0 Intoduction 0.1 (localization fomula) T = U(1) M µ M T µ = M M T µ eff M T 2. M T M T Gauss µ µ eff (1) (2) Atiyah-Singe U(1) [At85]

Size: px
Start display at page:

Download "0 Intoduction 0.1 (localization fomula) T = U(1) M µ M T µ = M M T µ eff M T 2. M T M T Gauss µ µ eff (1) (2) Atiyah-Singe U(1) [At85]"

Transcription

1 v /02/11 12 Contents 0 Intoduction U(1) Boel U(1) U(1) Thhe Lie the femion side the boson side Boel A 27 A A A

2 0 Intoduction 0.1 (localization fomula) T = U(1) M µ M T µ = M M T µ eff M T 2. M T M T Gauss µ µ eff (1) (2) Atiyah-Singe U(1) [At85] de Rham [BT82] U(1) Boel U(1) U(1) U(1) 2

3 0.2.3 Thhe (classifying space) (equivaiant cohomology) Koszul duality boson-femion Koszul duality ADHM 1 U(1) Boel Lie G M C G M (g, x) gx M g 1 (g 2 x) = (g 1 g 2 )x M G G G G x = {gx g G} M x M G G M/G = {G x x M} G G x = {x} x M M G G x M G M T x M G G T x M = T x M G ν x T x M G ν x T x M G ν x x M G g gx M G x fee G Lie fee M/G M M/G G 3

4 1.1.2 T = U(1) M fee M/T β π : M M/T π β π β = 0. M M T = ø ) dim M/T < dim M T = U(1) = {t C t = 1} 2k + 1 k S 2k+1 = {(z 0, z 1,..., z k ) C k+1 z a 2 = 1} t (z 0, z 1,..., z k ) = (tz 0, tz 1,..., tz k ). fee CP k = {C k+1 1 } a= T = U(1) n M fee T = U(1) S 2k+1 M t (z, x) = (t 1 z, t x) M T (k) = (S 2k+1 M)/T CP k M T = U(1) S 2k+1 fee M T (k) n µ M n < 2k + 1 µ = 0. M T = ø M 4

5 1.1.5 T = U(1) M fee M T (k) M/T S 2k+1 Gysin H n (M T (k), R) = H n (M/T, R) dim M/T < dim M = n H n (M/T, R) = 0 de Rham µ = dν Stokes µ = dν = 0 M M M S 2k+1 M T M T (k) T = U(1) S 2k+1 fee S 2k+1 S 2k T = U(1) n M M M T fee semifee T T T x µ M T (k) n n < 2k + 1 (M M T ) T (k) µ = dν M T M T ε N(ε) ρ : M [0, 1] N(ε) N(ε/2) 1 d(ρν) M N(ε) (1 ρ)ν M µ = M dν = M M T M d(ρν) + d((1 ρ)ν) = d(ρν) = d(ρν). M N(ε) M semifee multiple obit obifold R U(1) semifee 5

6 1.1.8 µ M T (k) n + p n + p < 2k + 1 M µ [BT82] CP k p [ ] [ ] µ = d(ρν) M N(ε) H p (CP k, R) U(1) π : S 2k+1 CP k Gysin H p (CP k ) ɛ H p+2 (CP k ) π Hp+2 (S 2k+1 ) π! H p+1 (CP k ) H (CP k, R) = R[ɛ]/(ɛ k+1 ), deg ɛ = Thom fom Eule fom n M q X X N X i : X N X π : N X X π i = id X N X X ε q π : E X Thom fom E q τ π! (τ) = 1 Thom fom de Rham H cv π! : H q+k cv (E) = H k (X) Thom fom Thom [BT82] E = N X Thom fom τ X N X X M n q σ σ τ X = σ. τ X X Poincaé dual M X Thom fom τ X X e X = i τ X X M Eule fom X q 6

7 i, π X N X τ X π i τ X = τ X π e X N X n q σ σ π e X = σ M X X = M T e X µ = d(ρν) = M N(ε) M T i d(ρν) e M T i µ = H p (CP k, R) M e T M T e X U(1) Boel k U(1) U(1) S 1 S 3 S 2k+1 S 2k+3 CP 0 CP 1 M M M T (0) CP 0 CP k CP k+1 M T (k) M T (k + 1) CP k CP k+1 M T = M T ( ) = k M T (k) CP = k CP k M T = U(1) M M T Boel CP Gysin H (CP, R) = R[ɛ], deg ɛ = 2 H p T (M, R) Boel = H p (M T, R) Boel M T = U(1) H (CP, R) = R[ɛ] H T (M, R) Boel = lim H (M T (k), R). k 7

