NEBULA 09M

Size: px
Start display at page:

Download "NEBULA 09M"

Transcription

1 NEBULA 9M

2 NEBULA( NEutron Detection system for Breakup of Unstable Nuclei with Large Acceptance ) SAMURAI NEBULA 18mm(H) 36mm(V) 1m ±1 ±5 48mm 1 41% (SAMURAI) (γ,n) 1 NEBULA

3 Abstract NEBULA( NEutron Detection system for Breakup of Unstable Nuclei with Large Acceptance ) is a large Neutron- Detector array which now being constructed in RIKEN Nishina Center for Accelerator-Based Science. NEBULA has a large effective area (18mm(V) x 36m(W)). NEBULA is expected to be located at about 1m from the target position, which corresponds to the angular acceptance of +/-1deg(H) x +/-deg(v). NEBULA is composed of layers, each of which has 3* neutron detector modules associated with 1 VETO detectors, are each module is made of fast plastic scintillator(bc-48), with both ends being coupled to a photo-multiplier tube. So NEBULA also has high intrinsic detection-efficiency for neutrons of 4 NEBULA Detector is planned as a part of multi-particle spectrometer SAMURAI(Superconducting Analyzer for Multi particles from RadioIsotope Beams). This is a detector complex for RI-Beam experiment. It aims very broad physical topics, and NEBULA especially play an important role for (γ,n)-type invariant-mass spectroscopy experiment. NEBULA is just suitable to detect fast neutrons(1-3mev) emitted for a wide solid angle in such as experiment. In this thesis, I have evaluated particle-detection performance of NEBULA s neutron detectors and also aimed at establishing a method to evaluate basic performance of NEBULA by an offline test experiment. I have used only off-line event-sources such as cosmic rays and RI source. I have constructed electronics and data-acquisition system(daq), tested and calibrated electronics modules. I used 3 event sources Time Calibrator Module, Cosmic Ray and RI Source. The Calibrator was only used for th timing. Cosmic Ray is used for general purposes. RI Source 41Am-Be was used for the energy calibration. Using these sources, I calibrated time and energy scales. For position calibration, I used external reference detectors. I obtained exact reference for timingto-position calibration. Using calibrated position and geometrical analysis, slew corrections were made as well to obtain better timing resolution. Finally the obtained position and timing resolutions are shown. 1

4 NEBULA NEBULA 9.1 NEBULA ( ) VME VME NEBULA NEBULA TDC Calibrator ( ) NEBULA Am-Be ( ) NEBULA (Raw ) Raw (TDC ) QDC PMT (PMT ) A RUN 51

5 1.1 Nebula SAMURAI SAMURAI Nebula ( ) Nebula NEBULA NEBULA NEBULA BC R774ASSY VETO NEBULA ns DAQ AmBe AmBe CAEN V77TDC I/O CAEN V795QDC I/O NEBULA TDC TDC Calibrator QDC QDC γ ( ) Y y ( ) slew Constant Fraction Triggering (1)

6 4.4 () (3) Slew slew

7 .1 NEBULA BC-48 (Saint-Goban ) R774ASSY NEBULA QDC Calibration (ch) A.1 Run

8 1 1.1 RI BigRIPS RI (Radioactive Isotope ) RI BigRIPS RI RI NEBULA 1.1: Nebula VETO NEBULA( NEutron Detection system for Breakup of Unstable Nuclei with Large Acceptance ) SAMURAI NEBULA ( 1-3MeV ) NEBULA NEBULA 1. NEBULA NEBULA RI SAMURAI(Superconducting Analuzer for Multi particlesfrom RadioIsotope Beams) 1 ( 1.) SAMURAI Bρ 7Tm ( 1.3) NEBULA (γ, n) (γ, n) γ 1.3 NEBULA 1 NEBULA 1 with 7Tm SAMURAI7 6

9 1.: SAMURAI 1.3: SAMURAI Nebula ( ) 7

10 1.4: Nebula

11 NEBULA NEBULA.1 NEBULA Nebula 1-3MeV NEBULA 1cm(H) 1cm(D) 18cm(V) (NEUT) cm(H) 1cm(D) 19cm(V) 1 VETO (.1) NEBULA 36cm 18cm 4 96cm ( NEUT VETO4 ) NEUT,VETO.1 Saint-Goban BC-48 R774ASSY.1: NEBULA VETO VETO Saint-Goban BC-48, R774ASSY NEBULA 4 ( ) (DAQ) 9

12 PC VME VME VME.1 NEBULA1 1. ( ) BC-48 ( ) 1 6 BC-48 (VETO ) 1 (PMT) R774ASSY 144 SY157LC PMT 1 A1535N PMT 7 V895 PMT 1 N-RS413 6 Logic RPV-9 6 TDC V775 AC 6 ( ) RG174/U 1 QDC V79 AC 6 VME 81/4 VME VME VME I/O RPV : NEBULA1.: ( ) NEBULA NEUT( ) 3 1 VETO NEUT 1 :1 1 18cm :3 3 19cm 1

