2015/3/18

Size: px
Start display at page:

Download "2015/3/18"

Transcription

1 2015/3/18

2 Overview C (Ps) QED Dirac S S M p o ( ) Calibration ADC Calibration ADC gain TDC Calibration TQ TQ TQ pick-off pick-off pick-off Accidental Threshold pick-off rate pick-off rate pick-off fitting time ADC2 calibration

3 TDC4 calibration ii

4 1 1.1 Overview 1.2 ( ) ( ) Schrödinger equation Bohr 2 ( ) γ 1 diagram ~~~~~~~~ ~~~~~~~~ ~~~~~~~~ ~~~~~~~~ ~~~~~~~~ 1: diagram (Quantum-Electrodynamics;QED) (singlet) (triplet) singlet (para-positronium;p-ps) triplet (ortho-positronium;o- Ps) ψ triplet = b ( ) d ( ) 0 b ( ) d ( ) 0 [ 1 2 b ( ) d ( ) + b ( ) d ( ) ] 0 (1-1-1) ψ singlet = 1 2 [b ( ) d ( ) b ( ) d ( ) ] 0 (1-1-2) para ortho ( )

5 with thetransition frequencies (in GHz), 2: a Hyper ne Splitting b c d e f Lyman g h i Lamb Shift We have also indicated the commonly used names for the most remarkable transitions. Physically, one has the followingselection rule for thedominant radiativetransitions: E1 M1 where E1are the electric dipole (or allowed) transitions (plain lines on the picture), by far the strongest transitions. Theforbidden transitions arethem1magnetic dipole transitions (dashed lines). The most interesting splitting isthe hyper ne splitting of positronium, because it is the most accessible both theoretically (1S states are relatively simple to treat) and experimentally (the higher excited states are predicted to cascade decay into lower states quite rapidly). In (1.1), the state,, appears separately 2 because of the so-called annihilation graph. The hyper ne splitting iscomputed fromtheexpectation values of the spin-spin andannihilation potentials between and states

6 para ortho 2 ([3] ) principal quantum number:n total spin quantum number:s(s = 2s + 1 ) orbital angular momentum number:l (l = 0, 1, 2... L=S,P,D... ) total angular momentum number:j n S L j n ( a) (hyperfine structure) (GHz) 1 a b( c,d,e,f) Lyman α g 18.2 h 12.8 i 8.39 Lamb 1: (E1 ) (M1 ) C (charge conjugation transformation;c ) (P ) CP 3 QED C (1-1-3),(1-1-4) a k,α, a k,α a k,α, a k,α (1-1-3) b (s), d (s) d (s), b (s) (1-1-4) Ps C triplet Ps a k 1,α 1 a k n,α n 0 ( 1) n a k 1,α 1 a k n,α n 0 (1-1-5) singlet Ps b ( ) d ( ) 0 d ( ) b ( ) 0 (1-1-6) = b ( ) d ( ) 0 (1-1-7) 1 [ b ( ) d ( ) d ( ) b ( ) ] 1 [d ( ) b ( ) b ( ) d ( ) ] (1-1-8) 2 2 = 1 2 [b ( ) d ( ) d ( ) b ( ) ] (1-1-9) C-symmetry p-ps (2,4,6,...) o-ps (3,5,7,...) j = 0, 1, 2 p-ps ( 3 P 1 )2 o-ps 3 ( 3 P 1 2 (Landau- Pomeranchuk-Yang theorem) 4 ) 1 3

7 α = 1/137 α 2 1/10000 (E1 ) 3 S 1, 1 S 0 3γ, 2γ (Ps) (Nonrelativistic Quantum Electrodynamics;NRQED) Ps (ultraviolet divergence; ) diagram (infrared divergence; ) diagram diagram 3/31/2015 upload.wikimed self-energy loop 3 ( Wikipedia ) 3: self-energy loop loop diagram NRQED NRQED on-shell Feynman gauge Coulomb gauge Schrödinger QED ( ) o-ps o-ps lifetime puzzle (1946 Pirenne,Wheeler ( ) p-ps ) 1949 A.Ore,J.L.Powell o-ps Lowest Order(LO) Γ theory LO Γ 0 = 7.21µsec M.Deutsch o-ps Γ exp (1951) = 6.8 ± (7)µsec R.H.Beers, V.W.Hughes Γ exp (1968) = 7.29(3)µsec D.W.Gidley,K.A.MArko Γ exp (1976) = 7.104(6)µsec W.E.Caswell, G.P.Lepage, J.R.Sapirstein Γ theory (1977) = (12)µsec Ann Arbor Γ exp (1987) = (13)µsec

8 1977 O(α) 1st o-ps lifetime puzzle 1987 O(α 2 ) 2nd o-ps lifetime puzzule Γ(Ann Arbor) = (10stat.)(8syst.) [ µs 1] (1-1-10) Γ(Tokyo) = (12stat.)(11syst.) [ µs 1] (1-1-11) Γ(theory) = (11) [ µs 1] (1-1-12) [ Γ(theory) = Γ A α ( π + α2 α ) 2 3 ln α + B 3α 3 ] π 2π ln2 α + C α3 π ln α (1-1-13) Γ 0 LO A = (10), B = 45.06(26), C = (23) (1-1-14) Γ 0 = 4α(π2 9) α 5 m 9π 2 (1-1-15) 1.2 QED (1-1-13) O(α 2 ) O(α) ( ) LO... (...) TeX! ( ) Ps notation ( ) A µ F µν Lorentz Maxwell F µν = µ A ν ν A µ (1-2-16) ν ν A µ = µ 0 j µ (1-2-17) µ A µ = 0 (1-2-18) 5

9 Lorentz (1-2-18) A µ A µ A µ = A µ + µ Λ (1-2-19) ν ν Λ = 0 (1-2-20) j µ = 0 Gauge A A = A + Λ A 0 A 0 = A Λ (1-2-21) (1-2-18) A µ 0 Λ = A 0 (1-2-22) A = 0 (1-2-23) j µ 0 (1-2-18) (1-2-23) 1 Boson A µ ϕ Lagrangian density ν ν ϕ = 0 (1-2-24) π(x) L(x) = 1 2 µϕ(x) µ ϕ(x) (1-2-25) π(x) = (1-2-24) Fourier ϕ(x) = k 0 = k (1-2-24) ϕ(x) L(x) = ϕ(x) (1-2-26) d 3 k (2π) 3 2k 0 q(k, t)eik x (1-2-27) d 2 dt 2 q(k, t) + k2 q(k, t) = 0 (1-2-28) k q(k, t) = q 1 (k)e ik0t + q 2 (k)e ik0 t (1-2-29) ϕ(x) = d 3 k (2π) 3 2k 0 (q 1(k)e ik 0 t+ik x + q 2 (k)e ik0t+ik x ) (1-2-30) ϕ(x) ϕ(x) = d 3 k [ ] (2π) 3 2k 0 q 1 (k)e i(k0t k x) + q 2 (k)e i(k0t+k x) + q1(k)e i(k0t k x) + q2(k)e i(k0 t+k x) (1-2-31) 2 4 k k 6

