) (6.9) P (2) (t) = ɛ 0χ (2) 4 { [[ ] E (ω 1 ) 2 [[ exp( 2iω1 t) + c.c.] + ] E (ω 2 ) 2 exp( 2iω2 t) + c.c.] + 2E (ω 1) [ E (ω 1) ] + 2E (ω 2 ) [ E (ω 2) ] + [ 2E (ω 1) E (ω 2) exp( i(ω 1 + ω 2 )t) + c.c. ] + [ 2E (ω 1) [ E (ω 2) ] exp( i(ω1 ω 2 )t) + c.c. ] } (6.11) ω 1 ω 2

76 70 6 [ ] [ ] 1 1 P (2) (t) = 2 P(2ω 1) exp( 2iω 1 t) + c.c. + 2 P(2ω 2) exp( 2iω 2 t) + c.c. [ ] P(ω 1+ω 2 ) exp( i(ω 1 + ω 2 )t) + c.c. [ ] P(ω 1 ω 2 ) exp( i(ω 1 ω 2 )t) + c.c. + P (0) (6.12) 1 P (2ω 1) = ɛ 0 2 χ(2) (2ω 1 ; ω 1, ω 1 ) [ E (ω 1) ] 2 P (2ω2) = ɛ 0 2 χ(2) (2ω 2 ; ω 2, ω 2 ) [ E ] (ω 2 2) P (ω 1+ω 2 ) = ɛ 0 χ (2) (ω 1 + ω 2 ; ω 1, ω 2 )E (ω1) E (ω 2) P (ω 1 ω 2 ) = ɛ 0 χ (2) (ω 1 ω 2 ; ω 1, ω 2 )E (ω 1) [ E (ω 2) ] P (0) = ɛ 0 2 χ(2) (0; ω 1, ω 1 )E (ω 1) [ E (ω 1) ] + ɛ 0 2 χ(2) (0; ω 2, ω 2 )E (ω 2) [ E (ω 2) ] (6.13) (6.14) (6.15) (6.16) (6.17) (6.10) ω 1 ω 2 k 1 k 2 [ ] 1 E(r, t) = 2 E(ω 1) exp[i(k 1 r ω 1 t)] + c.c. (6.13) [ ] E(ω 2) exp[i(k 2 r ω 2 t)] + c.c. (6.18) P (2ω 1) (r) = ɛ 0 2 χ(2) (2ω 1 ; ω 1, ω 1 ) [ E (ω 1) ] 2 exp(2ik1 r) (6.19) P (2ω2) (r) = ɛ 0 2 χ(2) (2ω 2 ; ω 2, ω 2 ) [ E ] (ω 2 2) exp(2ik2 r) (6.20) P (ω 1+ω 2 ) (r) = ɛ 0 χ (2) (ω 1 + ω 2 ; ω 1, ω 2 )E (ω1) E (ω2) exp[i(k 1 + k 2 ) r] (6.21) P (ω 1 ω 2 ) (r) = ɛ 0 χ (2) (ω 1 ω 2 ; ω 1, ω 2 )E (ω 1) [ E (ω 2) ] exp[i(k1 k 2 ) r] (6.22) P (0) (r) = ɛ 0 2 χ(2) (0; ω 1, ω 1 )E (ω 1) [ E (ω 1) ] + ɛ 0 2 χ(2) (0; ω 2, ω 2 )E (ω 2) [ E (ω 2) ] (6.23) χ (2) ; ω n E (ω n) exp(ik n r) ω n [ E (ω n) ] exp( ikn r) P (3) P (3) (t) = ɛ 0 χ (3) E(t) 3 (6.24) 1 χ (2) (ω 1 + ω 2 ; ω 1, ω 2 ) χ (2) ( ω 1 ω 2 ; ω 1, ω 2 ) 1