8 R[ɛ] ɛ 1 e M T T = U(1) M M T = M T ( ) µ i µ µ = R[ɛ]. M M e T M T ɛ 1 e M T e M T M T = M T ( ) M T = M T ( ) M T (k) k M T (k) T = U(1) S 2k+1 M M T (k) M T (k) S 2k+1 M Lie G π : P B P B 2 U(1) M (x a ; a = 1,..., dim M) dx a dx b dx a = dx a dx b, dx a dx a = 0 dx a p p (p-fom) P = (P ab ) a, b=1,..., dim M P a = b P abdx b P 1 P n = (det P )dx 1 dx n 8

9 2.1.2 M Ω p (M) = {p-foms on M} d = d p : Ω p (M) Ω p+1 (M) 1 f df = a f x a dxa p-fom σ = fdx a1 dx ap dσ = (df)dx a1 dx ap = a a i f x a dxa dx a1 dx ap σ 1 x a dx a / x a 1 M = R 3 d gad, ot, div df = f x 1 dx1 + f x 2 dx2 + f x 3 dx3, d ( g 1 dx 1 + g 2 dx 2 + g 3 dx 3) = g 1 x 2 dx2 dx 1 + g 1 x 3 dx3 dx 1 + g 2 x 1 dx1 dx 2 + g 2 x 3 dx3 dx 2 + g 3 x 1 dx1 dx 3 + g 3 x 2 dx2 dx 3 ( g3 = x 2 g ) ( 2 x 3 dx 2 dx 3 g1 + x 3 g ) ( 3 x 1 dx 3 dx 1 g2 + x 1 g ) 1 x 2 dx 1 dx 2, d ( h 1 dx 2 dx 3 + h 2 dx 3 dx 1 + h 3 dx 1 dx 2) = h 1 x 1 dx1 dx 2 dx 3 + h 2 x 2 dx2 dx 3 dx 1 + h 3 x 3 dx3 dx 1 dx 2 ( h1 = x 1 + h 2 x 2 + h ) 3 x 3 dx 1 dx 2 dx 3. dd = 0 20 x a x b = 9 x b x a

10 dd = 0 dσ dσ = 0 σ dd = 0 Poincaé dz {z C z 0} z H p (M) de Rham = Ke d p /Im d p 1 de Rham Poincaé M R Čech 1-fom 1-fom Lie M ξ Lie L ξ ι ξ L ξ : Ω p (M) Ω p (M), ι ξ : Ω p (M) Ω p 1 (M). Lie L ξ ξ paiing 1 ξ = g x a, a a 1,..., a p ι ξ (fdx a1 dx ap ) = 0, ι ξ (fdx a dx a1 dx ap ) = gfdx a1 dx ap. Lie H. Catan L ξ = dι ξ + ι ξ d = (d + ι ξ ) 2 Lie 10

11 2.2.2 d + ι ξ Ω p (M) ξ = {σ Ω p (M) L ξ σ = 0} H. Catan (d + ι ξ ) 2 = 0 on Ω (M) ξ. d + ι ξ Ω ξ(m) = R[ɛ] Ω (M) ξ = i 0 ɛ i Ω (M) ξ ξ 1 R[ɛ] Ω ξ (M) R[ɛ] d ξ = d ɛ ι ξ deg ɛ = 2 d ξ 1 H. Catan d ξ d ξ = dd ɛ(dι ξ + ι ξ d) + ɛ 2 ι ξ ι ξ = 0. d ξ H p ξ (M) ξ de Rham R[ɛ] µ d ξ µ d ξ µ = 0 µ µ p µ p = 2k, 2k + 1 µ = µ (p) + ɛµ (p 2) + ɛ 2 µ (p 4) + + ɛ k µ (p 2k), µ (i) Ω i (M) ξ d ξ µ = dµ (p) + ɛ( ι ξ µ (p) + dµ (p 2) ) + ɛ 2 ( ι ξ µ (p 2) + dµ (p 4) ) + ɛ k+1 ι ξ µ (p 2k). ξ = 0 R[ɛ] H ξ=0(m) = R[ɛ] H (M) de Rham. 11