10 ϕ(x) = a(k) = [q 1 (k) + q 2(k)] d 3 k (2π) 3 2k 0 [ (q1 (k) + q 2 ( k))e ik x + (q 1(k) + q 2( k))e ik x] (1-2-32) ϕ(x) = d 3 k (2π) 3 2k 0 [ a(k)e ik x + a (k)e ik x] (1-2-33) π(x) = k 2 = 0, i.e. k 0 = k (1-2-34) d 3 k (2π) 3 2k 0 [ ik 0 a(k)e ik x + ik 0 a (k)e ik x] (1-2-35) [ϕ(x), π(x )] = iδ(x x ) (1-2-36) [π(x), π(x )] = [ϕ(x), ϕ(x )] = 0 (1-2-37) a(k), a (k) a(k), a (k) [ a(k), a (k ) ] = δ 3 (k k ) (1-2-38) H a(k), a (k) [a(k), a(k )] = [ a (k), a (k ) ] = 0 (1-2-39) H = = [ d 3 x π(x) ϕ(x) ] L = = d 3 kk [n ] 2 δ(3) (0) d 3 kk [ a (k)a(k) + a(k)a (k) ] (1-2-40) (1-2-41) n n = a (k)a(k) (1-2-42) 0 H = d 3 kk 0 a (k)a(k) (1-2-43) a (k), a(k) (1-2-40) : : a(k)a (k) := a (k)a(k) (1-2-44) ϕ (+) (x) ϕ ( ) (x) ϕ (+) (x) = d 3 ke ip x a(k) (1-2-45) (2π)3 2k0 7

11 ϕ ( ) (x) = d 3 ke ip x (2π)3 2k 0 a (k) (1-2-46) : ϕ(x)ϕ(y) : = : (ϕ (+) (x) + ϕ ( ) (x))(ϕ (+) (y) + ϕ ( ) (y)) : = ϕ (+) (x)ϕ (+) (y) + ϕ ( ) (x)ϕ (+) (y) + ϕ ( ) (y)ϕ (+) (x) + ϕ ( ) (x)ϕ ( ) (y) (1-2-47) H 0 = 0 (1-2-48) k a (k) 0 (1-2-49) T T (ϕ(x)ϕ(y)) = θ(x 0 y 0 )ϕ(x)ϕ(y) + θ(y 0 x 0 )ϕ(y)ϕ(x) (1-2-50) 2 T (1-2-50) Feynmann Propagator (1-2-33) F = i d 3 k x (2π)3 2kx 0 i F (x, y) = 0 T (ϕ(x)ϕ(y)) 0 (1-2-51) d 3 k y (2π) 3 2ky 0 [ 0 θ(x 0 y 0 )a(k x )e ikx x a e iky y + θ(y 0 x 0 )a(k y e iky y )a (k x )e ikx x 0 ] d 3 k x = i (2π) 3 2kx 0 {θ(x 0 y 0 )e ikx (x y) + θ(y 0 x 0 )e ik0 x (x y) } (1-2-52) θ(x) Heaviside step function 1 t > 0 θ(x) = 0 t < 0 θ(x) = i dα e iαx 2π α + iϵ (1-2-52) Lorentz F (x) = i 0 T (ϕ(x)ϕ(0)) 0 = d 4 k e ip x 1 (2π) 4 p 2 m 2 + iϵ (1-2-53) (1-2-54) (1-2-55) ϵ (α) α A µ (x) = α d 3 k [ (2π) 3 2k 0 a (α) (k)ϵ (α)µ e ik x + a (α) (k)ϵ (α)µ e ik x] (1-2-56) (ϵ (1), ϵ (2), k/ k) 1 ϵ (α) k ϵ (0) 0 8

12 1.2.3 Dirac 1/2 Dirac Dirac Fermion : γ µ {γ µ, γ ν } = γ µ γ ν + γ ν γ µ = 2η µν 1 (4) (1-2-57) 1 (4) 4 4 γ 0 Hermite γ j Hermite Dirac γ 0 = γ 0, γ j = γ j (1-2-58) (γ µ i µ m)ψ(t, x) = 0 (1-2-59) ψ(t, x) Dirac 4 ψ 1 (t, x) ψ(t, x) = ψ 2 (t, x) ψ 3 (t, x) ψ 4 (t, x) (1-2-60) (1-2-57) 4 4 γ 0 = ( 1 (2) (2) ), γ j = ( ) 0 σ j σ j 0 (1-2-61) 1 (2) 2 2 σ j 2 2 Pauli ( ) ( ) σ =, σ 2 0 i =, σ 3 = 1 0 i 0 ( ) (1-2-62) (1-2-61) Dirac-Pauli DP U DP Dirac Lorentz i ϕ γ µ = U γ µ DP U (1-2-63) ψ(x) ψ (x ) = S(ϕ)ψ(x) (1-2-64) S(ϕ) Unitary ) S(ϕ) = exp (i σi 2 ϕ = cos ϕ 2 + iσi sin ϕ 2 x µ, xν Lorentz-Boost (1-2-65) σ µν = i 2 [γµ, γ ν ] (1-2-66) Lorenz-Boost ψ(x) ψ (x ) = S(χ)ψ(x) (1-2-67) 9

13 ( S(χ) = exp i ) 2 σµν χ = cosh χ 2 iσµν sinh χ 2 (1-2-68) (1-2-66) Hermite (1-2-68) Unitary ψ ψ = (ψ 1, ψ 2, ψ 3, ψ 4)γ 0 = (ψ 1, ψ 2, ψ 3, ψ 4) (1-2-69) γ 0 Lorentz-Boost ψ S ψ ψ (x) = Sψ(x) ψ (x ) = ψ(x)s 1 (1-2-70) ψ ψ Lorentz-Boost (x µ ) v (x µ ) Dirac ψ(x) v ψ (x ) ψ (x ) = S(χ( v))ψ(x), p µ x µ = mt (1-2-71) 4 3 p 4 2 s ω p = p 2 + m 2 (1-2-72) ψ(t, x) = u(p, s) exp [ i(ω p t p x)] (1-2-73) 4 u(p, s) Dirac 1 0 u(p = 0, s = +) = 2m 0 0, u(p = 0, s = ) = 2m 1 0 (1-2-74) 0 0 s ψ(t, x) = v(p, s) exp [i(ω p t p x)] (1-2-75) 0 0 v(p = 0, s = ) = 2m 0 1, v(p = 0, s = +) = 2m (1-2-76) ū(p = 0, s)u(p = 0, s ) = 2mδ ss, v(p = 0, s)v(p = 0, s ) = 2mδ ss (1-2-77) v(p = 0, s)u(p = 0, s ) = ū(p = 0, s)v(p = 0, s ) = 0 (1-2-78) 10

