5 Calabi-Yau web

Size: px
Start display at page:

Download "5 Calabi-Yau web"

Transcription

1 T NS5- T- 1 T Buscher T D- T Taub-NUT Kaluza-Klein monopole BPS NS5-branes T NS5-brane NS5-brane NS5-brane NS5-brane Geometric engineering NS5-D4 system Glueball superpotential NS5- Calabi-Yau Gukov-Vafa-Witten Elliptic model

2 5 Calabi-Yau web NS bipartite Brane tiling Zig-zag paths Elliptic model U(1) U(1) T- Calabi-Yau T- T- 1.1 T- S 1 Kaluza-Klein Kaluza-Klein modes Winding strings (1) Kaluza-Klein R S 1 ψ(x) ψ(x + 2πR) = ψ(x) p = i x p = 1 m, m Z. (2) R E = m R T str = 1 2πl 2 s (3) (4) 2

3 R S 1 w E = 1 2πls 2 2π w R = w R ls 2 (5) (3) (5) [ (m ) ( ) 2 2 1/2 Rw M = + R ls 2 + N] 2 ls 2 (6) N (1) T-duality Kaluza-Klein (3) (5) R R RR = l 2 s (7) S 1 (6) X(σ, τ) T- + X + X, X X. (8) σ ± = τ ± σ T-duality IIA IIB τ σ (8) τ σ τ X σ X, σ X τ X. (9) Dirichlet Neumann D-brane T-duality Wrapped Dp-branes Unwrapped D(p 1)-branes (10) D-brane II NS5-brane Wrapped NS5-branes Wrapped NS5-branes (11) Unrapped NS5-branes Kaluza-Klein monopole (12) N = 1 Calabi-Yau l s (string metric) S str = 1 2πl 2 s d 2 σ det G (13) 3

4 2πl s = 1. (14) T str = 1 2πl 2 s 1 = 2π, T Dp = (2π) p ls p+1 = 2π 1, T NS5 = g str g str (2π) 5 lsg 6 str 2 = 2π gstr 2. (15) (14) T- (7) RR = 1/(2π) 2 2π L = 2πR L = 2πR LL = 1. (16) 1.2 Buscher T-duality (9) α X η αβ ϵ βγ γ X (17) η ττ = η σσ = ϵ τσ = ϵ τσ = 1 (18) (17) T-duality [1] 10 X M = (X i, X 9 Y ) non-linear sigma model (NLSM) ( S[X i, α X i, α Y ] = d 2 σ T str 2 G MN α X M α X N + 2π ) 2 B MN ϵ αβ α X M β X N G MN B MN X i S Y Y G MN B MN Y Y 1 w y w y = σ Y dσ Z. (20) Y (19) S = S[X i, α X i, F α ] + d 2 σ2πϵ αβ α ZF β. (21) 1 (19) α Y F α 2 Z Y 1 (21) (19) Z ϵ αβ α F β = 0 F α = α Y (21) (19) Y (19) 4

5 Y Z (20) Y Z p z p z = dσ δs δ τ Z = 2π d 2 σ σ Y = 2πw y (22) p z = 2πm z m z Z (20) Y 1 Z F α S S[X i, α X i, α Z] = ( d 2 σ T str 2 G MN α X M α X N + 2π ) 2 B MN ϵ αβ α X M β X N X M 9 X M X 9 = Y X 9 = Z G MN B MN G ij = G ij G i9g j9 G 99 (23) + B i9b j9 G 99, G i9 = B i9 G 99, G 99 = 1 G 99, (24) B ij = B ij B i9g j9 G i9 B j9 G 99, B i9 = G i9 G 99. (25) T-dual Buscher [1] G 99 S 1 (16) C MN = G MN + B MN (26) C µν = C µν C µ9c 9ν C 99, C 9ν = C 9ν C 99, C µ9 = C µ9 C 99, C 99 = 1 C 99. (27) (27) C MN C MN ds 2 = ds G 99 (dy + V ) 2, B 2 = b 2 + W (dy + V ). (28) T-dual ds 2 = ds G 99 (dz + W ) 2, B 2 = b 2 + V dz. (29) B (28) B dy V (29) dz W b 2 b 2 + V W (28) B dy + V dy (29) B dz dz + W [1] worldsheet α sub-leading dilaton field 1 = G 99. (30) e 2ϕ e2ϕ NLSM R-R NS-NS R-R T-dual Green- Schwarz [2, 3, 4] pure spinor [5] 1.3 NS-NS R-R T-dual 5

6 1.3 T- 1.2 [6] IIA IIB NS-NS R-R IIA IIB R-R NS-NS [ R A + 4( µ ϕ A ) 2 1 L IIA NS = 2πeA e 2ϕA L IIB NS = 2πeB e 2ϕB 2 3! (HA µνρ) 2 [ R B + 4( µ ϕ B ) ! (HB µνρ) 2 ], (31) ]. (32) IIA IIB A B e A e B IIA IIB det e m µ H 3 dh 3 = 0 B 2 H 3 = db 2 (33) H 3 IIA IIB S 1 IIA S 1 y x 9 1 g99 A y IIB z = x 9 (28) ds 2 A = g (9) µν dx µ dx ν + e 2σ ( dy) 2, dy = dy + V1. (34) S 1 σ e 2σ = g99 A y 1 L A = (2πl s )e σ V 1 y U(1) y y = y + a(x µ ) V 1 = V 1 da. (35) (34) 1- dy 1- dy dy 0 (28) d( dy) = dv 1 = f 2. (36) H A 3 = h 3 + h 2 dy, B A 2 = b 2 + W 1 dy. (37) dy dy dy (37) (35) b 2 W 1 h 3 h 2 (37) (33) (36) h 3 = db 2 W 1 dv 1, h 2 = dw 1 (38) 9 ϕ A 9 φ ϕ A = φ σ (39) 6

7 (31) 9 L 9dim NS = 2πe(9) e 2φ [R (9) + 4( φ) 2 ( σ) 2 e2σ 4 f µν 2 e 2σ 4 h2 µν 1 ] 2 3! h2 µνρ (40) 9 IIB NS-NS (32) ds 2 B = g (9) µν dx µ dx ν + e 2σ ( dz) 2, dz = dx 9 + W 1. (41) H B 3 = h 3 + f 2 dz, B B 2 = b 2 + V 1 dz. (42) ϕ B = φ 1 σ. (43) 2 (29) (39) (43) (30) 1 e 2ϕB = ga 99 e 2ϕA (44) R-R IIB R-R 5- G B 5 IIA R-R IIB R-R G A even GB odd G A even = G A 0 + G A 2 + G A 4 + G A 6 + G A 8 + G A 10, G B odd = G B 1 + G B 3 + G B 5 + G B 7 + G B 9. (45) T 10 G A even + T G A even = 0, 10 G B odd + T G B odd = 0. (46) T (dx i1 dx in ) = dx in dx i1 (47) R-R IIA IIB dg A even = H A 3 G A even, dg B odd = H B 3 G B odd. (48) 9 IIA S 1 y x 9 R-R dy (34) G A even = g even + g odd dy. (49) IIA (46) (48) g even g odd G A even 10 Hodge 9 10 G A even = e σ 9 g odd + e σ 9 g even dy. (50) 7

8 σ (34) y G A even (46) 9 e σ 9 g odd = T g even, e σ 9 g even = T g odd. (51) 9 2 Hodge (48) G A even (49) dy dg even = h 3 g even + f 2 g odd, dg odd = h 3 g odd + h 2 g even. (52) IIA IIB R-R field G B odd G B odd = g odd + g even dz. (53) IIB (48) (46) (51) (52) RR- S 1 G A even GB odd 9 g even g odd (49) (53) R-R (48) G A even = e BA 2 dc A odd, G B odd = e BB 2 dc B even. (54) IIA Codd A IIB CB even 9 c odd c even Codd A = c odd + c even dy, Ceven B = c even + c odd dz. (55) dy dz dy dz (54) B (37) (42) (55) (49) (53) 9 g even = e b2 (dc odd dc even V 1 ), g odd = e b2 V1 W1 (dc even + dc odd W 1 ). (56) NS-NS R-R T-dual NS-NS field R-R 1.4 D- T- 1.3 T-duality D-brane D-brane IIA D(2n 2)- IIB D(2n 1)- NS-NS R-R D- NS-NS Born-Infeld SBI A 2π = d 2n 1 σ 1 e ϕa det[c A ij + F A ij ], S B BI 2π = 8 d 2n σ 1 e ϕb det[c B ij + F B ij ] (57)

9 C MN = g MN + B MN (26) C ij C MN NS-NS IIA IIB Born-Infeld IIA IIB R-R Chern-Simons SCS IIA = 2π Codde A IIA F2, SCS IIB = 2π Cevene B IIB F2. (58) 2n 1 C IIA IIB T- (10) T-duality D- D- IIA IIB 2n IIA IIB y y(x i ) z A 9 (x i ) 1: IIA D-brane T-duality IIB D-brane S 1 Wilson line IIA y = x 9 S 1 y IIA y IIB Wilson line A 9 T- A B µ = A A µ, A B 9 = y. (59) A B 1 = A A 1 + ydz. (60) IIB S 1 z Born-Infeld (57) IIA y Dp- Dp- x 9 y C MN C ij Cij y = C ij + C i9 x j + C y 9j x i + C y y 99 x i x j. (61) C MN = G MN + B MN y T- (27) (27) (61) (27) (57) Cij A + Fij A = Cij B + Fij A 1 C99 B (Ci9 B + i y)(c9j B j y) (62) 9

10 C µν C MN p + 1 p + 2 ( det(cij A + Fij A ) = 1 C99 B det C B ij + F A ij C B i9 + iy C B 9j jy C B 99 ). (63) (59) (60) IIB p + 1 F B 2 = F A 2 + dy dz. (64) F B ij = F A ij, F B i9 = F B 9i = i y. (65) (44) (63) 1 det(c A e ϕa ij + Fij A) = 1 det(c B e ϕb µν + Fµν) B (66) IIA D- Born-Infeld IIB D- Born-Infeld x 9 Kaluza-Klein T-dual Chern-Simons IIB (55) (64) S IIB CS 2π = = 2n 2n ( c even + c odd dz) e F A 2 dy dz (c even dy + c odd ) dz e F A 2 (67) IIB z dz dz IIA D-brane Chern-Simons (c even dy + c odd ) e F A 2 = Codd A e F A S IIA 2 = CS (68) 2π 2n 1 2n 1 Chern-Simons T-dual D-brane F 2 = F 2 + B 2 NS-NS 2-form (37) (42) (64) B B 2 = B A 2 W 1 dy + V 1 dz. (69) (64) dy dz F B 2 = F A 2 + dy dz. (70) 2 Taub-NUT Taub-NUT Taub-NUT 4 NS5-brane T-dual T-dual 10