12 2.2.3 M M R[ɛ] : Ω ξ(m) R[ɛ] M dim M = p 2k + 1, µ Ω p ξ (M) Stokes d ξ µ = ɛ k dµ (p 2k) = 0. R[ɛ] H ξ (M) R[ɛ] M M M ξ 1,..., ξ Ω ξ (M) Ω p (M) ξ = {σ Ω p (M) L ξa σ = 0, a = 1,..., } Ω ξ(m) = R[ɛ 1,..., ɛ ] Ω (M) ξ, deg ɛ a = 2 d ξ = d ɛ a ι ξa ξ 1,..., ξ Ω ξ (M) R[ɛ1,..., ɛ ] H. Catan a=1 d ξ d ξ = 0. d ξ H p ξ (M) R[ɛ1,..., ɛ ] M R[ɛ 1,..., ɛ ] : Ω ξ(m) R[ɛ 1,..., ɛ ], M : H ξ (M) R[ɛ 1,..., ɛ ] M Lie Lie G M G Lie g M Lie ξ g ξ G M σ G ξ g L ξ σ = 0 12

13 2.2.6 The U(1) Catan model T = U(1) Lie t ɛ : t R ξ t ɛ(ξ) = 1 T = U(1) ξ = ɛ T = U(1) M Ω p (M) t = {σ Ω p (M) L η σ = 0 fo any η t} Ω p (M) t = Ω p (M) ξ ξ U(1) Ω T (M) = R[ɛ] Ω (M) ξ = St Ω (M) t d T = d ξ St = R[ɛ] St Ω (M) t ɛ d T d T = 0 (Ω T (M), d T ) U(1) Catan model H p T (M) Catan Catan model U(1) de Rham H p T (M) Catan = H p T (M, R) Boel. St H T (M) Catan = St H (M) de Rham. 2.3 U(1) Basic foms Lie G π : P B P B π : P B π : Ω p (B) Ω p (P ) B G 13

14 π : P B P = R R, B = R, π(x, y) = x, G = R P f(x, y)dx + g(x, y)dy B g = 0, f y = 0 P σ ξ g ι ξ σ = 0 B g = 0 G = R f y = 0, g y = 0 G G basic fom Ω p (P ) basic = {basic p-foms on P } = {σ Ω p (P ) ξ g; ι ξ σ = 0, L ξ σ = 0} = {σ Ω p (P ) ξ g; ι ξ σ = 0, ι ξ dσ = 0} π (Ω p (B)) = Ω p (P ) basic U(1) T = U(1) π : P B θ P T Lie t t Ω 1 (P ) θ P : t Ω 1 (P ) ɛ t, ξ t ι ξ θ P (ɛ) = ɛ(ξ), L ξ θ P (ɛ) = 0 U(1) T = U(1) p P T p P θ P (ɛ) p = 0 14

15 2.3.3 S 2k+1 U(1) T = U(1) Lie t ɛ : t R nomalization t = e i ɛ t T = U(1) C T = U(1) 2k + 1 k S = S 2k+1 = {(z 0, z 1,..., z k ) C k+1 z a 2 = 1} a=0 t (z 0, z 1,..., z k ) = (tz 0, tz 1,..., tz k ). t ɛ S = S2k+1 z a = x a + i y a ɛ = ( y a x a + ) xa y a a ) ɛ (xb + i y b ) = ɛ e i ɛ (x b + i y b ) = i (x b + i y b ) = y b + i x b. ɛ=0 y a x a + xa y a ( y a x a + ) xa y a z b 2 = y a x a + x a y a = 0 S = S 2k+1 ( y a x a + ) xa y a (x b + i y b ) = y b + i x b. a b ( ) θ S (ɛ) = Im z a dz a = ( y a dx a + x a dy a ) a a ι / ɛ θ S (ɛ) = (( y a ) 2 + (x a ) 2 ) = 1. a ξ t ι ξ θ S (ɛ) = ɛ(ξ). θ S Lie t t Ω 1 (S 2k+1 ) dθ S (ɛ) = 2 a dx a dy a 15