14 ψ (x ) = u(p, s) exp( ip µ x µ ) (1-2-79) Dirac ψ (x ) = v(p, s) exp(ip µ x µ ) (1-2-80) (p µ γ µ m)u(p, s) = 0, ū(p, s)(p µ γ µ m) = 0 (1-2-81) (p µ γ µ + m)v(p, s) = 0, v(p, s)(p µ γ µ + m) = 0 (1-2-82) Lorentz-Boost ū(p, s)u(p, s ) = 2mδ ss, v(p, s)v(p, s ) = 2mδ ss (1-2-83) v(p, s)u(p, s ) = ū(p, s)v(p, s ) = 0 (1-2-84) 4 p µ Dirac 4 Dirac p µ Λ ± (p) Λ ± (p) = ±γµ p µ + m 2m (1-2-85) u(p, s)ū(p, s) = p µ γ µ + m (1-2-86) s=+, s=+, v(p, s) v(p, s) = p µ γ µ m (1-2-87) Dirac Dirac Lagrangian L π(x) L = ψ(x)(iγ µ µ m)ψ(x) (1-2-88) Hamilotnian H π(x) = L ψ(x) = iψ (x) (1-2-89) H(x) = π(x) ψ(x) L = ψ (x)γ 0 (iγ j j m)ψ(x) (1-2-90) Heisenberg Dirac (1-2-59) Dirac 1/2 {ψ α (t, x), iψ β (t, y)} = iδ αβδ (3) (x y) (1-2-91) {ψ α (t, x), ψ β (t, x)} = 0, {iψ α(t, x), iψ β (t, y)} = 0 (1-2-92) 11

15 u, v (1-2-81),(1-2-83),(1-2-84),(1-2-86),(1-2-87) ψ, ψ ψ(x) = ψ(x) = d 3 p (2π)3 2ω p d 3 p (2π)3 2ω p s=+, s=+, {b s (p)u(p, s)e ipx + d s(p)v(p, s)e ipx } (1-2-93) {b s(p)ū(p, s)e ipx + d s (p) v(p, s)e ipx } (1-2-94) (1-2-91),(1-2-92) b, d, b, d {b s (p), b r(q)} = δ r,s δ (3) (p q) (1-2-95) {d s (p), d r(q)} = δ r,s δ (3) (p q) (1-2-96) {b s (p), b r (q)} = {d s (p), d r (q)} = {b s(p), b r(q)} = {d s(p), d r(q)} = 0 (1-2-97) b d,b, d ψ(x) = ψ(x) = ψ(x) = ψ(x) = d 3 k (2π)3 sk 0 d 3 k (2π)3 sk 0 d 3 k (2π)3 sk 0 d 3 k (2π)3 sk 0 s=+, s=+, s=+, s=+, d s(k)v(k, s)e ik x (1-2-98) b s (k)u(k, s)e ik x (1-2-99) b s(k)ū(k, s)e ik x ( ) d s (k) v(k, s)e ik x ( ) 1 Dirac Feynnman Propagator : ψψ : = : ( ψ (+) + ψ ( ) )(ψ (+) + ψ ( ) ) : = ( ψ (+) ψ (+) + ψ ( ) ψ (+) ψ ( ) ψ(+) + ψ ( ) ψ ) ( ) is F (x y) αβ = 0 T (ψ α (x) ψ β (y)) 0 = θ(x 0 y 0 ) 0 ψ α (x) ψ β (y) 0 θ(y 0 x 0 ) 0 ψ β (y)ψ α (x)0 ( ) (1-2-93),(1-2-94) θ (1-2-54) S F (x y) = (iγ µ µ x + m) F (x y) d 4 k = e ik (x y) γ µ k µ + m (2π) 4 p 2 m 2 + iϵ d 4 k = e ik (x y) 1 (2π) 4 γ µ k µ + iϵ ( ) 12

16 1.2.4 S Schrödinger H (S) H (S) 0 H (S) I H (S) I Schrödinger Φ (S) (t) Schrödinger = H (S) Φ (S) ( ) t i Φ(S) Φ(t) = e ih(s) 0 t Φ (S) ( ) O(t) = e ih(s) 0 t O (S) e H(S) 0 t ( ) O (S) Schrödinger Φ(t) i Φ t [ = i ih (S) 0 e ih(s) 0 t Φ (S) + e ih(s)t 0 = H (S) 0 e ih(s) 0 t Φ (S) + e ih(s)t 0 Φ (S) ] t ( H (S) 0 + H (S) I ) e ih(s) 0 t e ih(s) 0 t Φ (S) = H I Φ ( ) O Ȯ = i[h (S) 0, O] = i[h 0, O] ( ) H 0 H (S) 0 ( ) U(t, t 0 ) Φ(t) = U(t, t 0 )Φ(t 0 ) ( ) ( ) U U(t 0, t 0 ) = 1 ( ) ( ),( ) ( ) t U(t, t 0 ) = 1 i = 1 i i t U(t.t 0) = H I U(t, t 0 ) ( ) t U(t, t 0 ) = 1 i dth I (t)u(t, t 0 ) t 0 ( ) t 0 dt 1 H I (t 1 ) t +( i) n t t 0 dt 1 H I (t 1 ) + ( i) 2 t 0 dt 1 t1 [ t1 ] 1 i dt 2 H I (t 2 )U(t 2, t 0 ) t 0 t 0 dt 2 t t 0 dt 1 tn 1 t1 t 0 dt 2 H I (t 1 )H I (t 2 ) + t 0 dt n H I (t 1 )H I (t 2 ) H I (t n ) + ( ) t 0 i t > t 0 f Φ f U(t, t 0 )Φ i 2 = U fi (t, t 0 ) 2 ( ) 13

17 i f ( ) w = 1 t t 0 U fi (t, t 0 ) δ fi 2 ( ) ( ) 1 ( ) δ fi S S = U(, ) ( ) ( ) S S ( ) Φ( ) = SΦ( ) ( ) S = S (0) + S (1) + S(2) + = 1 i t1 dt 1 H I (t 1 ) + ( i) 2 dt 1 dt 2 H I (t 1 )H I (t 2 ) t1 +( i) n dt 1 dt 2 tn 1 dt n H I (t 1 )H I (t 2 ) H I (t n ) + ( ) ( ) α(<< 1) S S SS = S S = 1 ( ) t1 S (2) = ( i) 2 dt 1 dt 2 H I (t 1 )H I (t 2 ) ( ) = ( i) 2 dt 1 ( ) ( ) t 1 dt 2 H I (t 2 )H I (t 1 ) ( ) ,2 ρ 1, ρ 2 v rel V T N σ σ = N/(V T ρ 1 ρ 2 v rel ) ( ) ( 1) ; θ θ + dθ N dn, σ dσ dσ = dn/(v T ρ 1 ρ 2 v rel ) ( ) dσ dσ/dθ Target( 2) 1 14