13 .3: NEBULA (-4 ) NEBULA...1 NEBULA 1 7 NEBULA Saint-Goban BC-48 BC-48. VETO (.1) (1mm) VETO Saint-Goban BC Rise Time Decay Time (FWHM).9ns.1ns.5ns 1cm.: BC-48 (Saint-Goban ).. NEBULA R774ASSY (.3) PMT PMT PMT (.5) R774ASSY φ51 -V 1.3: R774ASSY PMT VETO PMT (.6) PMT 11

14 .4: BC-48 (Saint-Goban Material Datasheet ).5: R774ASSY 3 SHV BNC..3 PMT PMT NEUT VETO (.4) UVT NEUT VETO.4:..4 VETO VETO ( ) (.7 ) 1

15 .6: VETO.3.7: NEBULA VETO PMT PMT PMT NEBULA CAEN SY157LC A1535SN (.8) A1535N 1 4ch SHV ch.4 ( ) PMT.9 PMT PMT 19 (.1) 5ns (.11) VME NIM 1 (.1) PMT BNC-BNC BNC-LEMO.1 VME QDC, TDC VME PC 13

16 .8: SY157LC( ),A1535SN( ) SHV.9: NEBULA NEBULA VME NEBULA 4 VME V79 3ch Analogue-to-Digital Converter Analogue-to-Digital Converter(QDC. QDC ) NEBULA QDC CAEN V79 V79 3ch ch V775 3ch Time-to-Digital Converter Time-to-Digital Converter(TDC) Start Stop QDC START STOP QDC NEBULA TDC CAEN V775 3ch 3ch START STOP ch (COMMON) NEBULA START ch (COMMON START) V

17 .1: BNC-LEMO VME NIM.11: 5ns V895 16ch Leading Edge Discriminator ( Discri ) (Discrimination) V895 16ch VME Logic 4 RPV-13 I/O Register DAQ 5 1bit NEBULA.5 (Data Acquisition System:DAQ) NEBULA NBBQ PCI-Express (OS:Scientific 3..9, Linux-.4) nebula1 4 ch 5 15

18 .1:.5.1 VME.13: VME -DAQ VME NBBQ PCI-Express CAMAC VME 6.13 nebula1 PCI-Express VME VME SBS nebula1 VME nebula1 DAQ VME VME : (I/O )BUSY 6 NEBULA VME 16

19 VME NEBULA QDC(CAEN V79) DAQ (rdf ) BUSY 1bit (BUSY) BUSY DAQ I/O VME VME 17

20 3 NEBULA NEBULA 3.1 NEBULA NEBULA 1 1 NEBULA 3.1 / BC (PMT) R774ASSY 7 SY157LC 1 A1535SN 4 V895 6 N-RS413 3 Logic RPV-9 3 TDC V775 3 ( ) RG174/U 6 QDC V79 3 VME 81/4 VME I/O RPV-13 1 PC 1 (nebula1) 1 3.1: NEBULA 3. NEBULA 3 1. TDC Calibrator Am-Be NEBULA 3.3 TDC Calibrator ( ) QDC,TDC NEBULA 1 18

21 QDC pedestal NEBULA CAEN V775QDC QDC Gate TDC TDC (ch ) Time Calibrator TDC Time Calibrator START QDC Gate 3.1: 3.4 NEBULA NEBULA RIBF NEBULA µ ( ) 1. :. : 3. : c 3.5 NEBULA 3 NEBULA 3 19

22 3.: Σ mm Am-Be ch γ 41 Am-Be γ Am Po α Be γ α + 9 Be 1 C + n (3.1) 1 C 1 C MeV (3.) 4.43MeV γ NEBULA λ i λ s λ s = λ i + h (1 cos θ) (3.3) m e c hc E := E i E s = hc λ i = E i (1 λ i + 1 h m ec 1 + E i m e c (1 cos θ) (1 cos θ) ) E i, E s θ = π E i = 4.43MeV E = 4.MeV ch 4.MeV (3.4)

23 3.3: 1

24 3.4: 4 Horizon3 NEBULA ( 3 ) 3.5: 41 AmBe ( ) NEBULA ( )

25 Histogram ID = 15 nebula7 Analogue Up(Au) Histogram ID = 16 nebula7 Analogue Down(Ad) Histogram ID = 17 nebula7 sqrt(au*ad) 3.6: AmBe 4.43MeV γ ID8 QDC (ch) 13ch 3

26 4 NEBULA 4.1 ( ) : 4. NEBULA 4..1 (Raw ) 1) ) NEBULA σ Au/d, σ tu/d NEBULA 7 (PMT) 1 PMT Logic 4