77 E ω 1 ω 2 ω 3 3 E(t) = 1 2 E(ω 1) exp( iω 1 t) E(ω 2) exp( iω 2 t) E(ω 3) exp( iω 3 t) + c.c. (6.25) (6.24) 44 3ω 1, 3ω 2, 3ω 3, ω 1, ω 2, ω 3, 2ω 1 ± ω 2, 2ω 1 ± ω 3, 2ω 2 ± ω 1, 2ω 2 ± ω 3, 2ω 3 ± ω 1, 2ω 3 ± ω 2, ω 1 + ω 2 + ω 3, ω 1 + ω 2 ω 3, ω 1 ω 2 + ω 3, ω 1 + ω 2 + ω 3 (6.26) P (3) (t) = 1 P (ωn) exp( iω n t) + c.c. (6.27) 2 n P (3ω1) = ɛ 0χ (3) [ ] E (ω 1 ) 3, 4 P (ω1) = ɛ 0χ (3) { 3 [ E ] (ω 2 [ ] 1) E (ω 1 ) + 6E (ω 1 ) E [ (ω 2) E ] (ω 2) + 6E (ω 1 ) E [ (ω 3) E ] } (ω 3), 4 P (2ω 1+ω 2 ) = 3 4 ɛ 0χ (3) [ E (ω 1) ] 2 E (ω 2 ), P (2ω 1 ω 2 ) = 3 4 ɛ 0χ (3) [ E (ω 1) ] 2 [ E (ω 2 ) ], P (ω 1+ω 2 +ω 3 ) = 6 4 ɛ 0χ (3) E (ω 1) E (ω 2) E (ω 3), P (ω 1+ω 2 ω 3 ) = 6 4 ɛ 0χ (3) E (ω 1) E (ω 2) [ E (ω 3) ] (6.28) ω 1 ω 2 ω 3 E ( ω) = [ E (ω)] (6.29) P (ω i+ω j +ω k ) = K 4 ɛ 0χ (3) E (ω i) E (ω j) E (ω k) (6.30) χ (3) P (ω i+ω j +ω k ) = K 4 ɛ 0χ (3) (ω i + ω j + ω k ; ω i, ω j, ω k )E (ω i) E (ω j) E (ω k) (6.31) ω i ω j ω k ±ω 1 ±ω 2 ±ω 3 K (degeneracy factor) (ω i, ω j, ω k ) E(r, t) = 1 2 E(ω 1) exp[i(k 1 r ω 1 t)] E(ω 2) exp[i(k 2 r ω 2 t)] E(ω 3) exp[i(k 3 r ω 3 t)] + c.c. (6.32) P (ω i+ω j +ω k ) (r) = K 4 ɛ 0χ (3) (ω i + ω j + ω k ; ω i, ω j, ω k )E (ωi) E (ω j) E (ωk) exp[i(k i + k j + k k ) r] (6.33) k m (m = i, j, k) ω m ω 1 ω 2 ω 3 k 1 k 2 k 3 ω m ω 1 ω 2 ω 3 k 1 k 2 k 3

78 H E = µ 0 t H = D t (6.34) (6.35) D = 0 (6.36) H = 0 (6.37) D = ɛ 0 E + P L + P NL = ɛe + P NL (6.38) (6.34) (6.35) (6.36) E = ( E) 2 E 2 2 E E = ɛµ 0 t + µ 2 P NL 2 0 (6.39) t 2 ω E P NL E P NL P NL (z, t) = 1 2 pnl (z) exp[i(k p z ωt)] + c.c. (6.40) E(z, t) = 1 2 A(z) exp[i(k rz ωt)] + c.c. (6.41) p NL (z) A(z) z (6.39) [ d 2 A(z) dz 2 + 2ik r da(z) dz ] kr 2 A(z) exp[i(k r z ωt)] = ɛµ 0 ω 2 A(z) exp[i(k r z ωt)] µ 0 ω 2 p NL (z) exp[i(k p z ωt)] (6.42) p NL = 0 E(z, t) = A(0) exp[i(k r z ωt)] (6.43) k 2 r = ɛµ 0 ω 2 (6.44) (4.44) z d 2 A(z) dz 2 da(z) k r dz (6.45)

79 (a) sinc x (b) (sinc x) x/π x/π 6.1: sinc slowly-varying envelope approximation (6.42) da(z) dz = iµ 0ω 2 2k r p NL (z) exp(i kz) (6.46) k k p k r (6.47) P NL E(z) P NL z p NL (z) p NL = const. (6.48) z = 0 z = L z = 0 A(0) = 0 (6.46) z = L A(L) = iµ 0ω 2 p NL 2k r = iµ 0ω 2 p NL L 2k r sin( kl/2) e i kl/2 k/2 sinc( kl/2)e i kl/2 (6.49) sinc sinc x sin x (6.50) x 6.1 x = 0 sinc x = 1 π A(L) k = 0 k < 2π/L k = 0 A(L) L k L L = 2π/ k 0 k = 0 k p = k r (6.51)