18 (M 1, q 1 ) (M n, q n ) S v rel Target v 1, v 2 ( ) v rel = v 1 v 2 = p 1 /p 0 1 p 2 /p 0 2 = (p 1 p 2 ) 2 m 2 1 m2 2 /(p0 1p 0 2) ( ) ρ k k = d 3 xψk(x)ψ k (x) = d 3 x ψ k (x) 2 ( ) k V = d 3 x ( ) ρ = k k /V ( ) k k = (2π) 3 2k 0 δ (3) (k k ) ( ) k k = (2π) 3 2k 0 δ (3) (0) = 2k 0 d 3 xe ik x k=0 = 2k 0 d 3 x = 2k 0 V ( ) ρ = 2k 0 ( ) n n i d 3 k i (2π) 3 2k 0 k 1 k n k 1 k n = 1 ( ) n = 0 = 0 0 m m! Ψ Ψ = n n i d 3 k i (2π) 3 2k 0 k 1 k n k 1 k n Ψ ( ) Ψ Ψ = n n i d 3 k i (2π) 3 2k 0 k 1 k n Ψ 2 ( ) Ψ Ψ Ψ k i k i + dk i n n i d 3 k i (2π) 2 2k 0 k 1 k n Ψ 2 ( ) 15

19 Ψ α S α β ( ) dn dn = n i=1 d 3 k i (2π) 3 2k 0 β α 2 ( ) S α β β α δ (4) (k β k α ) β S α = i(2π) 4 δ (4) (k β k α )M βα ( ) M βα M β α V T = d 3 x dt = d 4 x ( ) M βα β S α 2 = (2π) 4 δ(4)(k β k α )M βα 2 ( ) (2π) 4 δ (4) (k β k α ) = (2π) 4 δ (4) (k β k α )(2π) 4 δ (4) (0) = (2π) 4 δ (4) (k β k α ) d 4 x dn = V T i=1 = V T (2π) 4 δ (4) (k β k α ) ( ) n d 3 k i (2π) 3 2ki 0 (2π) 4 δ (4) (k β k α ) M βα 2 ( ) ( ),( ),( ) ( ) dσ = n i=1 σ = i=1 d 3 k i M βα 2 (2π) 3 2k 0 4 (2π) 4 δ (4) (k (k 1 k 2 ) 2 m 2 β k α ) ( ) 1 m2 2 n d 3 k i M βα 2 (2π) 3 2k 0 4 (2π) 4 δ (4) (k (k 1 k 2 ) 2 m 2 β k α ) ( ) 1 m2 2 α m n k i, k i + dk i ( ) dn = V T n d 3 k i (2π) 3 2ki 0 (2π) 4 δ (4) (k β k α ) M βα 2 ( ) i=1 k α = (m, 0, 0, 0) (1 ) 2k 0 αv = 2mV 16

20 dγ = dn n 2mV T = d 3 k i (2π) 3 2ki 0 2 i=1 M βα 2 2m (2π)4 δ (4) (k β k α ) ( ) dγ dω = k 32π 2 m 2 M βα 2 ( ) dγ Γ = tot n i=1 d 3 k i (2π) 3 2k 0 i M βα 2 2m (2π)4 δ (4) (k β k α ) ( ) Γ τ = 1/Γ τ (f) Γ f Γ B f = Γ f /Γ f S S (2) S (2) = ( i) 2 dt 1 = ( i) 2 t 1 dt 2 H I (t 1 )H I (t 2 ) d 4 x 1 t 2 <t 1 d 4 x 2 H int (x 1 )H int (x 2 ) ( ) x 2 4 t 2 < t 1 S (2) = ( i) 2 dt 1 = ( i) 2 t 1 dt 2 H I (t 2 )H I (t 1 ) d 4 x 1 t 2 >t 1 d 4 x 2 H int (x 2 )H int (x 1 ) ( ) t 2 t 1 2 e + e e + + e 2γ ( ) Φ i = e e + = b (s ) (p )b (s +) (p + ) 0 ( ) Lagrangian Φ f = 2γ = a k 1 α 1 a k 2 α 2 0 ( ) L = e : ψ(x)γ µ ψ(x) : A µ (x) ( ) S (0) S (1) S S (2) S fi S fi = ( e) 2 d 4 x 1 d t 4 x 2 2γ : ψ(x 1 )γ µ ψ(x 1 )A µ (x 1 ) :: ψ(x 2 )γ ν ψ(x 2 )A ν (x 2 ) : e e + ( ) 2 <t 1 17

21 A µ ( ) S fi = ( e) 2 d 4 x 1 d t 4 x 2 0 : ψ(x 1 )γ µ ψ(x 1 ) :: ψ(x 2 )γ ν ψ(x 2 ) : e e + 2γ A µ (x 1 )A ν (x 2 ) 0 ( ) 2 <t 1 2γ A µ (x 1 )A ν (x 2 ) 0 A µ (x 1 ) x = 2γ A µ (x 1 )A ν (x 2 ) 0 [( ) ( ) ( ) ( )] 1 2ω1 V ϵ(α 1)µ e ik 1 x 1 1 2ω2 V ϵ(α 2)ν e ik 2.x ω2 V ϵ(α 2)µ e ik 2 x 1 1 2ω1 V ϵ(α 1)ν e ik 1 x ( ) 2 ϵ (α1)µ ϵ (α1)µ = (0, ϵ (α1) ) ( ) ϵ α1 k 1 k 1 = ω 1 : ψγψ : : ψγ µ ψ : = : ( ψ (+) + ψ ( ) ) α (γ µ ) αβ (ψ (+) + ψ ( ) ) β : = (γ µ ) αβ (+) ( ψ α ψ (+) ( ) β + ψ α ψ (+) β ψ ( ) β ψ α (+) ( ) + ψ α ψ β ) ( ) ( ) ( ) ψ (+) α,β (x 1) 0 0 t 1 ψ α (x 1 )ψ β (x 1 ) ψ α (+) (x 1 )ψ ( ) β (x 1) (γ µ ) αβ γδ (γ ν ) ψ(+) α (x 1 )ψ (+) β (x ( ) 1) ψ γ (x 2 )ψ (+) δ (x 2 ) ( ) (γ µ ) αβ γδ (γ ν ) ψ(+) α (x 1 )ψ (+) β (x ( ) 1) ψ δ (x 2 )ψ γ (+) (x 2 ) ( ) (+) (+) ( ) ψ α ψ α (x 1 )ψ (+) (x 2 ) δ (γ µ ) αβ γδ (γ ν ) ψ(+) α (x 1 )ψ (+) = (γ µ ) αβ (γ ν ) γδ ψ (+) β (x 1) β (x ( ) 1) ψ γ (x 2 )ψ (+) δ (x 2 ) ψ ( ) γ (x 2 ) ψ (+) α (x 1 )ψ (+) δ (x 2 ) ( ) ( ) x 1, x 2 µ ν, αβ γδ ( ) (γ µ ) αβ γδ (γ ν ) ψ(+) = (γ µ ) αβ (γ ν ) γδ ψ(+) γ α (x 1 )ψ (+) β (x 2 )ψ ( ) β (x 1) (x ( ) 1) ψ δ (x 2 )ψ γ (+) (x 2 ) ψ (+) α (x 1 )ψ (+) δ (x 2 )v ( ) t 2 t 1 18