11 2.1 Kaluza-Klein monopole D S 1 D 1 U(1) W ds 2 D = ds 2 2 D 1 + g zz dz, dz = dz + W. (71) IIB S 1 S 1 z U(1) W (35) S 1 W L = 1 gg 2 µν µ ϕ ν ϕ (72) ϕ y 1 ϕ = ϕ n e 2πiny (73) n Z ϕ n y D 1 (73) (72) z D 1 L = 1 gzz g 2 n [ g ij D i ϕ n D j ϕ n + 1 ] q 2 g nϕ n ϕ n zz g ij (71) D 1 ds 2 D 1 g ij g g ij D i q n Kaluza-Klein p z (74) D i ϕ n = i ϕ n iw i q n ϕ n (75) q n = 2πn (76) (75) Kaluza-Klein ϕ n W i q n W 1 W 1 U(1) Kaluza-Klein Q = h 2. (77) S 2 h 2 h 2 = dw 1 (78) U(1) S 2 S

12 10 S 1 9 Kaluza-Klein 5-brane D 1 D D 1 D x 6 x 7 x 8 z x 9 10 (r, θ, ϕ) (x 6, x 7, x 8 ) = (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ). (79) Kaluza-Klein W = Q (1 cos θ)dϕ. (80) 4π r = 0 (80) θ = π 678 (35) W = W Q dϕ (81) 2π z z = z + Q 2π ϕ (82) (35) IIA IIB z 1 ϕ 2π (82) Q Q Z. (83) Kaluza-Klein (76) 2π ρ ρ h 2 dh 2 = 3 ρ (84) Maxwell B = ρ Hodge 3 3 ds 2 = dx dx dx 2 8 r I ρ ρ = δ 3 (r r I ) (85) I 678 r Q Q r I Q 12

13 D (71) W 1 D 0 R MN = 0 ds 2 D = ds 2 D 4 + ds 2 TN (86) ds 2 D 4 D 4 Kaluza-Klein ds 2 TN Kaluza-Klein 3 S1 4 Taub-NUT 4 ds 2 TN = Hdr 2 + H 1 dz 2, dz = dz + W. (87) H 3 3 H = ρ (88) 3 (85) H(r) = 1 L TN 4π r r i i L TN (84) (88) H h 2 (89) h 2 = 3 dh. (90) 2.2 (87) Taub-NUT r H R 3 S 1 S 1 L TN r = r I center center r I center 678 (79) (r, θ, ϕ) H = 1 4πr r (89) (90) W 1 = 1 cos θdϕ. (92) 4π S 1 z ψ (91) ψ = 4πz (93) 4π (87) 4πds 2 T N = 1 r (dr2 + r 2 (dθ 2 + sin 2 θdϕ 2 )) + r(dψ cos θdϕ) 2 (94) 13

14 r = ρ 2 /2 (94) dω S3 4πds 2 = dρ 2 + ρ 2 dω 2 3. (95) dω 2 3 = 1 4 [dθ2 + sin 2 θdϕ 2 + (dψ cos θdϕ) 2 ]. (96) (95) R 4 center (87) Taub-NUT center 4 center (96) 1 S u C 2 ( ) ( iϕ u = exp 2 τ z exp iθ ) ( ) ( ) iψ 2 τ y exp 2 τ 1 z 0 τ m u (97) u u = 1 (98) 1 S 3 S 3 S 3 (96) 0 θ π, 0 ϕ < 2π, 0 ψ < 4π. (99) ds 2 = du du = dω 2 3. (100) (97) S 3 S 2 S 1 S 3 S 2 f : u n = u τu = (sin θ cos ϕ, sin θ sin ϕ, cos θ). (101) τ = (τ x, τ y, τ z ) ψ u u e iα u S 1 Hopf center 678 N center H W 1 N ψ (93) ψ = 4π N z (102) N (94) 4π N ds2 = dρ 2 + ρ 2 dω 2 3. (103) ρ r = ρ 2 /2 1/N (94) 4 (102) ψ 4π 4π/N R 4 orbifold R 4 /Z N R 4 (z 1, z 2 ) = (ρu 1, ρu 2) u i u = (u 1, u 2 ) (97) C 2 14

15 ρ z i ds 2 = (N/4π)dz i dzi ψ 4π/N ψ ψ + 4πk/N (k Z) z i (z 1, z 2 ) (e 2πik/N z 1, e 2πik/N z 2 ), k Z. (104) Taub-NUT N center C 2 /Z N orbifold A N 1 orbifold holomorphic 2-form ω (2,0) dz 1 dz 2 (105) (104) orbifold z i u i Z N holomorphic 2-form 2.3 Taub-NUT hyper Kähler 3 (87) Kähler form k 6 = dx 6 dx 9 H(r)dx 7 dx 8, k 7 = dx 7 dx 9 H(r)dx 8 dx 6, k 8 = dx 8 dx 9 H(r)dx 6 dx 7. (106) z x 9 dx 9 = dx 9 + W volume form Ω Ω = 1 2 k 6 k 6 = 1 2 k 7 k 7 = 1 2 k 8 k 8 = H(r)dx 6 dx 7 dx 8 dx 9 (107) k m closed (90) dk 6 = ( h H)dx 6 dx 7 dx 8 (108) h 78 h 2 (90) 0 Taub-NUT (87) Hodge dual k-form A k 4 A k = ( ) k H 1 k 3 A k dx 9, 4 A k dx 9 = H 2 k 3 A k. (109) 4 k m = k m (110) k m k m closed form Taub-NUT 2- center x m I x m 0 = k2 m (111) S I 15

16 S I 2 I center 2- x m 0 center xm I x m 0 S I center S 2 S I S IJ = S I S J S IJ center x m I x m J = k2 m (112) S IJ x 8 S 2 x 7 S 12 center x 6 2: Taub-NUT 2- (106) 3 4 SU(2) Spin(4) = SU(2) L SU(2) R SU(2) SU(2) L γ 5 SU(2) R γ 5 SU(2) (110) γ 5 ϵ γ mnpq = ϵ mnpq γ 5. (113) SU(2) L SU(2) R (3, 1) (3, 1) SU(2) R SU(2) R η1 a (ηa 1) η1 a = 1 η η2 a = ϵ ab (η1) b ηm a = ϵ mn ϵ ab (ηn) b, ηmϵ a ab ηn b = ϵ mn, (ηm) a ηn a = δn m, ηm(η a m) b = δb a. (114) η 3 kµν(σ A A ) m n = iη m γ µν η n (115) σ A η (113) kµ 1 κ kκν 1 = g µν, kµ 1 κ kκν 2 = kµ 2 κ kκν 1 = kµν, 3 etc. (116) 16

17 η 1 η 2 (115) k A (106) Taub-NUT manifold w = x 6 + ix 7. (117) center w w I = x 6 I + ix7 I w 2 x 8 R x 9 x 8 S 1 w w I S 1 S 1 R x, y C C 2 xy = c (118) c 0 (118) x y 0 x 0 y (118) 3: xy = c 0 1 xy = 0 w w I S 1 w I xy = 0 (119) x = 0 y = 0 x = 0 y y y = 0 x x x = y = 0 x y (119) Taub-NUT xy = I (w w I ). (120) x y (120) x 8 x 9 17

18 3 Kähler form (117) k 8 2-form ω (2,0) = k 6 + ik 7 = idw ( Hdx 8 + i dx 9 ) (121) dw 2-form (2, 0)-form Taub-NUT 2 ρ (121) F ω (2,0) = idw dρ (122) Hdx 8 + i dx 9 = dρ + F dw (123) (121) F (122) F (123) dh dx 8 + ih 2 = df dw (124) (90) w w H = ih 8w, w H = ih 8w, 8 H = 2ih ww. (125) (124) dw dx 8 dw dx 8 dw dw 8 F = 2ih 8w, w F = ih w w. (126) h 2 = dv 1-form V ϕ I w w I W = I dϕ I = 1 2i f I ( w w I, x 8 ) dϕ I 2π ( dw w w I dw w w I ) (127) (128) f I (127) f I w = x 8 = 0 W = c cos θ dϕ. (129) 4π c (127) f I I (126) F dw = 2iW w dw (127) w W w = w W w ρ dρ = Hdx 8 + idx 9 + iw w dw iw w dw = Hdx 8 + i dx 9 2iW w dw. (130) 18

19 [7] (87) (106) k 8 (130) (1, 0)- dρ ds 2 TN = 1 H dρ dρ + Hdwdw. (131) k 8 = 1 2Hi dρ dρ + H 2i dw dw (132) dρ = dρ + 2iW w dw = Hdx 8 + i dx 9. (133) ρ (130) W W (127) x 8 center x 8 x 8 W + x 8 x 8 W W = W + W = dϕ 2π = 1 4πi i ( dw w w i dw w w i ) (134) (130) dx 9 ρ+ x 8 x 8 w w ρ 4: ρ + ρ W ± ρ ± ρ + ρ = 1 2π log(w w I ) (135) x 9 1 S 1 ρ ± i x y I x = e 2πρ+, y = e 2πρ (136) x x 8 x y x 8 y W 0 ρ + ρ (135) x y Taub-NUT (120) 19

20 ρ ± center center X ρ ρ X ρ X = ρ + 1 log(w w I ) = ρ + 1 log(w w I ) (137) 2π 2π I X I / X Taub-NUT center x i I Taub- NUT (120) 2 (138) w I w I x 8 I L TN (2, 0) (122) ω (2,0) = idw dρ = 1 2πi dw dx x = i 2π dx dy w I (w w I) (138) Taub-NUT F (x, y, w) xy (w w I ) = 0. (139) 2.2 center singular center 3 (w I, x 8 I ) (139) w I x 8 I manifold singular w I (139) singular x 8 center (139) singular C 2 x, y, w regular singular (x, y) regular x y (139) w F/ w 0 2 singular F = F x = F y = F = 0. (140) w (139) F = 0 (140) F x = y = (w w I ) = d (w wi ) = 0. (141) dw w w I regular w I w singular 20

21 w I N w I = 0 w w = 0 (139) xy = w N. (142) w = 0 O(w N+1 ) 2.2 N center A N 1 (104) C 2 /Z N z 1 z 2 orbifold C 2 /Z N covering space C 2 orbifold (z 1, z 2 ) (104) (z 1, z 2 ) Z N C 2 /Z N (z 1, z 2 ) orbifold orbifold (104) x = z1 N, y = z2 N, w = z 1 z 2. (143) (142) C 2 /Z 2 (120) 67 w singular center x 8 singular (142) singular x = y = w = 0 3 w = 0 center x 8 I = 1,..., N 5 ρ + W + w = 0 W + =W 0 W 1 W 2 W =W 3 5: x 8 x 8 1 ρ + x 0 w = 0 x 8 x 8 N ρ y = 0 x 8 N x8 x 8 1 x = y = 0 w = 0 x, y, w w = 0 center N center N + 1 x 8 x 8 S 0, S 1,..., S N S k w = 0 x 8 k x8 x 8 k 1 x8 0 = x 8 N+1 = S1 S 0 S N S 2 (137) S k W k ρ k S k 21