16 ι / ɛ dθ S (ɛ) = 2 a ( y a dy a x a dx a ) = d a ((x a ) 2 + (y a ) 2 ) = 0. ξ t L ξ θ S (ɛ) = ι ξ dθ S (ɛ) = 0. θ S U(1) S 2k+1 CP k U(1) T = U(1) π : P B H p T (P ) Catan = H p (B). St t ) θ P H p (P ) basic H p T (P ) Catan P p µ = µ (p) + ɛµ (p 2) + ɛ 2 µ (p 4) + + ɛ k µ (p 2k), µ (i) Ω i (P ) t d T µ = 0 ι ξ µ (p 2k) = 0 µ + d T (ɛ k 1 θ P µ (p 2k) ) = µ + d(ɛ k 1 θ P µ (p 2k) ) ɛ k µ (p 2k) ɛ k 1 µ cohomologous ˆµ (p) Ω p (P ) t d T ˆµ (p) = 0 dˆµ (p) = 0, ι ξ ˆµ (p) = 0. p 1 ν = ν (p 1) + ɛν (p 3) + ɛ 2 ν (p 5) + + ɛ k ν (p 2k 1), ν (i) Ω i (P ) t d T ν = dν (p 1) + ɛ( ι ξ ν (p 1) + dν (p 3) ) + ɛ k+1 ι ξ ν (p 2k 1) Ω p (M) t ι ξ ν (p 2k 1) = 0. 16

17 ν ν + d T (ɛ k 1 θ P ν (p 2k 1) ) = ν + d(ɛ k 1 θ P ν (p 2k 1) ) ɛ k ν (p 2k 1) ɛ k 1 d T ν ν Ω p 1 (P ) t d T ν Ω p (P ) t ι ξ ν = 0. H p T (P ) Catan = H p (P ) basic = H p (B) T = U(1) π : P B P µ Ω (P ) t 0: µ = 0 R[ɛ]. P ) dim B < dim P de Rham Ω c de Rham H c Thom H p c (R n ) = { R p = n 0 p n R n : H n c (R n ) = R T = U(1) de Rham H T, c T = U(1) R n H n T, c(r n ) = H n c (R n ) R[ɛ] = R[ɛ]. : HT, n c(r n ) = R[ɛ] R n Thom ) µ (n) Ω n (R n ) T = U(1) µ (n) T ξ t dµ (n) = 0, L ξ µ (n) = 0. 17

18 dι ξ µ (n) = (L ξ ι ξ d)µ (n) = 0. Hc n 1 (R n ) = 0 (n 2)-fom µ (n 2) ι ξ µ (n) = dµ (n 2) T = U(1) µ (n 2) T µ (n) + ɛµ (n 2) + ɛ 2 µ (n 4) T = U(1) Lie t ɛ : t R nomalization t = e i ɛ t T = U(1) C T = U(1) R 2 = C z t k z (k Z) t ξ = ɛ z = x + i y ξ = ( ɛ = k y x + x ) y µ (2) = e 1 2 (x2 +y 2) dxdy dµ (2) = 0, ι ξ µ (2) = k e 1 2 (x2 +y 2) ( ydy xdx) ( ) = d k e 1 2 (x2 +y 2 ). µ = µ (2) + kɛ e 1 2 (x2 +y 2 ) µ = R 2 e 1 2 (x2 +y 2) dxdy = 2π, R 2 µ (0, 0) = kɛ. H 2 T, c (R2 ) = R R 2 µ µ eff = 2π kɛ µ Ω c(r 2 ) R[ɛ, ɛ 1 ] Gauss R 2 µ = µ eff (0, 0). 18

19 2.4.3 T = U(1) 2m M p M T M p M T T = U(1) (k 1 (p),..., k m (p)) Z m M µ µ = ( ) m 2π µ p ɛ k 1 (p) k m (p). T = U(1) 2m M p M T T (k 1 (p),..., k m (p)) (Z ) m M µ µ = µ p i (k i(p) ɛ), ɛ = (ɛ 1,..., ɛ ). M p M T (2π) m CP 1 = {[z 0 : z 1 ]} T = U(1) t [z 0 : z 1 ] = [z 0 : tz 1 ] [1 : 0] t [0 : 1] t 1 ( 1 0 = 1 = 2π CP ɛ + 1 ). ɛ 1 CP 2 = {[z 0 : z 1 : z 2 ]} T = U(1) 2 (t 1, t 2 ) [z 0 : z 1 : z 2 ] = [z 0 : t 1 z 1 : t 2 z 2 ] [1 : 0 : 0] t 1 + t 2 [0 : 1 : 0] t1 1 + t 1 1 t 2 [0 : 0 : 1] t t 1 t 1 0 = CP 2 1 = (2π) 2 ( 1 ɛ 1 ɛ ɛ 1 (ɛ 2 ɛ 1 ) + 1 ɛ 2 (ɛ 1 ɛ 2 ) ) M T X 2m X X N X T Eule e X e X p X 0 Thom fom, Eule fom Thom fom Thom Eule fom 19