22 S fi = ( e) 2 d 4 x 1 d 4 x 2 2γ A µ (x 1 )A ν (x 2 ) 0 (γ µ ) αβ (γ ν ) γδ [ (x ( ) (+) 1) ψ γ (x 2 ) ψ α (x 1 )ψ (+) 0 0 ψ (+) β δ (x 2 ) e e + θ(t 1 t 2 ) ] (+) ψ γ (x 2 )ψ ( ) β (x (+) 1) ψ α (x 1 )ψ (+) δ (x 2 ) e e + θ(t 2 t 1 ) ( ) ψ (+) β (x ( ) (+) 1) ψ γ (x 2 ), ψ γ (x 2 )ψ (+) n n n β ψ (+) α (x 1 )ψ (+) (x 2 ) δ 0 ψ (+) β (x 1) ψ γ ( )(x 2 ) = 0 ψ (+) β (x 1) ψ ( ) γ (x 2 ) 0 0 = 0 ψ (+) β (x ( ) 1) ψ γ (x 2 ) 0 ψ (+) α (x 1 )ψ (+) ψ +) δ (x 2 ) e + e α (x 1 )ψ (+) δ (x 2 ) e + e [ ] [ ] m m E + V v(s+) α (p + )e ip+ x1 E V u(s ) δ (p )e ip x2 S ( ) S fi = ( e) 2 [ m [ d 4 x 1 [( ) ( ) ] 1 d 4 x 2 2ω1 V ϵ(α 1)µ e ik 1 x 1 1 2ω2 V ϵ(α 2)ν e ik 2 x 2 + {k 1 k 2, α 1 α 2 } E + V v(s +) α (p + )e ip + x 1 ] (γ µ ) αβ 0 ψ (+) β (x ( ) 1) ψ γ (x 2 ) 0 θ(t 1 t 2 ) 0 ] m δ (p )e p x 2 ] (+) ψ γ (x 2 )ψ ( ) β (x 1)θ(t 2 t 1 ) 0 [ (γ ν ) γδ E V u(s ) ( ) ( ) = ( e) 2 d 4 1 x 1 d 4 x 2 2ω1 V ϵ(α 1)µ e ik 1 x 1 1 2ω2 V ϵ(α 2)ν e ik 2 x 2 ( ) ( ) m E + V v(s+) α (p + )e ip+ x1 (γ µ ) αβ 0 T (ψ β (x 1 ) ψ m γ (x 2 )) 0 (γ ν ) γδ E V u(s ) δ (p )e p x2 +{k 1 k 2, α 1 α 2 } ( ) ( ) ( ) ( ) m m 1 1 = ( e) 2 E V E + V 2ω 1 V 2ω 2 V d 4 x 1 d 4 x 2 e ik1 x1 ik2 x2 ϵ (α1)µ ϵ (α2)ν e ip+ x1+ip x2 ( vγ µ i (2π) 4 d 4 e iq (x 1 x 2 ) ) (γ q + m) q q 2 m 2 γ ν u + iϵ +{k 1 k 2, α 1 α 2 } ( ) ( ) ( ) Feynman Propagator ( ) ( ) 1 diagram, 2 diagram M S ( ) x 1, x 2 d 4 x 1 d 4 x 2 exp[i( k 1 + p + q) x 1 ] exp[i( k 2 + p + q) x 2 ] = (2π) 4 δ (4) [q (p + k 1 )](2π) 4 δ (4) [q (p + k 2 )] ( ) ( ) δ (4) q p + k 2 q p + k 1 M fi 19

23 S fi = δ fi i(2π) 4 δ (4) (p + p + k 1 k 2 ) ( m E V ) ( ) ( ) ( ) m 1 1 M fi ( ) E + V 2ω 1 V 2ω 2 V δ fi 0 M fi = e 2 v [ (s +) (p + ) γ ϵ (α 1) iγ ( p + k 2 ) + m ( p + k 2 ) 2 m 2 + iϵ γ ϵ(α 2) + γ ϵ (α 2) iγ ( p ] + k 1 ) + m ( p + k 1 ) 2 m 2 + iϵ γ ϵ(α 1) u (s ) (p ) ( ) v rel = p E + ( ) :1 d 3 p δ(e E) = p 2 dω ( ) E/ p k 2 δ(e + + E ω 1 ω 2 )d 3 k 1 θ 1 ϕ 1 p + k 1 = p p + ω 1 cos θ 1 + ω 2 1 = k 2 = ω 2, ( ) m + E + = ω 1 + ω 2 ( ) ( ) Ef = (ω 1 + p + k 1 ) k 1 θ 1ϕ 1 k 1 = 1 + k 1 p + cos θ 1 ω 2 = m(m + E +) ω 1 ω 2 ( ) ( ) dσ dω Lab = 1 k 1 2 2π 1 4m p + (2m)2 2ω 1 (2π) 3 M fi 2 2ω 2 ( E f / k 1 ) θ1 ϕ 1 = ω1 2 4 (4π) 2 m 2 M fi 2 (2m) 2 ( ) p + m + E + M fi 2 p = (m, 0, 0, 0), ϵ (α) = (0, ϵ (α) ) ( ) (γ p )(γ ϵ (α) )u (s) (p ) = (γ ϵ (α) )mu (s) (p ) ( ) 20

24 ϵ (α) ϵ (α1) ϵ (α2) ( ) ( p + k 1,2 ) 2 = m 2 2mω 1,2 ( ) M fi = e 2 v(0) [ γ ϵ (α 1 ) γ k 2 γ ϵ (α 2) + γ ϵ(α2) γ k 1 γ ϵ (α1) ] u(p ) ( ) 2mω 2 2mω M fi 2 = e4 4 s +,s = e4 4 = e4 4 Tr (u (s ) O v (s+) )( v (s+) Ou (s ) ) s +,s ū (s ) γ 0 O γ 0 v (s+) v (s+) Ou (s ) s +,s ( [γ 0 O γ 0 γ p ) + + m O 2m ( )] γ p + m 2m ( ) O ( ) 1/4 Ps 4 a µ γ 4 (γ a) = γ 4 [γ a + γ 4 (ia 0 ) ]γ 4 = γ a ( ) Tr[(γ ϵ (α 2) γ k 2 γϵ (α 1) )(iγ p + + m)(γ ϵ (α 1) γ k 2 γ ϵ (α 2) )( γ p + m)] ( ) m Trace 0 0 m 2 0 γ k 2 γ ϵ (α 1) γ ϵ (α 1) γ k 2 = k 2 2 = 0 ( ) (γ a)(γ a) = a 2 ( ) (γ a)(γ b) + (γ b)(γ a) = γ µ a µ γ µ b µ + γ µ b µ γ µ a µ = 2δ µν a ν b µ = 2a b ( ) ( ),( ) ( ) ϵ (α 1,2) p = 0, k 1,2 2 = 0 ( ) Tr[(γ a)(γ b)] = Tr[(γ b)(γ a)] = 4a b ( ) Tr[γ ϵ (α 2) γ k 2 γ ϵ (α 1) γ p + γ ϵ (α 1) γ k 2 γ ϵ (α 2) γ p ] = 16(ϵ (α1) k 2 ) 2 (k 2.p ) + 8(k 1 p )(k 2 p ) = 16mω 2 (ϵ (α1) k 2 ) 2 + 8m 2 ω 1 ω 2 ( ) 21