22 (137) t k = e 2πρ k t k = e 2πρ k t k = w k x, t k = w k N y. (144) t k S k 0 t k t k = 1 (144) (142) (t k, t k ) S k stereographic coordinates (144) (142) yt k = w N k, xt k = w k. (145) A N k 1 A k 1 N center A N 1 S k A k 1 A N k 1 S k (k = 1,..., N 1) N 1 (144) A N 1 N 1 A 0 S 2 A N 1 N 1 S 2 A N 1 2- H 2 A N 1 A N Taub-NUT non-compact 2-cycle Poincare dual center 2-form zero-mode [8, 9] zero mode center 2-2- Taub-NUT SU(2) U(1) 2-form η = fh 2 + df dx 9 (146) center closed 4 fh 2 = fh 1 dh dx 9 self-dual anti-self dual dh/h = ±df/f anti-self-dual 4 η = η 4 η = η f = ch ±1 center center f = 0 f = ch 1 η η η = 1 L 2 (H 1 h 2 + dh 1 dx 9 ) B [ ] i 1 = 8πr 3 L 2 B H 2 (w dw dρ wdw dρ) + x8 H dw dw x8 H dρ 3 dρ. (147) η (1, 1)-form c = L 2 A = 1/L2 B η 1 22

23 η 1 gηµνη µν = η η = 2 2 L 4 H 1 h 2 dh 1 dx 9 = 1 B L 4 h 2 dh 2 dx 9 (148) B x 9 1 h 2 S gηµνη µν = 1 r= dh 2 = 1. (149) 2 L 4 B 2- S 1 η 1 η = 1 S 1 L 2 dh 1 dx 9 = 1 r=0 B S 1 L 2 dh 1 = 1. (150) B r= Taub-NUT r 1 = (x 6 1, x 7 1, x 8 1) k 8 x 8 1 ( ) k8 = η. (151) x 8 1 ρ,w (132) x 8 w ( ) k 8 ik x 8 dz i dz j = L 2 BHη. (152) 1 x 8,w (ρ, w) (130) x 8 x 8 1 center x 8 x 8 1 r=0 ρ ( ) k8 = 1 ( ) k8 L 2 B H (151) x 8 1 ρ,w x 8 1 x 8,w = η (153) ω (2,0) ω (2,0) + δw 1 η 2 (2, 0) center center harmonic 2-form η I η J = η I η J = δ IJ, 4 η I = η I. (154) S I η I (151) center x 8 I 2.7 BPS Taub-NUT 2- A det A = da = Gαβ d 2 σ (155) 23

24 G αβ Σ G αβ G αβ = α x m β x n g mn (156) det G αβ = 1 2 ϵαγ ϵ βδ G αβ G γδ = 1 2 S mn S pq g mp g nq (157) S mn S mn = ϵ αβ α x m β x n (158) (157) (158) ϵ αβ ϵ αβ / G S mn S mn S mn S mn = S mn G (159) S Smn S pq g mp g nq = 1. (160) X mn X 2 S mn S mn da = da dx m dx n (161) da K K mp K p n = g mn (162) K S mn 2 Wirtinger s inequality 1 2 K mns mn 1 (163) A = da 1 K mn S mn da = K mn dx m dx n = K 2 (164) K (162) K k k (164) k Calibration form (164) Z Σ Z = k 2 (165) Z 3.4 (164) K k k Z A A Z. (166) 24

25 (166) manifold calibrated submanifold (164) (163) 1 2 k mns mn = ±1 (167) k 2 Σ Σ k 2 Σ = ±ω 2. (168) Σ z x i x i (168) i x i x j g ij i x i x j g ij = det G = ±ig zz (169) x i x j g ij = 0 x i = 0 x i z Taub-NUT 4 4 k (m) k (n) = ϵ mnp k (p) δ mn k (m). (170) 3 k (m) Z m = k2 m (171) 3 n m n m k2 m (166) A Zm 2 (172) m Taub-NUT (111) S I center Z m [S I ] = x m I x m 0 = k m. S I (173) Z m = A 678 S NS5-branes T- NS5-brane Kaluza-Klein T-dual NS5-brane Taub-NUT 2-form 3.1 NS5-brane NS-NS 2-form B 2 Q H 3 = db 2 Q = H 3 S 3 (174) 25

26 3 3 Q S 3 S 3 S NS-NS 2-form B 2 5- NS5- H 3 J 4 = dh 3 (175) (174) J 4 Q[M] = J 4 (176) M (174) S 3 4 world volume 4 C (176) M C J 4 C 0 δ 4-form δ 4 (C) δ(c) = M, C. (177) M M C M δ(c) (177) NS5-brane J 4 = ρ(x i )dx 6 dx 7 dx 8 dx 9. (178) I 6789 x i I ρ(xi ) ρ(x i ) = δ 4 (x i x i I). (179) I M x i I ρ(x i ) 6789 H 4 H = ρ(r). (180) (180) = c H = c + I 1 4π 2 r r I 2 (181) ds 2 = η µν dx µ dx ν + Hδ ij dx i dx j. (182) 26

27 e ϕ = g str H 1/2 (183) g str H 1 g str e ϕ H 3 (175) H (180) d 4 dh = 4 ρ(r) J 4 = 4 ρ H 3 = 4 dh. (184) δ 3.2 NS5-brane NS5-brane S 1 T-duality IIA (182) (183) (184) NS5-brane x 5 L A S 1 1 Buscher s rule x 5 x 5 x g 55 = L 2 A IIA ds 2 = ds L 2 A(dx 5 ) 2 + Hδ ij dx i dx j (185) B (34) (37) 9 U(1) V W 0 B IIB ds 2 = ds L 2 (dx 5 ) 2 + Hδ ij dx i dx j (186) A B (184) (44) (183) g B str = ga str L A (187) S 1 NS5-brane T-dual dual S 1 NS5-brane T-duality 9 h 3 NS5-brane T-dual NS5-brane 3.3 NS5-brane NS5-brane 1 Buscher s rule x x 9 1 S 1 H (182) g 99 H L 2 L 27

28 Buscher s rule x 9 x 9 NS5-brane x 9 NS5-brane x 9 smear (179) x 9 ρ = I δ 3 (r r I ) (188) Taub-NUT (85) r I I NS5-brane (180) 3 (88) (89) H(r) = L 2 A π r r I I (189) L 2 A IIA S1 L A (34) ds 2 9 = η µν dx µ dx ν + Hdr 2, e 2σ = H, v 1 = 0. (190) v 1 = 0 dx 9 = dx 9 NS5-brane x 9 H 3 dx 9 (37) H A 3 = h 2 dx 9, B A 2 = b 1 dx 9. (191) (175) h 2 dh 2 = ρ(r)dx 6 dx 7 dx 8. (192) h 2 ρ(r) 3 U(1) (90) h 2 = 3 dh (184) Buscher s rule T-dual (41) ds 2 = ds e 2σ (dx 9 + b 1 ) 2 = η µν dx µ dx ν + ds 2 TN. (193) (190) ds 2 TN (87) Taub-NUT NS-brane T-dual Taub-NUT center (190) v 1 = 0 T-dual B 2 = 0 ϕ = ϕ σ = g str (194) NS5-brane T-dual NS5-brane NS5-brane x 9 T-duality B

29 x 8 L A C 2 C 12 NS5 w IIA x 8 S 12 IIB S 2 center w 6: S 1 NS5-brane T-duality Taub-NUT center Kaluza- Klein monopole I NS5-brane C I J NS5-brane I NS5-brane C IJ = C I C J Taub-NUT 2- S I S IJ S I S IJ S cycle Σ k A Z A Σ IIB B 2 C even ξ I ξ I δ δ (33) H 2 (54) G odd [δ, δ]b 2 = dλ NS 1, [δ, δ]c even = e B 2 dλ odd. (195) H 3 G odd 0 0 Λ ξ I ξ I Λ NS 1 = 1 4 (σ z) IJ (ξ Iγ [1] ξ J ), Λ 2n 1 = 1 4e ϕ (σ xσ n+1 z ) IJ (ξ Iγ [2n 1] ξ J ). (196) γ [n] n γ [n] = γ i1 γ in dx i1 dx in. (197) Σ B Z F1 S brane B (198) B 2 (x) B B 29

30 3 k A δb 2 = ϵ A k A 3 ZF A 1 = 1 2π ϵ A S brane[c even, B 2 + ϵ A k A ] (171) S F 1 = S NG + 2π B 2. (200) S NG - B ϵa =0 Taub-NUT S I (199) Z m F 1[F1 wrapped on S I ] = x m I x m 0. (201) (173) S I D1-brane D- D- RR- C Ĉ Ĉ A odd = e BA 2 C A odd, Ĉ B even = e BB 2 C B even. (202) (195) B Λ NS 1 Z F1 D Λ odd (195) C B (202) Ĉ Ĉ2 ZD1 A ZD1 A = 1 2π ϵ A S brane[ĉ2 + ϵ A k A, B 2 ] (203) 2- D1-brane (171) D- Chern- ϵa =0 Simons (58) Ĉ = 2π Ĉodde A IIA F2, SCS IIB = 2π S IIA CS 2n 1 2n Ĉevene B IIB F2. (204) (204) C Z D1 D1- (203) Z D1 0 Z F 1 D- D-brane Z F 1 (199) S brane D-brane RR- (199) C B Ĉ C Λ NS 1 C Ĉ Taub-NUT S I (203) Z m D1[D1 wrapped on S I ] = x m I x m 0. (205) 30

31 (173) (201) D1-brane Z D1 Ĉ2 (106) δĉb 2 = ϵ m k m 2 = ϵ m dx m dx 9 H 2 ϵ mnpϕ m dx n dx p (206) m, n, p = 6, 7, 8 Σ x 9 S I (206) 2 δĉb m9 = ϵ m Z m D1 = 1 2π S D1 Ĉm9. (207) T-dual (207) type IIA Ĉ T-dual Ĉ A odd = ĉ odd + ĉ even dy, Ĉ B even = ĉ even + ĉ odd dz (208) 9 ĉ odd = e b 2 (c odd c even V ), ĉ even = e b 2 V W (c even + c odd W ). (209) ĈA m = ĈB mz (207) ZD1 m = 1 SD1 B = 1 SD0 A = Z 2π ĈB 2π m9 ĈA D0 m (210) m 2- D1-brane D0- D1-brane S I D0-brane 6 C I NS5-brane Z m D0[D0 along C I ] = x m I x m 0. (211) (210) NS5-brane 678 T-dual Taub-NUT center NS5-brane x 9 NS5-brane x 9 D0-brane Z 9 D0 ĈA 9 T-dual ĈA 9 = ĈB ZD0 9 = 1 SD0 A = 1 SD( 1) B = Z m 2π ĈA 2π 9 ĈB D( 1) (212) S I D1-brane x 9 I x 9 0 = Z 9 D0[D0 along C I ] = Z m D( 1) [D1 wrapped on S I] (213) D1- (204) x 9 I x 9 0 = F 2 = S I B 2 S I A 1. S I (214) 31