20 Lie DG Lie Lie g g = g 0, ξ L ξ g = g 1, ξ ι ξ g 0 g 1 DG Lie d(ι ξ ) = L ξ, d(l ξ ) = 0, [L ξ, L η ] = L [ξ, η], [L ξ, ι η ] = ι [ξ, η], [ι ξ, ι η ] = 0. Lie g M Lie DG Lie g 0 g 1 DG Ω (M) DG Lie g 0 g 1 DG g-dg U(1) Weil T = U(1) gaded algeba Λt St = Λ R (θ) R[ɛ], deg θ = 1, deg ɛ = 2 d ξ t, ɛ(ξ) = 1 dθ = ɛ, dɛ = 0, ι ξ θ = 1, ι ξ ɛ = 0 T = U(1) Weil L ξ θ = 0, L ξ ɛ = 0 H ((Λt St ) basic ) = St. T = U(1) π : P B θ P : t Ω 1 (P ) t-dg Λt St Ω (P ) Weil ɛ basic B 20

21 2.5.3 The U(1) Weil model T = U(1) M ((Λt St Ω (M)) basic, d) U(1) Weil model H T (M) Weil Weil model U(1) de Rham T = U(1) S 2k+1 CP k Weil H T (M) Weil = lim k H (M T (k), R) = H T (M, R) Boel U(1) Weil model U(1) Catan model H T (M) Weil = H T (M) Catan. ) µ = k ɛ k (µ k + θµ k) (Λt St Ω (M)) basic L ξ µ = 0, ι ξ µ = 0 L ξ µ k = 0, L ξ µ k = 0, ι ξ µ k + µ k = 0, ι ξ µ k = 0. µ = k ɛ k µ k µ St Ω (M) t, µ = µ θι ξ µ. µ St Ω (M) t L ξ (µ θι ξ µ ) = 0, ι ξ (µ θι ξ µ ) = 0. d T = d ɛ ι ξ d(µ θι ξ µ ) = dµ ɛ ι ξ µ θι ξ dµ = d T µ θι ξ d T µ. 21

22 3 Thhe 3.1 Lie the femion side Lie Lie G G G G H (G) H (G) H (G) H (G). R H (G, R) = Λ R (ψ 1,..., ψ ), deg(ψ i ): odd. G deg(ψ 1 ) deg(ψ ), deg(ψ i ) = 2m i + 1 (m 1,..., m ) G exponent H (U(1), R) = H ((S 1 ), R) = Λ R (ψ 1,..., ψ ), deg(ψ i ) = 1, H (SU(2), R) = H (S 3, R) = Λ R (ψ), deg(ψ) = 3, H (U(n), R) = Λ R (ψ 1,..., ψ n ), deg(ψ i ) = 2i G G X G X X H (X) H (G) H (G) H (X) H (X) G (G-space) H (G) (H (G)-mod) H : (G-space) (H (G)-mod) 3.2 the boson side G G EG BG G (univesal pincipal G-bundle), BG (classifying space) ΩBG G. Hausdoff Y G P f : Y BG ωy = f 1 EG = y Y EG f(y) 22

23 P P EG f Y f BG BG thhe Dinfeld [D04] Lie G U(n) EU(n) G G EU(n) EU(n)/G G C n+k Hemite u, v = u v V n (C n+k ) = {(v 1,..., v n ) v i C n+k, v i, v j = δ ij }, G n (C n+k ) = {C n+k n } V n (C n+k ) Stiefel G n (C n+k ) Gassmann V n (C n+k ) G n (C n+k ), (v 1,..., v n ) span{v 1,..., v n } U(n) n = 1 V 1 (C k+1 ) = S 2k+1 G 1 (C k+1 ) = CP k ( ) S 2k+1 CP k U(1) V n (C n+k ) 2k 2k S 2k+1 V n (C n+k ) V n 1 (C n+k ), (v 1,..., v n ) (v 1,..., v n 1 ) S 2k+1 S 2k+3 S 2k+1 V n (C n+k ) V n 1 (C n+k ) S 2k+3 V n (C n+k+1 ) V n 1 (C n+k+1 ) 23

24 V n (C n+k ) V n (C n+k+1 ) U(n) V n (C n ) G n (C n ) V n (C n+1 ) G n (C n+1 ) V n (C n+2 ) G n (C n+2 ) EU(n) = V C n = k V n (C n+k ), BU(n) = G C n = k G n (C n+k ) EU(n) BU(n) U(n) EU(n) n = 1 BU(1) = CP G A (Milno Stasheff) Lie G BG H (BG, R) = R[x 1,..., x ], deg(x i ) = deg(ψ i ) + 1: even. G H (B(U(1) ), R) = H ((CP ), R) = R[x 1,..., x ], deg(x i ) = 2, 3.3 Boel H (BSU(2), R) = H (HP, R) = R[x], deg(x) = 4, f : Y BG G H (BU(n), R) = H (G C n, R) = R[c 1,..., c n ], deg(c i ) = 2i. ωy = f 1 EG = {(y, p) Y EG f(y) = π(p)} ωy EG π Y f ω G (Space/BG) G (G-space) BG 24