25 ϵ (α1) k 1 = 0 ( ) k 2 p + = k 1 p ( ) Trace 1 4 s +,s M fi 2 = [ e4 ω2 2(2m) 2 + ω ] (ϵ (α 1) ϵ (α2) ) 2 ω 1 ω 2 ( ) dσ ω = 1r 2 2 [ 0 ω2 + ω ] (ϵ (α 1) ϵ (α2) ) 2 dω Lab 8 p + (m + E + ) ω 1 ω 2 ( ) ( ) ( ) ω = ω 1 = ω 2, k = k 1 = k 2, p + = mv + ( ) ( ) dσ = r2 0 (1 (ϵ (α 1) ϵ (α2) ) 2 ) ( ) dω Lab 4v + 2 σ tot = 1 2 ( ) dσ dω ( ) dω r 0 σ tot = r2 0 4v + 2 2π = πr2 0 v + ( ) p- R = σ tot v + ρ ( ) ρ Ps a 0 Bohr ρ = ψ 1S (x = 0) 2 = 1 π(2a 0 ) 3 ( ) n = 1 1 S Γ(n = 1, 1S 2γ) = lim v + 0 4σunpol tot v + ψ 1s (x = 0) 2 ( ) = ( α ) 2 1 4π m π(2/αm) 3 = 1 2 α5 m ( ) τ singlet = 2 α 5 m sec ( ) 22

26 o- p-ps ( )... o-ps [1]... P = 2π H F A 2 ρ ( ) H F A = I,II H F II H III H IA (E A E I )(E A E II ) ( ) H F A = e 3 ((2π) 3 /k 1 k 2 k 3 L 3 ) 13 k H IA = e(wπ/kl 3 ) 1/2 (u I, α au A ) ( ) I,II (u F, α a 3 u II )(u II, α a 2 u I )(u I, α a 1 u A ) (E 1 k 1 E )(k 3 E 2 E ) ( ) E 1, E 2 = m initial energy k 1, k 2, k 3 E, E k 1 + k 2 + k 3 = 0; k 1 + k 2 + k 3 = 2m ( ) κ L 3/2 = (κ/π) 1/2 ( ) H F A = (2πe 3 /m 2 L 3 )(κ 3 /k 1 k 2 k 3 ) 1/2 (t 1 + t 2 + t 3 ) u ( ) t 1 = a 1 (a 2 a 3 ) a 2 (a 3 a 1 ) a 3 (a 1 a 2 ) + a 1 (a 2 a 3) a 2(a 3 a 1 ) a 3(a 1 a 2), a 1 = a 1 (k 1 / k 1 ) ( ) polarizations H F A 2 = (32π 2 e 6 /3L 3 )(κ 3 /k 1 k 2 k 3 ) {[1 cos(k 2 k 3 )] 2 + [1 cos(k 3 k 1 )] 2 + [1 cos(k 1 k 2 )] 2 } ( ) ρ = (2π) 5 L 6 k 1 k 2 k 3 dk 2 dk 1 dω 1 ( ) 1/τ = (16e 6 κ 5 /9πm 3 ) m 0 F (k 1 )dk 1 = (16/9π)(π 2 9)(e 6 κ 3 /m 2 ) ( ) F (k 1 ) = = 2 m m k 1 { m2 (m k 1 ) 2 k 2 2 k2 3 + m 2(m k 2 ) 2 k 2 3 k2 1 + m 2(m k 3 ) 2 } k1 2k2 2 { k1 (m k 1 ) (2m k 1 ) 2 2m(m k 1) 2 (2m k 1 ) 3 log m k 1 m + 2m k 1 + 2m(m k 1) k 1 k1 2 log m k 1 m } ( ) (...) τ singlet /τ triplet = (4/9π)(π 2 9)(e 2 /ħc) ( ) 23

27 2 2.1 ( ) ( 22 Na) ( Ps) e + ( P.S.) 22 Na e + NaI(Tl) SiO 2 22 Na e + Ps P.S. 2.2 NaI γ Ps(para-,ortho-) シリカパウダー P.S. e + e + signal 2 module signal Na + e + P.S. signal1 2 P.S. e + Ps Ps para-ps,ortho-ps 2 ortho- 3 Ps (para- 2 ortho- 3 ) NaI signal2 4 signal1 signal2 module 5 4 pick-off TQ Ps 22 Na 4: 24

28 2.3 実験装置の配置 以下に 実験装置の実際のセットアップの写真を掲載する 図 5a が実験時の様子で 遮光ビニルを外す前と外した後のものを掲載 した (a) 実験装置の全体図 (c) ビニルを外した図:2 (b) ビニルを外した図:1 図 5: 実験時の実際の配置の様子 P.S. NaI 22Na シリカパウダー 図 6: 装置内部の様子 図 5b は装置上部の鉛ブロックを外して中が見えるようにしたものである 図 5b を見ると分かるように 図 4 で説明し た原理図と同じ配置になるように各装置を配置してある 25

29 2.4 ( 5c) HV 1 NaI 1 div discri 1 fan in&out 105ns delay coin gate HV 2 NaI 2 div discri 1 105ns delay start HV 3 NaI 3 div discri 1 105ns delay TDC gate ns HV 4 P.S. div discri 2 940ns delay gate ns delay(105ns) ADC gate delay(105ns) module 7: HV(1 4) div 2 discri(1,2) div discri NIM fan in,out 3 discri or module 3 in out coin 2 coincidence delay delay module gate1,2 NIM NIM ADC TDC start 26

30 Ps P.S. discri 2 NIM delay 940ns NIM gate 1 NaI NIM 1200ns discri 1 NIM delay 崩壊時間 105ns NIM coin NIM TDC1~3 TDC4 8: 1 P.S. discri2 NIM discri2 2 discri2 gate1 1200ns NIM gate1 discri2 gate1 module discri2 940ns delay 3 NaI discri1 NIM discri1 NIM 105ns delay 4 gate1 discri1 coincidence coin discri1 module TDC1 3 coin NIM 105ns NIM discri1 delay 5 Ps discri1 discri2 P.S. + NaI P.S. delay (TDC4) 940ns MPa 27