32 (214) T-dual (70) F2 B = S I (F2 A + dy dz) = S I dy dz = S I dy C I (215) C I y (214) (214) 2 S I I A 9 T-dual x 9 0 x9 x 9 0 x 9 I x 9 0 = B2 B. S I (216) 678 (173) 9 (216) Taub-NUT T-dual NS5-brane NS5-brane center w = x 6 + ix 7 (138) w I w 0 = ω (2,0) S I (217) x 9 x NS5-brane (x 8 I x 8 0) + i(x 9 I x 9 0) = J. S i (218) J k 8 B J = k 8 + ib (219) 3.5 NS5-brane NS5-brane 6- N = 2 IIA NS5-brane NS5-brane N = (2, 0) c D0-0-form NS5-brane D4-brane NS5-brane D4-brane NS5-brane S 1 c dc D4-brane N D4 = dc. (220) c 1 S 1 M- NS5-brane x 11 M5-brane c M5-brane x 11 32

33 NS5-brane 2 c 2 h 3 = dc 2 6 h 3 = h 3. (221) NS5-brane x 6,..., x 9 c c 2 T-dual Kaluza-Klein monopole x m T-dual Taub-NUT center 678 NS5-brane center (151) 3 δk A = I δx A I (x µ )η I (222) center η I (154) harmonic 2-form IIB (222) NS5-brane IIB S = d 10 x 2π g (10) e 2ϕB (R (10) + 4( M ϕ) 2 ) (223) ds 2 = g µν (x µ )dx µ dx ν + g mn (x µ, x m )dx m dx n g mn = g mn (t A (x µ ), x m ) (224) t A x µ (223) S = d 6 x 2π ( g e 2ϕ 4V ( ϕ) 2 4( µ ϕ)( µ V ) 1 ) 2 G AB( µ t A )( µ t B ) (225) x m 4 V V = d 4 y g (4) (226) x m V = t A G AB = d 4 x ( 1 g (4) 2 gmp g nq (g mn,a )(g pq,b ) 1 ) 2 (gmn g mn,a )(g pq g pq,b ) (227) k 8 (t, y) = k 8 + t I η I (228) δg ij = it I η I ij δg mn g mn δg mn = k mn η I mn k mn η I mn 0 δg mn (227) 0 V (225) 0 t I t A G IJ = δ IJ (229) 33

34 t I S = 2π d 6 x( µ t I )( µ t I ) = 2(g B str) 2 2π 2(g A str) 2 d 6 x( µ t I )( µ t I )L 2 A (230) 2π/(gstr) A 2 5-brane IIA NS5-brane L 2 A g 88 NS5-brane 9 NS5-brane 9 T-dual Taub-NUT manifold x 9 B- x 9 Taub-NUT manifold center B B B B 2 = f I (x µ )η I (231) I f I x µ (µ = ) (150) f I = S I B 2 (216) f NS5-brane x 9 f B B (231) S IIB = 1 2π d 10 x g 12 (10) H B2 e 2ϕB 3 = 1 2π d 10 x g 4 (10) µ f I µ f J η Iµν η µν e 2ϕB J = 1 2π d 6 x g 2 (6) µ f I µ f I (232) e 2ϕB e 2ϕB = e 2ϕA /L 2 A S IIB = L2 A 2 2π e 2ϕA d 6 x g (6) ( µ f I ) 2 (233) 2πe 2ϕ IIA NS5- L 2 A x 9 g A 99 = L 2 A self-dual 4-form zero-mode C 4 = I c I 2(x µ ) η I (234) c I 2 I NS5-brane 2- C 4 10 G 5 = G 5 (154) η I h 3 (221) IIB S IIB = 2π d 10 x g 2 5! (10) G 2 5 = 2π d 6 x g 12 (6) (h I 3) 2 (235) NS5-brane c 2 RR 2-form zero mode C 2 C 2 = I c I (x µ ) η I (236) 34

35 NS5-brane 0-form c S IIB = 2π 12 d 10 x g (10) (G B 3 ) 2 = 2π 2(g A str) 2 d 6 x g (6) µ f I µ f I (g A str) 2. (237) (g A str) 2 NS5-brane M5-brane T NS5 = T M5 = 2π(g A str) 2 g 11,11 = (g A str) 2 M5-brane x 11 (236) S I D1-brane S D1 = 2π C 2 = 2πc I 2 CI (238) S I C I C I C I NS5-brane IIA D0-brane NS5-brane c I (173) (216) NS5-brane c M5-brane x 11 x 11 I x 11 0 = c I c 0 = C 2. S I (239) C 2 (236) c 0 center NS5-brane NS5-brane IIB NS5-brane N U(1) U(N) T-dual Taub-NUT N center cycle D2-brane U(1) N U(N) Taub-NUT IIA 2- D3-brane string 0 little string theory 4 Geometric engineering 3 NS5-brane Taub-NUT N = 1 NS5-D4 T-dual [10] T-dual Geometric engineering NS5-brane [11] N = 1 NS5-brane NS5-brane NS5-brane 35

36 1: N = NS5 1,2 D4 N 4.1 NS5-D4 system IIA NS5-brane NS5 1 NS5 2 N D4-brane 1 IIA 1/4 4 N = 2 Hanany Witten[12] 3 Hanany-Witten D4-brane NS5-brane Witten[13] 4 N = 2 NS5-brane D4-brane 4 N = 4 A µ (x µ, x 9 ), A 9 (x µ, x 9 ), ϕ i (x µ, x 9 ), µ = 0, 1, 2, 3, i = 4, 5, 6, 7, 8. (240) N U(N) NS5-brane N = 2 (240) N = 2 vector mult. : A µ (x µ, x 9 ), ϕ 4 (x µ, x 9 ), ϕ 5 (x µ, x 9 ), (241) hyper mult. : ϕ 6 (x µ, x 9 ), ϕ 7 (x µ, x 9 ), ϕ 8 (x µ, x 9 ), A 9 (x µ, x 9 ). (242) D4-brane NS5-brane x 9 D4-brane N = 2 pure U(N) N = 2 N = 1 A µ V ϕ = ϕ 4 + iϕ 5 Φ L = 1 2gYM 2 tr( µ ϕ µ ϕ + F F ) (243) F D-term V tr[ϕ, ϕ ] 2. (244) [ϕ, ϕ ] = 0 ϕ N D4-brane u N N ϕ ϕ = T str diag(u 1, u 2,..., u N ). (245) NS5-brane N = 1 ϕ W = tr W (ϕ) L = 1 2 tr(f W (ϕ) + F W (ϕ) ) (246) 36

37 F ϕ V = g2 YM 2 tr(w (ϕ)w (ϕ) ). (247) ϕ W = 0 N 0 W (u) = 0 u u k 0 D4-brane N k U(N) U(N) k U(N k ). (248) U(1) decouple U(1) NS5-brane x 9 x 9 1,2 NS5-brane M5-brane x 11 c 1,2 x 9 = x 9 2 x 9 1, c = c 2 c 1 = x11 2 x 11 1 (249) L 11 1 x 11 L 11 x 6 1,2 = x 7 1,2 = x 8 1,2 = 0 (250) D4-brane D4-brane U(1) U(N) D4-brane Born-Infeld 4 effective action S = d 4 x [ x9 x 9 (2π) 4 lsg 5 + ( 14 str (2π) 2 l s g F µνf µν 12 ) ] µϕ µ ϕ + str D4-brane NS5-brane c S = 2π cf F (252) 2 D4 (251) (251) 1 2 A F ϕ D4-45 D4-brane ϕ = 1 2πls 2 (x 4 + ix 5 ). (253) (252) 2π g 2 YM = x9 2πl s g str, (253) (254) u = x 4 + ix 5, w = x 6 + ix 7, s = x11 + ix 9 37 θ = c. (254) 2π L 11. (255)

38 w N = 1 x 9 1 τ gauge = θ 2π + 2πi gym 2 = x11 + i x 9 = s s 2 s 1. (256) L 11 l s 0 N = 1 NS5-brane w = x 6 + ix 7 NS5-brane u NS5 1,2 w = w 1,2 (u) w = w 2 w 1 uw 4567 NS5-brane (w w 1 (u))(w w 2 (u)) = 0 (257) singular w L 9 NS52 D4 NS5 1 u u w 1 =w 2 7: NS5-brane D4-brane u w 2 (u) w 1 (u) 0 NS5-brane D4-brane x 9 L = x 29 + w(u) 2 = x 9 + w 2 2 x 9 + (258) (251) S pot = [ d 4 x 1 w 2 ] (2π) 4 lsg 5 str 2 x 9 (247) W (ϕ) w 1,2 (u) W (ϕ) = (259) w(u) (2πl s ) 3 g str (260) l s 0 W w(u) x 9 x 9 L (254) (260) x 9 x 9 (254) (260) S = d 4 x 1 [ gym F µνf µν 1 ] 2 µϕ µ ϕ g4 YM 2 W (ϕ) 2 (261) 38

39 N = 2 U(1) W (ϕ) N = 1 Φ N = 1 super Yang-Mills ϕ w i (u) w 1 (u) = 0 w 2 (u) = µu µ N = 1 super Yang-Mills NS5 1 u NS5 2 w NS5-brane [14] N = 1 2: NS5 1 NS5 2 D4 N Seiberg duality ([14] [15] N = 1 Yang-Mills D4- NS5-brane N = 2 [13] N = 1 [15] D4-brane NS5-brane D4-brane NS5-brane w 1 (u) = w 0 (u), w 2 (u) = w 0 (u). (262) W 2w 0 = (2πl s ) 3 gstr A (263) uw 4567 NS5-brane w 2 = w 0 (u) 2 (264) ϕ n + 1 w 0 (u) u n NS5-brane x 9 (264) x 9 = x 9 (u) u NS5-brane NS5-brane D4-brane D4-brane NS5-brane (264) w 2 = w 0 (u) 2 + f n 1 (u). (265) D4-brane NS5-brane w = ±w 0 + O(u 1 ) f n 1 n 1 u (265) ( w = ± w0 2 + f n 1 = ± w 0 + f ) n 1 + 2w 0 (266) 39

40 u w ±w 0 f w 0 f n 1 a k n 1 f n 1 (u) = a k u k. (267) f n 1 (264) D4- k=0 w L 9 NS52 u NS5 1 u 8: D4-brane u 0 D4-brane NS5-brane uw x 9 x 9 (u) x 9 (u) β i β i dx 9 = x 9 (268) B i i cut NS5-brane x 9 β i D4-brane NS5-brane D4-0-form c c(u) α i dc = N i. (269) α i i cut α i NS5-brane D4- N i D4-brane (255) s ds = N i, ds = τ + n i. (270) α i β i (270) 2 (268) β i τ s x 11 n i n i β i α i n i N i n i = 0,..., N i 1 N i N i D4-brane unbroken SU(N i ) N i (270) differential ds (265) f n 1 40