27 TDC TDC Start Stop Logic -495(1bit) PMT Discriminator Logic Stop Start NEBULA NEBULA TDC 4.: TDC (CAEN V775 User Manual ) M M 1 4.3: (T u, T d ) QDC QDC -495(1bit) Gate Logic V I Ohm V = IR R t V dt = R t Idt = RQ t (4.1) t QDC Q t PMT PMT PMT 3 1 PMT PMT AND 1 µ PMT 3 5

28 4.4: 4.5: QDC (CAEN V79 User Manual ) 4.. Raw (x, y, z) NEBULA (x, y, z) x: σ x 6 3 = 34.6mm. y: :y = c S (t d t u ) + y S. σ y c S σ t d + σ t d z: NEBULA x σ z 34.6mm. θ NEBULA θ θ x + y θ := arctan (4.) z NEBULA.4 θ tan θ 6

29 4.6: (A u, A d ) Trigger 4.3 Trigger θ x + y θ tan θ = (4.3) z 1 δθ L x + y (xδx + yδy) x + y z δz (4.4) σθ 1 ( = x L (x + y σx + y σ x ) y) + y + z 4 σz (4.5) x, y ±m z 1m z 4 σ z (4.5) σ x σ y σθ σ x L σ x σ y σθ = y σ y L (x +y ) σ x = 35mm σ θ = 35/1 = 3.5mrad L 1m E ( ) ( A u = A exp H/ y ) (4.6) λ ( A d = A exp H/ + y ) (4.7) λ ( A u A d = A exp H ) = const. (4.8) λ A := ( A u A d = A exp H ) (4.9) λ A H y A A v N v n ( )/( ) : L/t TOF : δv n = σ v n = δl Lδt TOF t TOF t (4.1) TOF 1 σl + L σt TOF (4.11) t TOF t 4 TOF 7

30 4.7: NEBULA (= ) z x, y NEBULA θ L = x + y + z. δl = xδx + yδy + zδz x + y + z (4.1) σ L = 1 ( x x + y + z σx + y σy + z σz ) (4.13) z > 1m x < 1.8m, y <.9m z σl z σ z z = σz. 1) ) c S H/ y, H/ + y. 1) t 1 t u = t 1 + (H/ y)/c S, t d = t 1 + (H/ + y)/c S t := tu+t d = t 1 + H/c S y t 1 = t TOF t TOF = t H = t u + t d H (4.14) c S c S σt TOF = 1 ( σ 4 tu + σt ) d (4.15) v n = σ v n = x + y + z t u +t d H 1 L t TOF (4.16) S ( x σx + y σy + z σz) + L ( σ tu Lσt ) d. (4.17) 4t 4 TOF P n E n p n K n v n 8

31 ( ) p n = v n m n 1 v n c δp n = m n (4.18) 3 δv n (4.19) 1 v n c σ p n = ( m n 1 v n c ) 3 σ v n (4.) E n = p n + m n (4.1) δe n = p n δp n p n + m n (4.) σ E n = p n p n m n p n + m σp n = n p n + m ( ) 3 σv n (4.3) n 1 v n c E n m n E rel ( ) E rel 1, E rel = m 1 + P rel m 1 + m + P rel m (4.4) NEBULA 1, R n E rel = m R + P rel m R + m n + Prel m n (4.5) ( P rel δe rel = σ E rel = ( 1 + m R + Prel ) 1 P m n + Prel rel δp rel (4.6) ) P m R + Prel m relσ n + Prel P rel (4.7) (4.8) P rel = P n P / = Pn + P 4 P np cos θ (4.9) σp 1 ( rel = (Pn P cos θ) σp n + (P /4 P n cos θ) σp + (P n P /4) σθ) (4.3) P rel 4.3 9

32 4.8: TDC ( ) TDC Calibration TDC rawdata spectrum (by TDC Calibrator) Calibrated into real-time(ns) 4.9: Calibrator ( ) ( ) ns (TDC ) TDC 496ch (ch ) (dulation) Time Calibrator ns (n) n 4.8 TDC ch ns (ch) x, (ns) y f : x y f Calibrator QDC QDC ( ) QDC 4.5 OUTPUT INPUT NEBULA CAEN V79QDC (I PED ) ch (THE) I PED I PED I PED. QDC INPUT 3

33 1. QDC GATE. QDC 3. / ch THE : QDC QDC Non-signal Analogue Up Pedestal Subtracted Analogue Up 4.11: QDC TDC Calibrator GATE INPUT PMT ID (ch) PMT (PMT ) PMT (= ) ( ) (gain) QDC MeV 3MeV MeV ch 15MeV 3MeV 83ch 1. PMT V ( 15V) 1-. PMT ch (x ) 31