31 HV(V) NaI NaI NaI P.S : HV THR(mV) THR THR : discri THR (THR ) ,380,028 event ADC TDC 9 10 Count NaI th th1 Entries e+07 Mean RMS Channel Count NaI th th2 Entries e+07 Mean RMS Channel Count NaI th th3 Entries e+07 Mean RMS Channel 9: ADC 28

32 Count NaI th5 Entries e+07 Mean RMS th Count NaI02 Entries e+07 Mean RMS Channel Channel Count NaI th7 Entries e+07 Mean RMS Count TDC4 th8 Entries e+07 Mean 3420 RMS Channel Channel 10: TDC 3.1 Calibration ADC Calibration ADC ADC Calibration set up 22 Na 511KeV 1274KeV 60 Co 1173KeV 1332KeV 137 Cs 662KeV 5 Calibration 4: ADC Energy (KeV) ADC1 ADC2 ADC

33 3 3 3 ADC Calibration E 1 [KeV ] = ADC (3-1-1) E 2 [KeV ] = ADC (3-1-2) E 3 [KeV ] = ADC (3-1-3) ADC Calibration 11 Count NaI01 10 th1 Entries Mean RMS Energy (KeV) Count NaI02 10 th2 Entries Mean RMS Energy (KeV) Count NaI03 10 th3 Entries Mean RMS Energy (KeV) 11: ADC Calibration 30

34 3.1.2 ADC gain 1 750,000event 511KeV : 13: 511KeV 31

35 14 Energy = a (Channel b) a gain Calibration Energy 14: 511KeV(Channel)-0KeV(Channel) 15: gain 32

36 Channel Channel gain ADC 16 2 ADC Mean RMS Mean gain ADC 16: 750,000 1,500,000event ADC 33

37 17: Mean RMS pedestal veto gate generator NIM ADC setting event TDC1 3 event TDC1 3 event NaI1,NaI2 NaI3 NaI3 threshold Energy 34

38 3.1.4 TDC Calibration 18: ADC TDC fixed delay fixed delay TDC Calibration fixed delay 5 5: fixed delay TDC Time (ns) TDC fitting ( 19) fitting Calibration TDC4 20 T ime[ns] = T DC (3-1-4) 35

39 19: TDC Calibration 20: TDC Calibration 10 TDC1 3 Channel(Time) TDC1 3 start stop delay TDC1 3 event 36

40 3.2 TQ TQ 21 NaI threshold TDC4 γ TQ 21: NaI TQ TQ T T t 0 y max y max E threshold y 0 T (E) = y 0t 0 y max 1 E (3-2-5) fitting T (E) = p 0 (Energy p 1 ) p2 + p 3 (3-2-6) fitting Time=140ns p-ps p-ps 0.13ns Ps 37

41 22: TQ TQ Energy v.s.time(ns) TQ fitting fitting 6 23: TQ 38

42 24: TQ 39

43 6: TQ Parameter NaI1 NaI2 NaI3 p p p p pick-off TQ Time time fit fitting p[1] (ns) N(t) = p[0]exp( t ) + p[2] (3-2-7) p[1] 0 600keV o-ps γ 511keV 511keV 600keV fitting fitting 26 7 pick-off Accidental 7: TQ Lifetime-fitting NAI (ns) NaI ±0.63 NaI ±0.60 NaI ± pick-off pick-off Γ all Γ 3γ... Γ all = Γ 3γ + Γ pick off (t) (3-3-8) Γ pick off... ( ) Γ 3γ ( ) Γ n(t) = n 0 exp(t Γ) + b (3-3-9) ( ) n(t) = n 0 exp [ t t 0 (Γ 3γ + Γ pick off (t))dt ] + b = n 0 exp [ t τ 3γ t 0 (1 + Γ pick off(t) Γ 3γ )dt ] + b (3-3-10) n(t) Γ pick off (t) Γ 3γ τ 3γ Γ pick off (t) Γ 3γ 40

44 25: TQ eV 1/30 ev( ) thermalization [11] [12] pick-off ( ) pick-off pick-off pick-off 41

45 Γ pick off (t) = p[0] exp( 1 t ) + p[2] (3-3-11) Γ 3γ p[1] 3γ pick-off n 3γ n pick off Γ pick off (t) Γ 3γ α...pick off γ β... γ n pick off (t) n 3γ n 3γ β Γ 3γ (3-3-12) n pick off α Γ pick off (t) (3-3-13) = n pick off(t) α n 3γ β Γ pick off(t) Γ 3γ (3-3-14) Accidental Accidental Accidental 900ns 1050ns 6 Accidental 1250keV 511keV Na 22 γ Accidental 26 ( ) Accindental ( ) 600keV Threshold threshold 100keV 100keV pick-off rate n pick off (t) n 3γ n pick off (t) n 3γ 125ns 50ns 120ns 130ns Accidental pick-off pick-off 27 pick-off 125ns 50ns 28(NaI1) 29(NaI2) 30(NaI3) A. Accidental ( ) ( : : ) B. A 511keV pick-off ( : pick-off ) C. B kev n 3γ B pick-off kev n pick off 42

46 : Accidental e-nai3 th5 Entries Mean RMS : PickOff pick-off rate 2n pick off (t) 3n 3γ (ns) 31 B 511keV ( ) : pick-off NaI p[0] p[1] p[2]

47 28: (NaI1) 29: (NaI2) pick-off Accidental 9 pick-off Accidental fitting time Accidental 800ns( NaI3 600ns 44

48 30: (NaI3) 9: pick-off NaI (ns) ± ± ± ns ) refkaishi NaI root 34 NaI 10 10: NaI start time(ns) end time(ns) ADC2 calibration 45

49 31: pick-off TDC4 calibration pick-off 46

50 32: NaI3-TDC4-BG th1 Entries Mean RMS χ 2 / ndf / 63 p e+04 ± 3.631e+02 p ± 1.5 p ± NaI3-TDC4-BG th1 Entries Mean RMS χ 2 / ndf / 63 p e+04 ± 3.631e+02 p ± 1.5 p ± Time Time NaI3-TDC4-BG th1 Entries Mean RMS χ 2 / ndf / 63 p e+04 ± 3.631e+02 p ± 1.5 p ± Time ADC2 calibration ADC2 ADC2 calibration calibration a 11 NaI2 3% 3 NaI 1% 11: a / (ns) threshold threshold threshold threshold 2 47

51 33: A... (3-4-15) B... ( ) (3-4-16) 34: threshold 12 3% 12: threshold (ns) A B