41 (270) ds = N (271) ds β (270) 2 w mod = w 0 + un+1 M n+1 (272) u n (271) ds 1 β i i 9 B i B i A i A i (a) (b) 9: (a) B i Λ cutoff (b) cut cutoff (270) ds genus n holomorphic 1-form n η k = uk du, k = 0,..., n 1. (273) w f n 1 (270) α i ds n f n 1 f n 1 1 h α i β i A i = h, B i = h (274) α i β i 1 τ ij B i = τ ij A j (275) τ ij f n 1 (270) ds (270) (275) f n 1 τ + n i = τ ij (a k )N j. (276) 41

42 f n 1 τ ij f n 1 a k 4.2 Glueball superpotential NS5-brane (276) curve (270) 1-form ds (276) f n 1 τ ij (276) S i = wdu, α i Π i = wdu. β i (277) f n 1 = 0 w = ±w 0 dw = W 2π dϕ = (2πls)g 5 str A wdu (278) Si cl = 0, Π cl i = ga str 2π [W (u ) W (u i )]. (279) S i f n i Π i i (277) 1-form wdu f n 1 a k (265) f n 1 a k ak w = u k /(2w) a k wdu = uk du 2w. (280) holomorphic 1-form α i β i Π i a k = τ ij S i a k (281) a k S i Π i n (276) τ ij = Π i S j (282) [Π j N j (τ + n j )S j ] = 0. (283) S i j F W eff (S i ) = 2π gstr A [(τ + n i )S i Π i N i ]. (284) i (283) F-term (279) tree level superpotential W (284) (279) W eff (S i ) classical = i W (u i )N i = tr W (Φ). (285) 42

43 (284) S i SU(N i ) glueball super field S i tr(w i W i ) = T D4 S i (286) S i W W + S i 2π (284) n i W eff (S i ) = 2π g A str (277) (270) [15] W eff (S i ) = 2π gstr A wdu ds = 2π Σ gstr A [τs i Π i N i ]. (287) i B dw du ds (288) Σ u-w-s M5-brane B 3 Σ B = Σ B Σ Σ 0 B = Σ Σ 0 B Σ Σ 0 curve B Domain Wall B M5-brane Domain Wall (288) M5-brane (288) M5-brane central charge BPS bound Witten [15] domain wall (288) 4.3 NS5- Calabi-Yau NS5-brane x 9 L 9 T-dual 1 (182) (189) NS5 IIA ds 2 A = L 2 A(dx dx dx dx 2 9) (289) Taub-NUT IIB (193) ds 2 B = L 2 A(dx dx dx 2 8) + L 2 Bdx 2 9, L B = 1 L A (290) M5-brane x m new = L A x m old, x 9 new = L A x 9 old. (291) M5-brane IIB 2-form x m I x m 0 = L A k2 S m, x 9 I x 9 0 = L A B 2, x 11 I x 11 0 = L 11 C 2. (292) I S I S I w Taub-NUT 2 wi new w0 new = ω(2,0) new. (293) D I 43

44 2 ω new (2,0) = L A(k ik 2 2) = L A ω old (2,0) = 1 2πi dw new dx x. (294) ω (2,0) L A s IIB 2- s I s 0 = x11 + ix 9 = C2 B + il A B2 B = (C2 B + τ str B2 B ). (295) L 11 S I L 11 S I S I τ str = il 11 /L A = i/gstr B 0 x 8 + ix 9 x 8 x 11 B RR C 2 w s u T-duality N = 1 u w s (255) NS5-brane w-s w = w I (u), s = s I (u) (296) I NS5-brane u NS5-brane f n 1 D4-brane NS5-brane T-dual NS5-brane Taub-NUT geometry (120) xy = P (u, w) I (w w I (u)). (297) 4 Taub-NUT 2 u 3 w-u-x 8 S 1 P (u, w) = x 8 = 0 3 x 9 w L 9 C 21 C 2 NS52 w S 21 S 2 shrinking cycles NS5 1 u u 10: NS5-brane T-dual 2-3- ω (3,0) k CY Calabi-Yau 3- ω (3,0) = du ω (2,0) = 1 du dw dx dy = 1 2πi d(xy P (u, w)) 2πi du dw dx x. (298) ds 2 CY = dudu + ds 2 TN k CY = k 8 i 2 du du. (299) 44

45 k 8 w I (u) Taub-NUT k 8 u (299) closed (299) u IIA NS5-brane D4-brane D4-brane NS5-brane I J C IJ C IJ D4-brane T-dual S IJ D5-brane IIB D5-brane IIA NS5-D4 D4- (256) (256) s NS5-brane I J u s = s I (u) s J (u) (295) τ gauge = s I s J = (C 2 + τ str B 2 ) S IJ (300) S IJ = S I S J S 2 S 2 D5-brane (300) T-duality D5-brane (57) worldvolume R 4 S 2 R 4 S 2 B S = 2π d 4 x det(g µν + F µν ) da det(g ij + B ij ) (301) g str R 4 S 2 S 2 decoupling S 2 0 da det(g ij + B ij ) = B 2 = b (302) S 2 S 2 F (302) ( S = d 4 x 1 ) 2πb Fµν 2 R 4 g 4 str (300) B Chern-Simons (58) S = 2π C 2 F 2 F 2 (304) 2 C 2 S 2 (303) c = C 2 (305) S 2 4 S = 2πc F 2 F 2, (306) 2 (300) C 2 D4-brane NS5-brane NS5-brane u-w Calabi-Yau (297) w I (u) w 1 (u) w 2 (u) u = u 0 w 0 = w 1 (u 0 ) = w 2 (u 0 ) u = u 0 w = w w 0 u = u u 0 (297) xy = c(w au )(w bu ) (307) 45

46 a, b, c U V xy UV = 0 (308) (140) x = y = U = V = 0 singular conifold singularity NS5-brane D4-brane NS5-brane (297) (265) f n 1 conifold (308) xy UV = ϵ (309) deformation resolution 4.1 NS5-brane α β deform Calabi-Yau Calabi-Yau α- β- A- B- 3- A-cycle NS5-brane C 1 α i -cycle C I 11 (a) T-dual C I S I 3 S 3 3-cycle A i α i i u α α α S I α S 1 S 2 A i α S (b) A u u α α' 11: Calabi-Yau A i B i C I β i β i C 1 C 2 β i C (a) T-dual C I S I S B i β i β i α i β i S I β i S 21 = S 2 S 1 B i β i S (b) 46

47 B u u β β' 12: Calabi-Yau B i A i B i α i β i A i, B j = δ ij. (310) NS5-brane x 8 0 u Taub- NUT 2-cycle k 8 0 Lagrangian u Taub-NUT 2- A i B i (299) 0 (299) 4.4 Gukov-Vafa-Witten (287) Calabi-Yau (270) (277) Calabi-Yau (277) w (293) 2 S I wdu α i S i = wdu = α i α i ( S I ω (2,0) ) du (311) S I α i Calabi-Yau A i Calabi-Yau holomorphic 3-form (298) S i ω (3,0) A i Π i S i = ω (3,0), A i Π i = ω (3,0) B i (312) (270) differential ds u N i τ u s 2-form (295) (270) s α i β i A i B i G 3 N i = G C 3, τ + n i = G C 3. (313) A i B i 47

48 3- G C 3 G C 3 = G B 3 + τ str H B 3. (314) (313) A i N i N i D5-brane A i S 2 τ (300) S 2 D5-brane (312) (313) (287) W eff = 2π [ ] gstr A ω (3,0) G 3 ω (3,0) G 3 A i B i B i A i gstr A T-dual IIA IIB gstr A = L A gstr B 3 (315) Ω (3,0) = 1 L A ω (3,0) (316) ω (3,0) = du ω (2,0) (294) L A Ω (3,0) Ω (3,0) Ω (3,0) = 4i 3 k CY k CY k CY, Ω (3,0) Ω mnpω mnp = 8. (317) Ω (3,0) (315) W eff = T D5 Ω (3,0) G 3 [ A i B i B i Ω (3,0) A i G 3 T D5 = 2π/gstr B D5-brane Gukov-Vafa-Witten [16] IIB ] (318) S i tr(w i W i ) = 2π gstr A S i = T D5 Ω (3,0) (319) A i (318) Calabi-Yau A i n D5- domain-wall G 3 B i G 3 = n. (320) B B i A i S 3 W eff = nt D5 Ω (3,0) A = nt D5V (321) i A i ω (3,0) = V (322) A i Ω (3,0) BPS (321) D5-brane 48

49 NS5-brane D4-brane N = 2 NS5-brane w N = T-dual Calabi-Yau Calabi-Yau Calabi-Yau Calabi-Yau D4-brane w NS5-brane NS5-brane w D4-brane NS5-brane NS5-brane w x 8 = x 9 = x 11 = 0 N = 2 SU(2) R (x 8, x 9, x 11 ) NS5-brane NS5-brane D2-brane D2-brane N = 2 deformation N = 2 N = 1 V i S i (x 8, x 9, x 11 ) NS5-brane SU(2) R 3 N = 2 FI s = (x 11 + ix 9 )/L 11 s = τ x 8 ζ = δx 8 W K W = τs, K = ζv (323) (287) N i = 0 (287) 2 N i D4-brane NS5-brane FI N = 2 N = 2 Fayet-Illiopoulos S i S N = 2 S NS5-brane deformation w NS5-brane w S = 2π 2(g A str) 2 d 6 x µ w µ w (324) (15) NS5-brane w z i w = w(u, z i ). (325) (324) z i S = 2πi 4(g A str) 2 d 4 x du du w w z i z µz i µ z j = j 2 K d 4 x z i z µz i µ z j (326) j 49

50 K K = 2πi 4(gstr) A wdu w du (327) 2 u-w NS5-brane (293) Calabi-Yau K = 2πi 4(gstr) A ω 2 (3,0) ω(0,3) = 2πi 4(gstr) B Ω 2 (3,0) Ω (0,3) (328) CY IIB Calabi-Yau IIB Calabi-Yau N = 2 IIB (32) CY δg mn = g i,mn δz i = 1 Ω 2 Ω i,mpqω m pq δz i (329) g 10 g ij g kl g µν µ g ik ν g jl (330) z 4 S = d 4 x g 2 K z i z µz i µ z j (331) j V 6 K = 4πV ( ) 6 (gstr) B log i Ω 2 (3,0) Ω (0,3) Calabi-Yau V 6 Calabi-Yau ( ) i Ω Ω = V 6 Ω 2 + iδ Ω (3,0) Ω (0,3) CY CY CY (332) (333) (332) V 6 4πi K = (gstr) B 2 Ω 2 CY Ω (3,0) Ω (0,3) (334) Ω 2 = 8 NS5-brane (328) 4.6 NS5-brane NS5-brane Calabi-Yau NS5-brane Bucher 50