80 π k 2π k 6.2: phase matching condition k 6.2 2π/ k π/ k π/ k l c π/ k (6.52) coherence length l c ω 1 ω 2 ω 1 ω ω 1 +ω 2 sum frequency generation ω 1 ω 2 difference frequency generation ω 1 = ω 2 ω 2ω 0 SHG: second-harmonic generation optical rectification

81 ω 2ω ω 2 ω + ω 1 2 ω 2 ω ω ω 1 1 ω 1 ω 2 6.3: 2 6.1: 2 ω 2ω χ (2) (2ω; ω, ω) 2 ω 0 χ (2) (0; ω, ω) ω 1, ω 2 ω 1 + ω 2 χ (2) (ω 1 + ω 2 ; ω 1, ω 2 ) ω 1, ω 2 ω 1 ω 2 χ (2) (ω 1 ω 2 ; ω 1, ω 2 ) ω, 0 ω χ (2) (ω; ω, 0) optical parametric amplification ω fundamental wave 2ω second harmonic E(t) = 1 2 E(ω) exp( iωt) + c.c. (6.53) 2ω P NL (t) = 1 2 P(2ω) exp( 2iωt) + c.c. (6.54)

82 76 6 V(x) m m V ( x) + Dx = ω x mω0 2 V( x) = x 2 6.4: 2 (6.11) P (2ω) = ɛ 0χ (2) [ ] E (ω) 2 2 = d [ E (ω)] 2 (6.55) (6.56) d ɛ 0χ (2) 2 nonlinear optical coefficient 3 (6.57) anharmonicity V(x) = mω 0 2 x2 + m 3 Dx3 (6.58) D 3 [ d 2 x(t) m + Γ dx(t) ] + ω 2 dt 2 0 dt x(t) + Dx(t)2 = ee(t) (6.59) 2 E (ω) P (2ω) E(t) = E (ω) exp( iωt) + c.c. 2 (n 1) n 3 d d 1 2 χ(2)

83 x E x x = x (1) + x (2) + (6.60) x (n) E n (6.61) (6.59) E E 1 d 2 dt 2 x(1) (t) + Γ d dt x(1) (t) + ω 2 0 x(1) (t) = ee(t) m (6.62) E 2 d 2 dt 2 x(2) (t) + Γ d dt x(2) (t) + ω 2 0 x(2) (t) = D [ x (1) (t) ] 2 (6.63) x 1 2 E(t) = 1 2 E 0 exp( iωt) + c.c. (6.64) x (1) (t) = 1 2 x 0 exp( iωt) + c.c. (6.65) x (2) (t) = 1 2 x 2 exp( 2iωt) + c.c. (6.66) (6.62) (6.63) x 0 = ee 0 m(ω 2 0 ω2 iωγ) (6.67) x 2 = De 2 E 2 0 2m 2 (ω 2 0 ω2 iωγ) 2 (ω 2 0 4ω2 2iωΓ) (6.68) x 2 2ω N P(t) = en x(t) (6.69) 2 P (2) (t) = 1 DNe 3 E m 2 (ω 2 0 ω2 iωγ) 2 (ω 2 0 exp( 2iωt) + c.c. (6.70) 4ω2 2iωΓ) (6.56) 2 d = DNe 3 2m 2 (ω 2 0 ω2 iωγ) 2 (ω 2 0 4ω2 2iωΓ) (6.71)

84 (6.9) (6.56) P (2) i P (2ω) i = = ɛ 0 j,k j,k χ (2) i jk E je k (6.72) d i jk E (ω) j E (ω) k (6.73) i, j, k x, y, z x, y, z 1,2,3 2 d i jk j k i, j, k Kleinman s symmetry d i jk j k d d i jk d il contracted notation jk l jk : , 32 31, 13 12, 21 l : (6.74) KDP KH 2 PO 4 potassium dihydrogen phosphate LBO LiB 3 O 5 lithium triborate BBO β-bab 2 O 4 beta-barium borate KTP KTiOPO 4 potassium titanyl phosphate LiNbO 3 lithium niobate ZnTe GaP GaAs 6.2 d 6.3 d d eff P (2ω) = d eff [ E (ω) ] 2 (6.75)