52 3.4.4 TDC4 calibration TDC calibration root TDC calibration T ime = ( ± ) count + (3-4-17) 13 13: TDC calibration (NaI1) TDC calibration (ns) Time=0.2526*count ± 0.8 time=0.2488*count ± % ± 7.24 ns 14 14: (% ) 3 ADC2 calibration 1 4 TDC4calibraion 0.5 fitting Accidental [12] pick-off threshold... threshold HV threshold 49

53 4 setting 1. (a) (b) 2. (a) (b) (c) NaI (d) NaI (e) (f)

54 No.0 setting event 1.2Hz 35: No.0 No.1 No.0 22 Na setting 36: No Hz 51

55 No.2 No.0 setting setting Ps TDC4 decay curve 37: No.2 38 decay curve Ps Ps 38: No.2 TDC4 52

56 No.3 No.0 setting setting β No.2 β ( ) setting β 39: No : No.3 TDC4 No.4 NaI No.0 setting NaI β γ event 1.6Hz 53

57 54

58 No.5 setting P.S. No : No.5 42: No.5 TDC decay curve γ β Ps NaI P.S. γ NaI 55

59 No.6 part.1 1.2Hz NaI event 43: No : No.6 56

60 45: No.6 ADC 46: No.6 TDC ADC 511KeV TDC decay curve NaI event decay curve 57

61 No.7 part.2 No.6 ADC 511KeV TDC decay curve 0.6Hz 47: No : No.7 58

62 49: No.7 ADC 50: No.7 TDC ADC 511KeV TDC decay curve decay cueve setting Ps 59

63 No.8 0.2Hz No.7 decay curve 51: No : No.8 60

64 53: No.8 ADC 54: No.8 TDC ns event 61

65 No.9 setting Hz event 55: No : No. Condition rate (Hz) ADC (511KeV peak) TDC (decay curve) decay curve NaI part part P.S. 8.5 decay curve 1. Ps (No.2,3) 2. (No.2,3) 3. Ps NaI P.S. (No.5,6,7,8) P.S. β P.S. Ps Ps γ NaI No.6,7 γ [1] A.Ore and J.L.Powell, Three-Photon Annihilation of an Electron-Positron Pair, Phys.Rev.75,11(1949). 62

66 [2] William E.Caswell, G.Peter Lepage, and Jonathan Sapirstein, O(α) Corrections to the Decay Rate of Orthopositronium, Phys.Rev.Lett.38,9(1977). [3] Christopher Smith, Bound State Description in Quantum Electrodynamics and Chromodynamics, Université Catholique de Louvain(2002). [4] G.S.Adkins, R.N.Fell and J.Sapirstein, Order α 2 corrections to the decay rate of orthopositronium, [arxiv:hepph/ v2](2000). [5] Bernd A.Kniehl and Alexander A.Penin, Order α 3 ln(1/α) Corrections to Positronium Decays, [arxiv:hepph/ v2](2000). [6] B.A.Kniehl,A.V.Kotikov and O.L.Veretin, Orthopositronium lifetime at O(α) and O(α 3 ln α) in closed form, [arxiv: v2 [hep-ph]](2009) [7] J.J., I,II,. [8],,. [9], - -,. [10],,. [11] M. Skalsey, J. J. Engbrecht, R. K. Bithell, R. S. V allery, and D.W. Gidley, Phys. Rev. Lett. 80, 3727 (1998) [12] S.Asai. (n.d.). Precise measurements of the positronium decay rate and energy level retrieved from experiments/hfs measurement with Zeeman splitting files/ps asai 1.pdf on !! 63

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ

目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ オルソポジトロニウムの寿命測定による QED の実験的検証 課題演習 A2 2016 年後期 大田力也鯉渕駿龍澤誠之 羽田野真友喜松尾一輝三野裕哉 目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ 第 1 章イントロダクション 実験の目的 4 ポジトロニウム ( 後述 ) の崩壊を観測 オルソポジトロニウム ( スピン 1 状態 ) の寿命を測定

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ

- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ - 28 2 15 - γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ 10 3 4 γ 1 3 2 γ 5 2.1..................................... 5 2.1.1.................... 5 2.1.2..............................

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

i x- p

i x- p 3 3 i........................................................................................................... 3............................... 3.. x- p-.................... 8..3.......................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

多体問題

多体問題 Many Body Problem 997 4, 00 4, 004 4............................................................................. 7...................................... 7.............................................

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

nenmatsu5c19_web.key

nenmatsu5c19_web.key KL π ± e νe + e - (Ke3ee) Ke3ee ν e + e - Ke3 K 0 γ e + π - Ke3 KL ; 40.67(%) Ke3ee K 0 ν γ e + π - Ke3 KL ; 40.67(%) Me + e - 10 4 10 3 10 2 : MC Ke3γ : data K L real γ e detector matter e e 10 1 0 0.02

More information

II

II II 28 5 31 3 I 5 1 7 1.1.......................... 7 1.1.1 ( )................ 7 1.1.2........................ 12 1.1.3................... 13 1.1.4 ( )................. 14 1.1.5................... 15

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

19 /

19 / 19 / 1 1.1............................... 1. Andreev............................... 3 1.3..................................... 3 1.4..................................... 4 / 5.1......................................

More information

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( ) ( ) TA 2234 oda@phys.kyushu-u.ac.jp TA (M1) 2161 sumi@epp.phys.kyushu-u.ac.jp TA (M1) 2161 takada@epp.phys.kyushu-u.ac.jp TA (M1) 2254 tanaka@epp.phys.kyushu-u.ac.jp µ ( ) 1 2 1.1...............................................

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π) ( ) 2 S 3 ( ) ( ) 0 O 0 O ( ) O ϕ(x) ϕ (x) d 3 p (2π) 3 2Ep (a p e ipx + b pe +ipx ) ϕ (+) (x) + ϕ ( ) (x) d 3 p (2π) 3 2Ep (a pe +ipx + b p e ipx ) ϕ ( ) (x) + ϕ (+) (x) (px p 0 x 0 p x E p t p x, E p

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

2004 A1 10 4 1 2 2 3 2.1................................................ 3 2.2............................................. 4 2.3.................................................. 5 2.3.1.......................

More information

輻射の量子論、選択則、禁制線、許容線

輻射の量子論、選択則、禁制線、許容線 Radiative Processes in Astrophysics 005/8/1 http://wwwxray.ess.sci.osaka- u.ac.jp/~hayasida Semi-Classical Theory of Radiative Transitions r r 1/ 4 H = ( cp ea) m c + + eφ nonrelativistic limit, Coulomb

More information

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ H k r,t= η 5 Stokes X k, k, ε, ε σ π X Stokes 5.1 5.1.1 Maxwell H = A A *10 A = 1 c A t 5.1 A kη r,t=ε η e ik r ωt 5. k ω ε η k η = σ, π ε σ, ε π σ π A k r,t= q η A kη r,t+qηa kηr,t 5.3 η q η E = 1 c A

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information