51 [17] Calabi-Yau Calabi-Yau NS5-brane NS5-brane w = w(u), s = s(u), (335) x M (255) s M- x 11 M5-brane T-dual ds 2 = du 2 + ds 2 TN(u) (336) ds 2 TN (u) center u Taub-NUT ds TN u G 3 H 3 (314) 3-form field strength G C 3 T-dual (295) NS5-brane G C 3 = I ds I η I (337) η I Taub-NUT ds 2 TN (u) η I Taub-NUT self-dual 2 du = idu 6 G C 3 = ig C 3 (338) imaginary self-dual (336) (337) (338) Calabi-Yau dg C 3 = 0 G C 3 k 8 η I 0 k 8 η I = 0 G C 3 k CY = 0 (339) k CY (299) G C 3 primitive (339) (339) [18, 19] G C 3 SU(3) 3-form (2, 1)-form 6 (0, 3)-form (337) (0, 3) G C 3 (0, 3) Gukov-Vafa-Witten (318) 0 51

52 3: 3- form (3, 0) (2, 1) (1, 2) (0, 3) SU(3) [333] = 1 [33]3 = [33] = [333] = 1 self-dual primitive N = 1 Yang-Mills GVW NS5-brane (337) Calabi-Yau 4 W = 0 (0, 3) 3-form flux 5-form H 3 G 3 0 RR 5- H 3 G 3 0 (48) G 5 dg 5 = H 3 G 3. (340) G 5 = G 5 G 5 (340) H 3 G 3 effective D3-brane charge ds 2 CY = g mndx m dx n Calabi-Yau D3-brane D3-brane ρ g mn Calabi-Yau volume form ω 6 dg 5 = ρω 6 (341) D3-brane ds 2 = h 1/2 η µν dx µ dx ν + h 1/2 ds 2 CY (342) h Calabi-Yau ( g) h = g str ρ. (343) RR 4-form potential 0123 C 0123 = 1 g str h (344) D3-brane 3-form D3-brane H 3 G 3 = ρ D3 ω 6. (345) Gukov-Vafa-Witten 52

53 3- D5-brane D5-brane (330) 4 g µν Calabi-Yau g mn S (g µν ) 1 (g mn ) 3 h 1 (328) [20] K = 2πi 4(gstr) B hω 2 (3,0) Ω (0,3) (346) CY h h Calabi-Yau h 3-form g G C 3 2 h 1 4 K ij W,i W,j (346) D-term NS5-brane M5-brane D-term F-term 4.7 Elliptic model 4.1 NS5-brane D4-brane NS5-brane tree level x 9 L 9 (1) P NS5-brane x 6 = x 7 = x 8 = 0 x 9 NS5-brane I w u x 9 Y Φ X D4 NS5 1 NS5 2 NS5 3 13: N = 2 NS5-brane I NS5-brane I + 1 NS5-brane N I D4-brane I = 1 I = P + 1 P NS5-brane 1 NS5-brane D4-brane D4-brane x 9 U(N I ) N = 2 P I=1 U(N I ) U(N I ) N = 2 N = 1 V I Φ I D4- u SU(N I ) Φ I 53

54 SU(N I ) τ I NS5 (256) τ I = s I+1 s I. (347) NS5-brane D4-brane X I Y I X : (N I, N I 1 ), Y : (N I, N I 1 ). (348) N = 2 Φ I W (X, Y, Φ) = Φ I (X I Y I Y I+1 X I+1 ) (349) I Φ I Φ I 1 X I Y I D4-brane quiver 15 N I Y 1 Φ 1 Φ 2 Φ 3 Y 2 Y 3 X 1 X 2 X 3 14: N = 2 2N I β 0 N = 2 N = 1 I NS5-brane w w = w I (u) Φ I (260) W (Φ I ) = w I+1(u) w I (u) (2πl s ) 3 gstr A. (350) NS5-brane w I (u) w I (u) = µq I u. (351) µ q I I q I = 0 q I = 1 q I = 1 NS5-brane u w 15 µ NS5-brane w W = µ (q I+1 q I )Φ 2 I (352) 2 I Φ I q I+1 = q I 0 q I+1 q I ±µ Φ I decouple 16 Φ I 54

55 w u x 9 D4 NS5 1 NS5 2 NS5 3 15: N = 1 Y 1 Φ 1 Y 2 Y 3 X 1 X 2 X 3 16: SPP quiver diagram F-term Φ I = q I+1 q I (X I Y I Y I+1 X I+1 ) (353) µ Φ I Φ I decouple W = 1 2µ (q I+1 q I )(X I Y I Y I+1 X I+1 ) 2 (354) W = Φ I (X I Y I Y I+1 X I+1 ) 1 (q I+1 q I )(X I Y I Y I+1 X I+1 ) 2 (355) 2 q I =q I+1 q I q I+1 µ F -term Φ I = Φ I + 2q I 1 (X I Y I + Y I+1 X I+1 ) (356) 2 (X I Y I ) 2 W = Φ I (X I Y I Y I+1 X I+1 ) + (q I+1 q I )(X I Y I Y I+1 X I+1 ) (357) q I =q I+1 q I q I+1 Φ I Φ I N I Φ I decouple SU(N I ) N = 2 β = 0 Φ I decouple SU(N I ) 2N I NS5-brane 4.3 T-duality NS5-brane q I = 0 w = 0 m q I = 1 u = 0 n NS5 world volume w m u n = 0 x 9 T-dual Calabi-Yau xy = w m u n (358) 55

56 m = n = 1 conifold m, n generalized conifold m = 2, n = 1 suspended pinch point SPP moduli space U(1) Φ I, x X P X 2 X 1, y Y 1 Y 2 Y P, X I Y I. (359) (q 1, q 2, q 3 ) = (0, 0, 1) quiver 16 W = Φ 1 (X 1 Y 1 Y 2 X 2 ) + (X 2 Y 2 Y 3 X 3 ) (X 3 Y 3 Y 1 X 1 ). (360) F -term 0 F X1 = (Φ 1 X 3 Y 3 )Y 1, F Y1 = (Φ 1 X 3 Y 3 )X 1, F X2 = (Φ 1 X 3 Y 3 )Y 2, F Y2 = (Φ 1 X 3 Y 3 )X 2 (361) F -term F = 0 Φ 1 X 3 Y 3 3 F Φ1 = X 1 Y 1 X 2 Y 2, F X3 = (X 1 Y 1 X 2 Y 2 )Y 3, F Y3 = (X 1 Y 1 X 2 Y 2 )X 3. (362) X 1 Y 1 X 2 Y 2 w = X 1 Y 1 = X 2 Y 2, u = X 3 Y 3 = Φ 1, x, y, (363) 4 xy = w 2 u. (364) SPP (363) u w S 1 D4-brane u w NS5 1 NS5 2 D4-brane u Φ u- D4-brane NS5 3 D4 NS5-brane X 3 Y 3 w D4-brane S 1 T-dual D3-brane D3-brane T-dual Calabi-Yau N = 2 curve cut Coulomb moduli D4-brane N = 1 cut i N i NS5- N i cut monopole condensation [21] 56

57 NS5-brane q I = 0, 1 F -term w = X I Y I (q I = 0) = Φ I (q I = 1), u = X I Y I (q I = 1) = Φ I (q I = 0). (365) xy = w m u n. (366) T-dual generalized conifold (358) 5 Calabi-Yau 5.1 2n n n n B T n T n M (367) B B T n R T n R ~ B 17: ϕ a (a = 1,..., n) 2π 1 n ϕ ϕ a n T n covering space R v R ϕ ϕ = ϕ + av a R (368) U(1) U(1) n e a v = v a e a e a ϕ a 57

58 e a R Γ T n = R/Γ e a n U(1) µ a n R n R v = v a e a U(1) U(1) n v a µ a R R e a R ẽ a Γ Γ Γ ẽ a dϕ a B R R I I s I R s I R R Γ Γ B R s I µ ξ I I. (369) M resolution I s I 18 s I isometry s I B z n 18: B I s I z I s I s I = iz I izi z I z I (370) s I I {s I } Γ b n,0 = 1 (n, 0) Ω Ω (368) L si Ω = iq I Ω (371) 58

59 s 4 s 3 s 1 s 2 19: q I s I Ω µ R q I = s I µ (372) f v L v f = i(v q)f (373) q R µ Ω f Γ (n, 0) Ω R- Ω µ B I s I z I z I n 1 y 1,..., y n 1 I C n (n, 0) Ω dz I dy 1 dy n 1 (374) Ω 0 0 s I U(1) Ω 1 I s I µ = 1. (375) s I Γ n 1 n web Γ web s I web µ R (375) (375) 59

60 µ R B (369) a µ + aµ B B M R µ B µ B R = R/(µ 0) web µ R ~ R 20: web Γ SL(n, Z) µ = ẽ n v R µ R v µ µ R µ µ (376) 1 s I = (s I, 1) (377) (376) I J s I µ = s I µ + µ n = k I, s J µ = s J µ + µ n = k J. (378) µ n R n 2 (s I s J ) µ = k I k J. (379) s I s J n 2 k I web Calabi-Yau 3-fold web-diagram NS5 web R µ v µ = 0. (380) U(1) n 1 M n + 1 T n 1 B 60

61 B S 1 S 1 R- S 1 B shrink B T n 1 (n, 0) Ω B 1 η dζ = Ω. (381) T n 1 1 dζ B ζ ζ B 0 B B = R C ζ (382) C ζ ζ B C ρ ρ = 0 web R codimension 1 B codimension 3 S 2 I K S IJ J ~ R 21: web S 2 T n s I s J shrink T n 1 s I s J shrink NUT-singularity NUT charge ds 2 = ds 2 B + n 1 a,b=1 g ab (dϕ a A a )(dϕ b A b ) (383) ds 2 B B g ab T n 1 g ab B I s I = (s I, 1) shrink C ρ A a = s a I (384) S 2 NUT S 2 F a = s a I s a J (385) 5.3 µ a B 2n M n U(1) n B T n n U(1) a = 61 ϕ a (386)

62 ϕ a a = 1,..., n ϕ a 2π 0 = L a k = (i a d + di a )k = di a k (387) i a a (387) µ a dµ a = i a k. (388) µ a M 2n {µ a, ϕ a } (387) d(i a dµ b ) = di a i b k = L a i b k = [L a, i b ]k + i b L a k = 0 (389) [L X, i Y ] = i [X,Y ] (390) (389) i a dµ b 0 µ a µ a R s I shrink 0 s I = s a I a bdr = 0 (391) i si k bdr = d(s a I µ a ) bdr = 0 (392) s a I µ a (388) k = f ab (µ)dµ a dµ b + dµ a dϕ a (393) 1 1 f ab (µ)dµ a dµ b = da = d(a a dµ a ) = dµ a da a (394) k = dµ a d(ϕ a A a ) (395) ϕ a new = ϕ a A a (396) ϕ a k = dµ a dϕ a. (397) ζ a dζ a = dy a + idϕ a (398) 62