85 : 2 GaAs, GaP, ZnTe 43m 14 = 25 = 36 KDP 42m 14 = BBO, LiNbO 3 3m 33, 31 = = 15, 22 = 12 = 16 KTP, LBO mm , 32 24, : 2 d il /ɛ 0 d χ (2) /2 d d CGS esu m/v (3/4π) 10 4 d il (pm/v) GaAs 43m d 14 = 90 GaP 43m d 14 = 100 ZnTe 43m d 14 = 129 KDP 42m d 36 = 0.6 BBO 3m d 22 = 2.3 LiNbO 3 3m d 33 = 34, d 31 = 6, d 22 = 2 KTP mm2 d 33 = 14, d 31 = 6.5, d 32 = 5 LBO mm2 d 31 = 1.1, d 32 = : 2

86 E 1 (z, t) = 1 2 A 1(z)e i(k1z ωt) + c.c. (6.76) 2ω P NL (z, t) = d 2 [A 1(z)] 2 e i(2k1z 2ωt) + c.c. (6.77) 2ω E 2 (z, t) = 1 2 A 2(z)e i(k2z 2ωt) + c.c. (6.78) (6.46) da 2 (z) dz = iµ 0(2ω) 2 2k 2 d{a 1 (z)} 2 e i kz (6.79) k 2k 1 k 2 (6.80) SHG A 1 (z) A 2 (0) = 0 A 2 (z) = 2iµ 0ω 2 d{a 1 (0)} 2 i kz/2 sin( kz/2) e k 2 k/2 = 2iµ 0ω 2 d{a 1 (0)} 2 e i kz/2 z sinc ( kz/2) k 2 (6.81) SHG I 2 I 1 I 2 A 2 (z) 2 I 2 1 = I 2 1 z2 sinc 2 ( kz/2) sin 2 ( kz/2) ( k/2) 2 (6.82) SHG l c = π/ k k k 1 k 2 ω 2ω n(ω) n(2ω) k 1 = n(ω) ω/c (6.83) k 2 = n(2ω) 2ω/c (6.84) k = 2k 1 k 2 = 2ω [n(ω) n(2ω)] (6.85) c

87 ω n (ω) n e (ω) 2ω 6.6: 2 SHG 2 n(2ω) > n(ω) (6.86) n(2ω) n(ω) = µm l c = 12.5 µm SHG birefringence n(ω) = n(2ω) (6.87) SHG SHG x y E x E y n x n y n x n y ω 2ω n x > n y 6.6 n x (ω) = n y (2ω) c θ c c c θ ordinary wave extraordinary wave n o (θ) n e (θ) θ n o (θ) = n o (6.88) 1 = cos2 θ + sin2 θ [n e (θ)] 2 n 2 o n 2 e (6.89) n o n e n e > n o n e < n o

88 82 6 θ m n ω o (θ m ) = n 2ω e (θ m ) (6.90) θ m sin 2 1 θ m = (n ω o ) 1 2 ( n 2ω o ) 2 / 1 1 ( ) 2 ( n 2ω e n 2ω o ) 2 (6.91) θ m ω n ω e (θ m ) = n 2ω o (θ m ) (6.92) θ m θ m phase matching angle I type I 1 [ n ω 2 o (θ m ) + n ω e (θ m ) ] = n 2ω e (θ m ) (6.93) II type II k 1 = k 2 (6.94) ω 2ω ω + ω = (2ω) (6.95) k 1 + k 1 = k 2 (6.96) optical parametric process

89 Pump Signal Idler 6.7: ω pump ω signal ω idler = ω pump ω signal ω pump ω signal ω idler OPA optical parametric amplification 3 OPA optical parametric amplifier ω ω = ω 1 + ω 2 ω 1 ω 2 spontaneous parametric down conversion nonclassical light OPO optical parametric oscillation OPO optical parametric oscillator ω 3ω = ω + ω + ω THG; third-harmonic generation ω = ω + ω ω degenerate four-wave mixing k 1 k 2 k 3 k 1 + k 2 k 3 optical Kerr effect 2 ω 1 ω 2 ω 2 = ω 1 ω 1 + ω 2