25 G X bx = X G = EG G X bx BG EG X EG bx BG b (G-space) (Space/BG) Boel x 0 X G EG EG X, p (p, x 0 ) bx BG b ω (G-space)(ωY, X) = (Space/BG)(Y, bx) ) ϕ (G-space)(ωY, X) ωy EG X, (y, p) (p, ϕ(y, p)) G ψ (Space/BG)(Y, bx) ψ(y) = [(p, ϕ(y, p))] ψ (Space/BG)(Y, bx) (y, p) ωy ψ(y) EG π(p) G X G EG π(p) 1 x X ψ(y) = [(p, x)] ϕ (G-space)(ωY, X) ψ(y) = [(p, ϕ(y, p))] ωbx = EG X X bωy = EG G ωy Y Y BG H (BG) H (Y ) H : (Space/BG) (H (BG)-mod) 25

26 3.3.6 G X H G(X) = H (bx) = H (X G ) H G(pt) = H (BG) H G = H b : (G-space) (H (BG)-mod) G G E X E G X G H (X G ) = H G (X) E O(1) = S 0 = Z 2 O(1) O(1) mod 2 Eule Stiefel-Whitney U(1) = S 1 U(1) U(1) Eule Chen Steenod X Z 2 X X X α H q (X, Z 2 ) α α H 2q (X X, Z 2 ) P (α) H 2q Z 2 (X X, Z 2 ) Sq(α) = q x q i Sq i (α) H (RP, Z 2 ) H (X, Z 2 ) = Z 2 [x] H (X, Z 2 ) i=0 Sq i : H q (X, Z 2 ) H q+i (X, Z 2 ) Steenod 26

27 A A.1 A.1.1 X 0 X 1 X 2 X k X k+1 X = k X k U X k U X k X k F X k F X k X k {X k } lim X k f : X Y f X k X k X U k X k X k X U X U k = U X k ) X U U X k X k U k X k X k X k+1 X k+1 U k+1 U k = U k+1 X k. X k+1 X k+2 X k+2 U k+2 U k+1 = U k+2 X k+1. i k X i U i U i = U i+1 X i U = i k U i i k U X i = U i. U X U k = U X k A.1.2 T 1 X k T 1 1 X T 1 X T 1 X k T 1 X K k K X k. ) k x k K X k U k = X {x k, x k+1, x k+2,... } U k U k+1 X k U k k U k = X K U k 27

28 i X i {x k, x k+1, x k+2,... } X i T 1 U k X i = X i (X i {x k, x k+1, x k+2,... }) X i U k X K X q σ : q X k σ( q ) X k q = {(t 1,..., t q ) 0 t 1 t q 1}. A.2 A.2.1 (X, A) A X π n (A) π n (X) π n (A) g : (I n, I n ) (A, ) π n (X) h : I n I X h(i n {0}) = h( I n I) =, h(, 1) = g π n+1 (X, A) h : I n I X h(i n {0}) = h( I n I) =, h(i n {1}) A. h h(, 1) π n+1 (X, A) π n (A) π n+1 (X, A) π n (A) π n (X) π n+1 (X, A) h π n (A) g 1 : I n I A g 1 (I n {0}) = g 1 ( I n I) =, g 1 I n {1} = h I n {1}. h g 1 π n+1 (X) π n+1 (X) π n+1 (X, A) π n (A) π n+1 (X) f : (I n+1, I n+1 ) (X, ) π n+1 (X, A) f 1 : I n I I X f 1 (I n I {0}) = f 1 (I n {0} I) = f 1 ( I n I I) =, f 1 (,, 1) = f, f 1 ( (I n I) I) A. 28