63 y a ϕ a µ a k = id h d a K (399) d h ζ d a ζ d h = dζ a ζ a = 1 ( 2 dζa y a i ) µ a, d a = dζ a ζ a = 1 ( 2 dζ a y a + i ) µ a. (400) µ a y a (402) G(µ a ) k = 1 ( ) K 2 d y a dϕ a (401) µ a = 1 K 2 y a. (402) G = µ a y a 1 2 K (403) y a = G µ a (404) ds 2 = 1 2 ( K 2 y a y b (dya dy b + dϕ a dϕ b ) = 2 G 2 ) 1 G dµ a dµ b + dϕ a dϕ b (405) µ a µ b µ a µ b 5.4 C 3 (z 1, z 2, z 3 ) 3 U(1) z a = e ya +iϕ a y a ϕ a r a = e ya = z a B shrink B r a R shrinking cycle s 1 = ϕ 1, s 2 = ϕ 2, s 3 = ϕ 3. (406) 2n 1 1 B shrink (406) C 3 Calabi-Yau 3 63

64 s 3 s 2 f 2 s 1 s 2 s 1 s 3 f 1 22: C 3 web U(1) 3 U(1) 2 (3, 0) Ω C 3 Ω Ω = dz 1 dz 2 dz 3 = z 1 z 2 z 3 (dy 1 + idϕ 1 ) (dy 2 + idϕ 2 ) (dy 3 + idϕ 3 ). (407) z 1 z 2 z 3 e i(ϕ1 +ϕ 2 +ϕ 3) (406) 3 Ω z 1 z 2 z 3 e iφ3 ϕ 1 = φ 1, ϕ 2 = φ 2, ϕ 3 = φ 3 φ 1 φ 2 (408) Ω φ 1 φ 2 f 1 := φ 1 = ϕ 1 ϕ 3 = s 1 s 3, f 2 := φ 2 = ϕ 2 ϕ 3 = s 2 s 3. (409) 2 Ω φ 1 φ 2 1 dζ = Ω = (2π) 2 d(z 1 z 2 z 3 ) (410) T 2 ζ ζ = (2π) 2 z 1 z 2 z 3 (411) 3 1 µ C 3 ds 2 = (dz a ) dz a (402) K = 1 2 ( z1 2 + z z 3 2 ) = 1 2 (e2y1 + e 2y2 + e 2y3 ) (412) (403) G = µ a = 1 K 2 y a = 1 a 2 e2y. (413) 3 µ a y a 1 2 K = 1 2 a=1 ds 2 = 3 a=1 3 (µ a log(2µ a ) µ a ) (414) a=1 ( ) 1 (dµ a ) 2 + 2µ a (dϕ a ) 2. (415) 2µ a 64

65 conifold C n n C n gaiged linear sigma model (GLSM) F-term D-term conifold C 4 z i z 1 z 2 = z 3 z 4 (416) conifold 3 R R 3 C 4 (416) z i ϕ i = arg z i 4 R R z i 0 (416) ϕ i ϕ 1 + ϕ 2 = ϕ 3 + ϕ 4 ϕ F = dϕ 1 + dϕ 2 dϕ 3 dϕ 4 R (417) conifold 3 R R R = { v R v F = 0} (418) (416) z 1 z 2 z 3 z 4 2 s 1 = ϕ 1 + ϕ 3, s 2 = ϕ 1 + ϕ 4, s 3 = ϕ 2 + ϕ 3, s 4 = ϕ 2 + ϕ 4 R R (419) (417) F 3 R q 1 + q 4 = q 2 + q 3 µ = dϕ 1 + dϕ 2 R (420) v µ = (416) 3 φ a ϕ 1 = φ 2 + φ 3, ϕ 2 = φ 2, ϕ 3 = φ 1 + φ 3, ϕ 4 = φ 1. (421) R 3 e 1 = φ1 = ϕ3 + ϕ4, e 2 = φ2 = ϕ1 + ϕ2, e 3 = φ3 = ϕ1 + ϕ3 R R (422) s 1 = e 3, s 2 = e 3 + e 1, s 3 = e 3 + e 2, s 4 = e 3 + e 1 + e 2 R R (423)

66 s 3 s 1 s 4 s 2 s 3 e 2 s 1 e 1 s 4 s 2 23: web (3, 0) Ω = dz 1 dz 2 dz 3 z 3 (424) e i(ϕ 1+ϕ 2 ) = e iφ 3 φ 1 φ 2 e 1 e 2 Ω φ 1 φ 2 T 2 dζ = Ω = (2π) 2 d(z 1 z 2 ) (425) T 2 ζ ζ = (2π) 2 z 1 z 2 (426) GLSM conifold 4 ρ i i = 1, 2, 3, 4 C 4 ϕ i = arg ρ i R C 4 4 R R R 1 U(1) C (ρ 1, ρ 2, ρ 3, ρ 4 ) (e iα ρ 1, e iα ρ 2, e iα ρ 3, e iα ρ 4 ) (427) R R g = ϕ1 + ϕ2 ϕ3 ϕ4 R (428) D-term g µ = 0 (429) R R = { µ R g µ = 0} (430) M 1 ρ i C 4 1 ρ i R s 1 = ϕ1, s 2 = ϕ2, s 3 = ϕ3, s 4 = ϕ4 R. (431) GLSM 1 ρ i ρ i ρ i = 0 C n 1 66

67 1 R R (431) R 4 R f 1 = dϕ 2 + dϕ 4, f2 = dϕ 3 + dϕ 4, f3 = dϕ 1 + dϕ 2 + dϕ 3 + dϕ 4 R R. (432) (431) s 1 = (0, 0, 1), s 2 = (1, 0, 1), s 3 = (0, 1, 1), s 4 = (1, 1, 1) R (433) 23 GLSM R R C 4 ρ i O[n i ] = i ρ ni i (434) n i R n i (434) n i 0 (427) O[n i ] g n = 0 (435) D-term (429) R 4 z i z 1 = ρ 1 ρ 3, z 2 = ρ 2 ρ 4, z 3 = ρ 1 ρ 4, z 4 = ρ 2 ρ 3. (436) 3 (416) R q R s I s I B I C n s I (370) z I n 1 y 1,..., y n 1 f f z I f s I f I f q s I q 0 I. (437) q Γ (437) Γ (369) B (437) {s I } 67

68 (437) 0 B 2 C 2 (x, y) O = x m y n, m, n 0 (438) (m, n) Z 2 Z 2 + C2 x = r 1 e iϕ1, y = r 2 e iϕ 2 r a ϕ a C 2 R 2 + T2 Z 2 + R2 + 1 C z z n n Z + z = re iϕ r R + z 0 S 1 C z n n Z C R S 1 f ψ = fe K/2 (439) K e K/2 f ψ 2 3 (464) z a (465) z a O = 3 a=1 z n a a (440) z a = y a + iϕ a y a ϕ a ψ 2 = e 2 a naya K (441) (402) µ a = n a (442) f ψ 2 68

69 6 T 2 IIB NS5-brane T 2 T-dual IIB Calabi-Yau NS5-brane brane tiling N = 1 Brane tiling [22] [23] [24] brane tiling [25] Calabi-Yau T- Calabi-Yau moduli space Calabi-Yau brane tiling T-duality Calabi-Yau moduli space [26] Brane tiling [27], [28] Calabi-Yau Calabi-Yau U(1) NS5-5.2 Calabi-Yau n-fold R n+1 T n 1 singular codimension 3 n = 3 T-duality NS5-brane n = 3 B 4 web 1-brane string CY R 4 R 4 string T 2 string Buscher T-duality (383) ds 2 = ds g kl (dϕ k + V k )(dϕ l + V l ) (443) k,l=1,2 ds 2 4 B g kl T 2 V k B U(1) (385) V k F k = dv k F k s k I s k J = s k IJ. (444) S IJ web string s k IJ T 2 T-duality NS-NS 3-form Buscher T-dual 3-form H 3 = F 1 dx 5 + F 2 dx 7. (445) ϕ 1 ϕ 2 x 5 x 7 69

70 web-diagram (444) H 3 = s 1 IJ, H 3 = s 2 IJ. (446) S IJ S 1 (x 5 ) S IJ S 1 (x 7 ) S 1 (x i ) x i S 1 (446) T-dual H 3 NS5-brane NS5-brane x 5 -x 7 T 2 (446) J = dh 3 J = s 1 IJ, J = s 2 IJ. (447) D IJ S 1 (x 5 ) D IJ S 1 (x 7 ) D IJ S IJ B 3 x 5 NS5-brane s 1 IJ x7 s 2 IJ NS5-brane (s 2 IJ, s1 IJ ) web R 4 T 2 NS5-brane Σ Buscher Busher H 3 NS5-brane 0 NS5-brane 0 web-diagram worldvolume Web-diagram NS5-brane Σ B s I µ k I, I (448) B µ 3 = max(k I s 1 Iµ 1 s 2 Iµ 2 ) (449) e µ 3 = e k I +ib I x s1 I y s 2 I I (450) x y x = e µ 1+i ϕ 1, y = e µ 1+i ϕ 2 (451) b I k I (449) Web-diagram (449) (450) web-diagram B P (x, y) c I x s1 I y s 2 I = 0, ci = e k I +ib I (452) I P (x, y) c I (448) 70

71 k I c I (452) 0 web web-diagram 24(b) (a) (b) (c) 24: (p, q)-web amoeba 6.2 bipartite toric Calabi-Yau T-dual NS5-brane C 2 NS5-brane T 2 D-brane NS5-brane T 2 AdS/CFT Calabi-Yau cone k I = 0 web µ 1 -µ 2 (s 2 IJ, s1 IJ ) l k = (m k, n k ) m k n k T-dual NS5-brane l k 46 NS5-brane NS5-brane T 2 NS5-brane T 2 C 3 C 3 (p, q)-web junction 3 (1, 0), (0, 1), ( 1, 1). (453) NS5-brane 25(a) 3 NS5-brane NS5-brane 71

72 (a) (b) 25: NS5-brane charge NS5-brane NS5-brane 25(b) 25(b) NS5-brane charge 0 NS5-brane +1 1 NS5-brane NS5-brane charge +1 NS5-brane charge 1 25 (a) (b) (b) δ- 1- (a) (b) 0 (m k, n k ) 0 (m k, n k ) (m k, n k ) = (s 2 I+1, s 1 I+1) (s 2 I, s 1 I) (454) web 0, +1, 1 NS5-brane charge +1 NS5-brane charge 1 charge ± (a) (b) 26: bipartite graph bipartite graph 72