90 : 3 ω 3ω χ (3) (3ω; ω, ω, ω) 3 ω ω Re{χ (3) (ω; ω, ω, ω)} ω ω Im{χ (3) (ω; ω, ω, ω)} 2 ω ω χ (3) (ω; ω, ω, ω) 4 ω 1, ω 2 ω 1 Re{χ (3) (ω 1 ; ω 1, ω 2, ω 2 )} ω 1, ω 2 ω 1 Im{χ (3) (ω 1 ; ω 1, ω 2, ω 2 )} 2 ω 1, ω 2 ω 1 χ (3) (ω 1 ; ω 1, ω 2, ω 2 ) ω 1, ω 2 2ω 1 ω 2 χ (3) (2ω 1 ω 2 ; ω 1, ω 2, ω 1 ) 4 ω 1, ω 2, ω 3 ω 1 ± ω 2 ± ω 3 χ (3) (ω 1 ± ω 2 ± ω 3 ; ω 1, ±ω 2, ±ω 3 ) 4 ω 1 ω 2 ω 3 ω 1 ω 2 + ω 3 ω 1 ω 2 coherent Raman scattering coherent Brillouin scattering E ω ω 3 E(t) = 1 2 E(ω) exp( iωt) + c.c. (6.97) P (ω) (t) = 1 2 P(ω) exp( iωt) + c.c. (6.98) P (ω) = P (ω) L + P(ω) NL (6.99) P (ω) L = ɛ 0χE (ω) (6.100) P (ω) NL = 3 4 ɛ 0χ (3) [ E (ω)] 2 [ E (ω) ] = 3 4 ɛ 0χ (3) E (ω) 2 E (ω) (6.101)

91 { P (ω) = ɛ 0 χ + 3 } 4 χ(3) E (ω) 2 E (ω) (6.102) ω I (ω) = 1 2 ɛ 0cn E (ω) 2 (6.103) n ω { } P (ω) = ɛ 0 χ + 3χ(3) 2ɛ 0 cn I(ω) E (ω) (6.104) χ χ eff = χ + 3χ(3) 2ɛ 0 cn I(ω) (6.105) 3 optical Kerr effect χ (3) χ (3) 2 twophoton absorption induced absorption absorption saturation stimulated Raman gain inverse Raman effect I n n = n 0 + n 2 I (6.106) n 0 n 2 nonlinear refractive index 4 n 2 3 χ (3) κ 1 κ 1 n χ n = 1 + χ (6.107) (6.105) χ χ n n + n = 1 + Re{χ + χ} (6.108) [ 1 + χ 1 + Re{ χ} ] 2(1 + χ = n 0 + Re{ χ} (6.109) ) 2n 0 4 E n = n 0 + n 2 E 2 n 2 E

92 : (6.105) (6.106) n 2 = 3Re { χ (3) (ω; ω, ω, ω) } (6.110) 4ɛ 0 cn 2 n 2 Re { χ (3)} n 2 Kerr lens effect 6.8 self-focusing optical damage Kerr lens mode locking optical fiber optical soliton supercontinuum generation 6.9 polarizer optical Kerr shutter 1 ultrafast phenomena

93 : N 1 N 2 N = N 1 + N 2 2 T 1 1 dn 2 (t) dt dn 1 (t) dt = N 2 T 1 (6.111) = N 2 T 1 (6.112) I dn 2 (t) dt dn 1 (t) dt = N 2(t) T 1 + ai[n 1 (t) N 2 (t)] (6.113) = N 2(t) T 1 ai[n 1 (t) N 2 (t)] (6.114) I N 1 N 2 = aT 1 I N (6.115) N 1 N 2 absorption saturation α(i) = α I/I S (6.116) I S saturation intesity ( α(i) = α 0 1 I ) I S 3 (6.117) ω ω 2 two-photon absorption

94 88 6 ω ω 6.10: 2 ω 1 one-photon absorption 2 2 HOMO-LUMO highest ocupied molecular orbital - lowest unocupied molecular orbital 1 2 α I α = βi (6.118) β Im { χ (3)} 2 2 two-photon excitation microscope multiphoton absorption multiphoton excitation multiphoton fluorescence multiphoton ionization optical damage k 1 k 2 2 k 1 k 2 k 1 2k 1 k 2 k 2 2k 2 k 1 transient grating