29 f 1 f f 1 (, 1, ) : I n+1 A π n+1 (A) π n+1 (X) π n+1 (X, A) π n+1 (A) π n+1 (X) π n+1 (X, A) π n (A) π n (X). A.2.2 π : E B S (coveing homotopy popety: CHP) (homotopy lifting popety: HLP) F : S I B f : S E F (, 0) = π f S ef E π S I F B F : S I E F = π F π : E B See fibation I n (n = 0, 1, 2,... ) CHP π : E B, π( E ) = B quasi-fibation F = π 1 ( B ) π n (E, F ) π n (B) n 1 A quasi-fibation π : E B π n+1 (F ) π n+1 (E) π n+1 (B) π n (F ) π n (E) See fibation quasi-fibation. A.3 A.3.1 (C, d) exhaustive deceasing filtation C n = F 0 C n F 1 C n F 2 C n, F p C n = 0 p d(f p C n ) F p C n+1 29

30 (F C, d) filteed complex C 2 d 1 filtation K p, q = {x F p C p+q dx F p+ C p+q+1 } L p, q = {dy F p C p+q y F p +1 C p+q 1 } filtation filtation g d g A.3.2 filteed complex (F C, d) K p, q = {x F p C p+q dx F p+ C p+q+1 } = F p C p+q d 1 (F p+ C p+q+1 ), L p, q = {dx F p C p+q x F p +1 C p+q 1 } = df p +1 C p+q 1 F p C p+q K p, q dk p, q p+, q +1 = L+1. K p, q +1, Lp, q +1 Lp, q K p, q L p, q := := K p, q = {x F p C p+q dx = 0}, L p, q = L p, q p+1 = {dx F p C p+q x C p+q 1 } dd = 0 K p, q L p, q F p C = K p 0 Kp 1 Kp L p L p 1 Lp 0 = df p+1 C. 30

31 F p C F p+1 C K p F p+1 C = K p+1 1, Kp F p+1 C = K p+1, L p F p+1 C = L p+1 +1, Lp F p+1 C = L p+1. A.3.3 filtation filtation A p, q B p, q = K p, q + F p+1 C p+q, A p, q = K p, q + F p+1 C p+q = = L p, q + F p+1 C p+q, B p, q = L p, q + F p+1 C p+q = A p, q, B p, q F p C F p+1 C filtation F (p) : F p C = A p 0 Ap 1 Ap B p B p 1 Bp 0 = F p+1 C p C filtation (F (p)) p 0 g (F (p)) p 0..., B p 1 1 B p 1 0, A p 0 A p, 1 A p 1 A p,..., 2 A p B p,..., B p 2 B p, 1 B p 1 B p, 0 A p+1 0 A p+1 1,..., d A.3.4 dk p = L p+ +1, dkp +1 = Lp++1 +2, dk p+1 1 = Lp+, K p F p+1 C = K p+1 1, d g F (p) A p /A p +1 Lp+ +1 F p++1 C = L p g F (p + ) Bp+ +1 /Bp+ A p A p +1 K p = K p +1 + Kp+1 d 1 L p+ L p L p = B p+ +1 B p+ K p +1 + Kp+1 1 Kp +1 Kp = K p Ke d (g F (p)) p 0 (A p /B p ) p 0 d 31

32 A.3.5 F p C C HC F p HC HC exhaustive deceasing filtation HC = F 0 HC F 1 HC F 2 HC, F p HC = 0 p g F (p) A p /B p gp HC A p B p = Kp + F p+1 C L p + F p+1 C = K p = L p + K p+1 = F p HC/F p+1 HC = g p HC. {x F p C dx = 0} {dy F p C} + {x F p+1 C dx = 0} A.3.6 A p A p +1 Bp +1 Bp A p+ A p+ +1 Bp+ +1 Bp+ A p B p B p +1 Ap +1 suj. A p A p = +1 d p : Ap B p B p+ +1 B p+ Ap+ B p+ A p+ inj. B p+ B p +1 B p Ap B p Ap A p +1 0 d d p d p = 0. d : K p K p+ A p B p K p = L p + K p+1 d 1 L p+ K p+ + K p++1 1 dd = 0 = A p+ B p+. E p, q = Ap, q B p, q, E p, q = Ap, q B p, q 32

33 d p, q (E, d ) : E p, q ( A Ke d p p = Ke Im d p = Im Ke d p Im d p B p (E, d ) p+, q +1 E. Ap A p +1 ( B p +1 B p Ap B p ) ) = Ap +1 B p = E p = Ap +1 B p, = Bp +1 B p A p A p +1 = B p+ +1 B p+ 1 E +1 = 0, 1 K p 0 = F p C, L p 0 = df p+1 C F p+1 C E p 0 = F p C/F p+1 C = g p C. E p 1 = H(g p C). (g F (p)) p 0 s d s = 0 E p, q = E p, q +1 = = Ep, q = g p H p+q C. A.3.7 (E p, q, d p, q : E p, q p+, q +1 E, E p, q (spectal sequence) +1 = Ke d p, q p, q+ 1 /Im d ) 33