73 0, ±1 bipartite graph 0, ±1 NS5-brane 0, ±1 2 A Q A C C Q A Q 1 Q 2 A C Q 1 Q Q 2 Q 1 27: NS5-brane charge A A Q 1 Q 3 Q ±1 0, ±1 Calabi-Yau Seiberg-dual 6.3 Brane tiling NS5-brane Calabi-Yau D-brane Calabi-Yau cone D3-brane N T-dual web-diagram T 2 D5-brane N D5-brane 5-brane diagram NS5-brane charge ±1 N D5-brane NS5-brane (N, ±1)-brane NS5-brane charge 0 N D-brane (N, ±1-brane SL(2, Z) 1 D5-brane U(1) SU(N) NS5-brane charge 0 Calabi-Yau string coupling g str T-duality NS5-brane string coupling g str = A g str A fivebrane T 2 Calabi-Yau cone r T 2 dual 73

74 A A 0 fivenrane g str 0 T NS5 T D5 (455) D5-brane NS5-brane NS5-brane D5-brane worldvolume NS5-brane bound state NS5-brane charge 0 ±1 D5-brane NS5-brane 28 (a) NS5-brane 28: NS5-brane D5-brane NS5-brane g str 1 g str D5-brane NS5-brane NS5-brane NS5-brane charge 2 NS5-brane (b) D5-brane worldvolume NS5-brane charge ±1 NS5-brane charge g str NS5-brane D5-brane worldvolume D5-brane N bipartite graph U(N) U(1) [30] SU(N) SU(N) 29: 74

75 bipartite graph (N, N) (N, N) bipartite graph N N brane tiling quiver diagram quiver diagram SU(N) quiver diagram brane tiling brane tiling superpotential bipartite graph 30: k I I Φ I k O k = tr Φ I, (456) I k W = k h k O k (457) h k Φ I h k 0 h k 0 k:white β = ( h k) k:black h k (458) β-deformation B [31] 75

76 β = 1 5- T-dual Calabi-Yau [26] β = 1 h k = 1 h k = 1 W = O k O k (459) k:black k:white 6.4 Zig-zag paths bipartite graph NS5-brane zig-zag path zig-zag path bipartite graph zig-zag path bipartite zig-zag path 31: zig-zag path zig-zag path NS5-brane boundary bipartite graph NS5-brane zig-zag path web 6.5 Elliptic model 4.7 elliptic model brane tiling T-dual 2 NS5-brane NS5-brane NS5a NS5b D4-brane 4: T-duality brane tiling Hanany Witten NS5 a NS5 b D4 N x 9 S 1 76

77 T-duality brane tiling 4567 R 3 S 1 R 3 r ( ) r = u x 4 + ix 5 σu, u = (460) x 6 + ix 7 σ S 1 ψ 5 NS5-brane S 1 fiber 5: ± s shrinking cycle ψ r 1 r 2 r NS5 a + NS5 b shrinking cycle s D4 N r 3 (NS5a) (NS5b) S 1 r = 0 x 8 -r 3 NS5-brane shrinking cycle Figure 32) x 9 T-dual NS5-brane shrinking cycle Calabi-Yau NS5a r 3 x 8 NS5b shrinking cycle 32: IIA NS5-brane generalized conifold D3-brane ψ T-dual NS5-brane NS5-brane shrinking cycle NS5-brane D4-brane D5-brane brane tiling 5-brane web brane tiling Figure 33 3 (N, 0) SU(N) 3 elliptic model W = ΦX 1 Y 1 ΦY 2 X 2 X 1 X 2 Y 2 Y 1 + Y 2 Y 3 X 3 X 2. (461) (360) 77

78 X 3 X 3 X 2 X 2 Φ Y 2 Y 3 Y 1 Φ Y 2 Y 3 Y 1 X 1 X 1 33: T- Toric O = tr(φ 1 Φ 2 ) (462) 33 O = tr(φy 2 X 2 ) 34 X 2 Φ Y 2 34: U(1) D3-brane U(1) O = I Φ n I I, n I 0. (463) F -term 78

79 I Φ I F -term F I = 0 Φ I I Φ I I Φ I Φ I Φ I F I = 0 F -term C Φ 2 I C 1 35: Φ I F -term C 1 C 2 3 α β γ O α, O β, O γ (464) γ β α 36: 3 SU(N) U(1) 3 3 (463) O O O n α α O n β β On γ γ, n α, n β, n γ Z (465) 79

80 F -term U(1) U(1) U(1) Φ I U(1) charge Q I Φ I Q I I U(1) P f f P (466) P 37 P [O] cycle flow 37: O f[u(1)] U(1) flow (O U(1) charge) = f[u(1)] P [O] (467) U(1) F -term R- R regular flow regular flow U(1) regular flow U(1) U(1) SU(N) U(1) +1 U(1) 1 80

81 U(1) 38: U(1) 1 SU(N) det Φ I U(1) U(1) 1- U(1) 6.8 U(1) [32] U(1)SU(N) 2 U(1) bi-fundamental field bi-fundamental field U(1) C I Q 2 aic I = 0. (468) I C I 0 zig-zag path zig-zag path (468) C I zig-zag path C I = sign(µ, ν)(c µ C ν ) (469) µ ν I zig-zag path C µ zig-zag path C I C µ C µ C I = zig-zag path 1 (470) U(1) 81

82 RR X 5 Sasaki-Einstein H 3 (X 5 ) ω i C 4 = A i 1 ω i (471) b 2 A i 1 AdS H 3 (X 5 ) 2- N N 3 X 5 T 3 fibration dual cone T 3 2 junction 39: Sasaki-Einstein 2- junction string string charge charge shrink string junction string charge 3 2-cycle n 3 R- Q 2 air I = 2 (472) I R I zig-zag path πr I = sign(µ, ν)(ϕ µ ϕ ν ) (473) ϕ µ zig-zag path π π sign(µν) R-charge 0 1 R I (472) 2π ϕ µ zig-zag path zig-zag path S 1 U(1) R 82

83 6.9 U(1) G = U(1) R U(1) 2 F U(1) n F 1 B (474) G = U(1) R U(1) 2 F U(1) b B (475) b zigzag path 3 U(1) regular flow regular flow bipartite graph SPP 40 1 (a) (b) (c) (d) (e) (f) 40: SPP regular flow regular flow regular flow 40 (a) (b) (c) + (d) = 0 (476) F -term µ = 1, 2,... regular flow f µ 83

84 Φ I P I = P [Φ I ] I F -term Φ I Φ I = µ ρ f µ P I µ (477) ρ µ F -term O γ (477) O γ = ρ µ (478) µ F -term F -term (477) f µ U(1) ρ µ 1 U(1) 6.10 U(1) U(1) U(1) s I µ s µ s µ 3 R- 3 s µ (464) (465) f µ 3 3 f µ α f µ s µ = f µ β (479) f µ γ 3 γ 1 SPP

85 (0,0) (1,0) (1,0) (2,0) (0,1) (1,1) 41: 42: α β α 42 1 µ ν s µ s ν f µ f ν (1, 1) (2, 0) 43 (a) (1, 1) 2 (2, 0) (0, 0) (b) D5-brane (a) (b) 43: NS5-brane (a) 43 (b) web- NS5-brane web- 85

86 [1] T. H. Buscher, Phys. Lett. B194 (1987) 59, B201 (1988) 466. [2] M. Cvetic, H. Lu, C. N. Pope and K. S. Stelle, Nucl. Phys. B 573, 149 (2000) [arxiv:hep-th/ ]. [3] B. Kulik and R. Roiban, JHEP 0209, 007 (2002) [arxiv:hep-th/ ]. [4] I. A. Bandos and B. Julia, JHEP 0308, 032 (2003) [arxiv:hep-th/ ]. [5] R. Benichou, G. Policastro and J. Troost, arxiv: [hep-th]. [6] E. Bergshoeff, C. M. Hull and T. Ortin, Nucl. Phys. B 451, 547 (1995) [arxiv:hep-th/ ]. [7] T. Nakatsu, K. Ohta, T. Yokono and Y. Yoshida, Nucl. Phys. B 519, 159 (1998) [arxiv:hepth/ ]. [8] Dieter R. Brill Electromagnetic Fields in a Homogeneous, Nonisotropic Universe, Phys. Rev. 133, B845 (1964) [9] C. N. Pope Axial-vector anomalies and the index theorem in charged Schwarzschild and Taub-NUT spaces, Nucl.Phys. B141, 432 (1978) [10] A. Giveon and D. Kutasov, Rev. Mod. Phys. 71, 983 (1999) [arxiv:hep-th/ ]. [11] A. Karch, D. Lust and D. J. Smith, Nucl. Phys. B 533, 348 (1998) [arxiv:hep-th/ ]. [12] A. Hanany and E. Witten, Nucl. Phys. B 492, 152 (1997) [arxiv:hep-th/ ]. [13] E. Witten, Nucl. Phys. B 500, 3 (1997) [arxiv:hep-th/ ]. [14] S. Elitzur, A. Giveon and D. Kutasov, Phys. Lett. B 400, 269 (1997) [arxiv:hep-th/ ]. [15] E. Witten, Nucl. Phys. B 507, 658 (1997) [arxiv:hep-th/ ]. [16] S. Gukov, C. Vafa and E. Witten, Nucl. Phys. B 584, 69 (2000) [Erratum-ibid. B 608, 477 (2001)] [arxiv:hep-th/ ]. [17] O. Lunin, arxiv: [hep-th]. [18] M. Grana and J. Polchinski, Phys. Rev. D 63, (2001) [arxiv:hep-th/ ]. [19] S. Kachru, M. B. Schulz and S. Trivedi, JHEP 0310, 007 (2003) [arxiv:hep-th/ ]. [20] O. DeWolfe and S. B. Giddings, Phys. Rev. D 67, (2003) [arxiv:hep-th/ ]. [21] F. Cachazo, K. A. Intriligator and C. Vafa, Nucl. Phys. B 603, 3 (2001) [arxiv:hep-th/ ]. [22] A. Hanany and K. D. Kennaway, Dimer models and toric diagrams, arxiv:hep-th/ [23] S. Franco, A. Hanany, K. D. Kennaway, D. Vegh and B. Wecht, JHEP 0601 (2006) 096, arxiv:hepth/

YITP50.dvi

YITP50.dvi 1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman

More information

3 exotica

3 exotica ( / ) 2013 2 23 embedding tensors (non)geometric fluxes exotic branes + D U-duality G 0 R-symmetry H dim(g 0 /H) T-duality 11 1 1 0 1 IIA R + 1 1 1 IIB SL(2, R) SO(2) 2 1 9 GL(2, R) SO(2) 3 SO(1, 1) 8

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

CKY CKY CKY 4 Kerr CKY

CKY CKY CKY 4 Kerr CKY ( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010)

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

Seiberg Witten 1994 N = 2 SU(2) Yang-Mills 1 1 3 2 5 2.1..................... 5 2.2.............. 8 2.3................................. 9 3 N = 2 Yang-Mills 11 3.1............................... 11 3.2

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. T

Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. T Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. Tachikawa, D. Tong, M. Yamazaki, and Y. Yang 2008.3.21-26,

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information