95 6.6. n 89 k 1 2k 2 k 1 k : ω L ω S ω L ω AS ω v 6.12: ω v ω v ω L ω S ω L ω S = ω v ω v ω L + ω v ω S ω v 6.12 ω L + ω v = 2ω L ω S CARS; coherent anti-stokes Raman scattering 6.6 n n n ω i (i = 1,, n) ω p = n i=1 ±ω i ± i + ω p (n + 1) (n + 1)-wave mixing k i (i = 1,, n) k p = n i=1 ±k i (n + 1) ω r = ω p k r k r = k p k r = n ±k i (6.119) i=1

96 90 6 n ω r = ±ω i (6.120) i=1 ± k r ω r i (n + 1) ω i (i = 1,, n) ω p (6.120) (6.119) 1. 1 µm 1.2 µm (a) 1 µm (b) 1.2 µm (c) (d) 1 µm 1.2 µm 1 µm 1.2 µm (e) 1 µm 1.2 µm

97 91, 28, 83 A B, 13, 58, 32, 81, 48, 56, 66, 74, 80, 38 1, 88, 81, 34, 42, 82, 32, 31, 32, 26, 35, 66, 82, 44 LBO, 78, 31, 33, 38, 1, 25, 27, 27, 27 CARS, 89, 86, 25, 86, 2, 26, 54, 57, 66, 50, 35, 26, 4, 1, 88, 25, 86 GaAs, 78 GaP, 78, 73, 56, 1, 31, 32, 31, 75, 85, 27, 46, 41, 46, 83, 85, 87, 22, 27, 21, 16, 17, 54, 49, 54, 33, 4, 40, 78, 42

98 92, 32, 40, 40 KDP, 78 KTP, 78, 1, 26, 86, 66, 46, 34, 1, 8, 82, 1, 1, 7, 7, 28, 4, 56, 74, 80, 4, 56, 89, 84, 84, 89, 88, 88, 74, 60, 34, 14, 16, 4, 33, 83, 86, 10, 13, 85, 78, 83, 23, 35, 71, 83, 78, 9, 25, 86, 52, 66, 81, 40, 61, 43, 36 sinc, 73 ZnTe, 78, 49, 58, 62, 43, 56, 49, 48, 81, 61, 64, 27, 67, 77, 57, 53, 68, 54, 53, 36, 47, 53, 56, 67, 52, 53, 62, 25, 26, 83, 30, 74 II, 82 I, 82, 10, 88

99 93, 86, 88, 88, 88, 66, 33, 30, 86, 31, 33, 26, 27, 86, 86, 4, 30 T 2, 66 T 1, 66, 52, 1, 33 ZnTe, 78, 36, 23, 27, 27, 38, 1, 36, 36, 25, 31, 33, 36, 7, 50, 78 2, 83, 85, 87 2, 88 2, 88, 1 Nd:YAG, 29, 25, 2, 40, 31, 18, 19, 1, 38, 39, 54, 52, 50, 54, 69, 13, 26, 32, 34, 26 BBO, 78, 26 GaAs, 78, 83, 85, 86, 4, 4, 74, 86, 88, 1, 4, 11, 41, 43, 13, 18, 11, 82, 75, 83, 83, 83, 83, 86, 1, 83, 68, 85, 68, 76, 68, 76

100 94, 76, 16, 18, 23, 26, 25, 25, 51, 13, 49, 50, 81, 27, 5, 39, 39, 5, 39, 1, 28, 7, 26, 26, 27, 27, 36, 1, 4, 48, 39, 26, 66 He-Cd, 33 He-Ne, 31, 86, 44, 45, 87, 8, 23, 27, 75 HOMO-LUMO, 88, 13, 83, 1, 36, 23, 86, 4, 46, 26, 37, 85, 4, 10, 13, 85, 66, 15, 16, 55, 56, 46, 64, 18, 1, 1, 29, 7, 8, 12, 1, 4, 4, 4, 4, 1 CVD, 4, 18, 28, 18, 4, 28, 11, 14, 36, 44, 48 50, 47, 59, 76, 74, 56, 63

4 MKSA

4 MKSA 2013 2013 3 7 4 MKSA 2013 3 ii 1 1............................................ 2 2 4 2.1.......................................... 4 2.1.1................................... 4 2.1.2....................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

1 Visible spectroscopy for student Spectrometer and optical spectrum   phys/ishikawa/class/index.html 1 Visible spectroscopy for student Spectrometer and optical spectrum http://www.sci.u-hyogo.ac.jp/material/photo phys/ishikawa/class/index.html 1 2 2 2 2.1................................................