34 A.3.8 Gysin filteed complex F C E p, q 2 = 0 fo q 0, n E p, q 2 = E p, q 3 = = E p, q n+1, Ep, q n+2 = Ep, q n+3 = = Ep, q, 0 E p, q n n+2 Ep, n+1 E p+n+1, 0 n+1 E p+n+1, 0 n+2 0 exact, d n+1 0 E p, 0 H p C E p n, n 0 exact. E p n 1, n 2 E p, 0 2 H p C E p n, n 2 E p+1, 0 2 H p+1 C Gysin A.3.9 C, C m = p Cp, m p filtation F p C = C k,, k p 2 F q C = l q C, l 1. 0 A B C 0 i j filtation 2. filtation E filtation (a) E (b) E 1 d 1 0 HA i HB j HC 0 0 (c) E 2 Ke i, Ke j /Im i, Coke j d 2 Ke i Coke j 0 (d) E 3 0 Im i = Ke j d 2 : Ke i Coke j 34

35 5. H p A H p B H p C H p+1 A H p+1 B H p+1 C H p C H p+1 A d 2 1 (five lemma) f 1 f 2 f 3 f 4 A 1 A2 A3 A4 A5 g 1 g 2 g 3 g 4 g 5 A 1 f 1 A 2 f 2 A 3 f 3 A 4 f 4 A 5 g 2, g 4 g 1 g 5 g 3 1. A i i A i i + 1 filtation 2. filtation E 1 Ke f Coke f 4 Ke f Coke f 4 3, , 4 4. filtation (a) E 3, 4 (b) E 1 Ke g 1 0 Ke g E (c) g Coke g 3 0 Coke g 5 35

36 Refeences [At85] M. F. Atiyah, Cicula symmety and stationay-phase appoximation, Astéisque 131(1985), [AB84] M. F. Atiyah and R. Bott, The moment map and equivaiant cohomology, Topology 23(1984), 1 28 [BT82] R. Bott and L. W. Tu, Diffeential Foms in Algebaic Topology, Spinge GTM 82, 1982 [D04] V. Dinfeld, DG quotients of DG categoies, J. Alg. 272(2004), math.kt/ [GS99] V. W. Guillemin and S. Stenbeg, Supesymmety and Equivaiant de Rham Theoy, Spinge, 1999 [Ha02] A. Hatche, Algebaic Topology, Cambidge Univ. Pess, 2002, [Hu75] D. Husemolle, Fibe Bundles, 2nd ed., Spinge GTM 20, 1975 [ 77]

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp 1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete space T1 T2 =, X = X, X X = X T3 =, X =, X X = X 2 X

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

2

2 III ( Dirac ) ( ) ( ) 2001. 9.22 2 1 2 1.1... 3 1.2... 3 1.3 G P... 5 2 5 2.1... 6 2.2... 6 2.3 G P... 7 2.4... 7 3 8 3.1... 8 3.2... 9 3.3... 10 3.4... 11 3.5... 12 4 Dirac 13 4.1 Spin... 13 4.2 Spin

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge Edwrd Wring Lgrnge n {(x i, y i )} n x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) () n j= x x j x i x j (2) Runge [] [2] = ξ 0 < ξ < ξ n = b [, b] [ξ i, ξ i ] y = /( + 25x 2 ) 5 2,, 0,,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1. R A 1.3 X : (1)X ()X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 (A) f X X f 1 (A) = X f 1 (A) = A a A f f(x) = a x

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

I

I I 2008 I i 1 1 1.1.............................. 1 1.2................................. 7 1.3......................... 13 2 23 2.1......................... 23 2.2............................... 31 3 37

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

1 Euclid Euclid Euclid

1 Euclid Euclid Euclid II 2000 1 Euclid 1 1.1..................................... 1 1.2..................................... 8 1.3 Euclid............. 19 1.4 3 Euclid............................ 22 2 28 2.1 Lie Lie..................................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) = 2004 / D : 0,.,., :,.,.,,.,,,.,.,,.. :,,,,,,,., web page.,,. C-613 e-mail tamaru math.sci.hiroshima-u.ac.jp url http://www.math.sci.hiroshima-u.ac.jp/ tamaru/index-j.html 2004 D - 1 - 1 1.1 [ ].,. 1.1.1

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information