More information

第3章

第3章 5 5.. Maxwell Maxwell-Ampere E H D P J D roth = J+ = J+ E+ P ( ε P = σe+ εe + (5. ( NL P= ε χe+ P NL, J = σe (5. Faraday rot = µ H E (5. (5. (5. ( E ( roth rot rot = µ NL µσ E µε µ P E (5.4 = ( = grad

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

4/8 No. 2

4/8 No. 2 4/8 No. 1 4/8 No. 2 Laser-related Nobel laureates Townes, Basov, Prokhorov (1964-Physics): レーザーの開発 Gabor(1971-Physics) : ホログラフィーの発明と開発 Bloembergen, Schawlow (1981-Physics): レーザー分光 Kroto, Curl, Smalley

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

吸収分光.PDF

吸収分光.PDF 3 Rb 1 1 4 1.1 4 1. 4 5.1 5. 5 3 8 3.1 8 4 1 4.1 External Cavity Laser Diode: ECLD 1 4. 1 4.3 Polarization Beam Splitter: PBS 13 4.4 Photo Diode: PD 13 4.5 13 4.6 13 5 Rb 14 6 15 6.1 ECLD 15 6. 15 6.3

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law) ( ) ( ) 2002.11 1 1 1.1 (Blackbody Radiation).............................. 1 1.2 (Stefan-Boltzmann s Law)................ 1 1.3 (Wien s Displacement Law)....................... 2 1.4 (Kirchhoff s Law)...........................

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

ssp2_fixed.dvi

ssp2_fixed.dvi 13 12 30 2 1 3 1.1... 3 1.2... 4 1.3 Bravais... 4 1.4 Miller... 4 2 X 5 2.1 Bragg... 5 2.2... 5 2.3... 7 3 Brillouin 13 3.1... 13 3.2 Brillouin... 13 3.3 Brillouin... 14 3.4 Bloch... 16 3.5 Bloch... 17

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

QMI13a.dvi

QMI13a.dvi I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1 (d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

untitled

untitled Unit 4. n 1 = n 1 ex[i(k x ωt + δ n )] n 1 : k: k = π/λ δ n : k = kxˆ, δ n = n 1 = n 1 os(k x x ωt) v = ω k k k Re(ω) > Im(ω) > Im(ω) < Im(k) E 1 = E 1 ex[i( k x - ωt)] E 1 : + v g ω ω ω ω = = xˆ + yˆ

More information

ëoã…éqä‘ëäå›çÏóp.pdf

ëoã…éqä‘ëäå›çÏóp.pdf 1 2 1.1 2 1.2 4 1.3 10 1.4 13 2 14 2.1 16 2.1.a 1 16 2.1.b 18 2.1.c 2 20 2.1.d 24 2.1.e 24 2.1.f 25 2.2 Scheffler 25 2.3 Person Ryberg - 1 27 2.4 Person Ryberg - 2 Coherent Potential Approximation 31 2.5

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

ELECTRONIC IMAGING IN ASTRONOMY  Detectors and Instrumentation   5 Instrumentation and detectors ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10 Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

Microsoft Word - 学士論文(表紙).doc

Microsoft Word - 学士論文(表紙).doc GHz 18 2 1 1 3 1.1....................................... 3 1.2....................................... 3 1.3................................... 3 2 (LDV) 5 2.1................................ 5 2.2.......................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

note4.dvi

note4.dvi 10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> マイクロメカトロニクス サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077331 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1984.10 1986.7 1995 60 1991 Piezoelectric Actuators and Ultrasonic Motors

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

2 0.1 Introduction NMR 70% 1/2

2 0.1 Introduction NMR 70% 1/2 Y. Kondo 2010 1 22 2 0.1 Introduction NMR 70% 1/2 3 0.1 Introduction......................... 2 1 7 1.1.................... 7 1.2............................ 11 1.3................... 12 1.4..........................

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information