34 3. (1) -1V(V 1 ), +1V(V 3 ) 1-4. ch (x 1, x 3 ) 5. V i, x i log V = p 1 + p log x + p 3 (log x) p 1, p, p 3 V = V (x) 6. x = 83 PMT V (83) PMT PMT µ = KV αn (4.31) µ PMT V PMT K, α n PMT NEBULA n = 1 (.3 ) x V (4.9) QDC TDC QDC γ (4.33MeV) 4.MeV ( ) 3MeV 4.1: QDC γ Run γ AmBe 1 C 4.43MeV γ γ 4-5MeV ( 3.6) Klein- (3.4) θ = π( ) E i = 4.43MeV 4.MeV ( ) 4.1 Gauss ( f(x) = p 1 exp 1 ( ) ) x p + p 4 + p 5 x + p 6 x (4.3) p Gauss Gauss Gauss ln p 3 p + ln p

35 35 Compton Edge Detection Compton Edge E+6/ 95 P P E- P E- P P E- P E : 41 AmBe ( ) ( ) [3] NEBULA ( 4.13) 4.13: NEBULA (ID=11) ( ) ( ) NEBULA 33

36 Landau 4 : ( f(x) = p 1 exp x p ( exp x p )) + p 4 + p 5 x (4.33) p 3 p Analogue Spectra by Cosmic Ray / 1195 P P P P P E Landau Fit 4.14: ( ) ( ). Landau t d t u (4.48) dt := t d t u = y + H v (4.34) dt y NEBULA 18mm 9mm y +9mm 5 9 f(dt) +9 f y 18mm y NEBULA ( ) 3.5 NEBULA 4 NEBULA 4.15 Horizon1,,3,4 Horizon NEBULA Horizon 1)Horizon1 Horizon3, )Horizon Horizon3,3)Horizon1 Horizon4, 4)Horizon Horizon

37 ID MeV 4.MeV 3MeV ID MeV 4.MeV 3MeV : (ch) 1. (Horizon1 Horizon3) (Horizon Horizon3) (Horizon1 Horizon4) (Horizon Horizon4). dt 3. dt 4 ( 4.16) (dt 1, dt, dt 3, dt 4 ) 4. NEBULA Horizon NEBULA (y 1, y, y 3, y 4 ) 5. 4 (dt i, y i ) (i = 1,, 3, 4) y = f(dt) 4.17 ( ) y (4.34) y = ax + b (4.35) σ y = x σ a + a σ x + σ b (4.36) NEBULA y σ x NEBULA x (34.6mm) Horizon1 Horizon3 (x 1, y 1 ), (x 3, y 3 ) a, b a = y 3 y 1 (4.37) x 3 x 1 σa 1 ( = σ (x 3 x 1 ) y3 + σy 1 + a ( σx 3 + σx )) 1 (4.38) b = y 1x 3 y 3 x 1 (4.39) x 3 x 1 σb 1 ( = x (x 3 x 1 ) 3 σy 1 + x 1σy 3 + (y 1 b) σx 3 + (y 3 b) σx ) 1 (4.4) Horizon Horizon (6mm) 6 = 19.4mm x = 3 ±6, x 1 = 51, y 1 = 165, x 3 = 435, y 3 = 895 : a = 1.31 σ a = (4.41) b = 33 σ b = 14 (4.4) σ y = σ y = 4.6 1mm (4.43) 35

38 4.15: ( ) 4cm run161, 164, ID ID3-14,ID11,1,115,1,,15 NEBULA ( ) 1. ( ). (x, y) x 3. ( )y = f(x) Horizon f(x) x y dt ( ) y time y track F i (yi time ) := (yi time yi track ) (4.44) yi+1 time := yi time F i (y time i ) (4.45) i F i F i 6 ( 1, 1)

39 Td-Tu Coincidence with Horizons 4.16: dt = t d t u ( = ) : ( slew ) 3 slew slew NEBULA Discriminator(CAEN V895) Logic Discriminator slew walk slew t t slew t = t + C Q + D. (4.46) Q C, D slew ( ) NEBULA TDC ( ) 7 slew 7 37

40 Y Coincide with Horizon Detector Y(mm) 1 Y(mm) Detector ID Raw Y Detector ID Calibrated Y 4.17: Y slew t 1, t 4.46 ( t t C1 1 = t t D 1 C ) D (4.47) A1 A t 1, t A 1, A slew slew CFD CFD(Constant Fraction Discriminator) Discriminator CFD f(x vt) τ ( C) f(x v(t + τ)) C(f(x vt)) ( A Af(x vt)) CFT NEBULA CFD 4ch( ) slew 8 [4] slew t t , (x, y ) = (x, ) t v µ 1(x 1, y 1 ) (x, y ) T 1 := v µ (x x 1 ) + (y y 1 ) T := v µ (x x ) + (y y ) 1 8 CFD slew 38

41 Y (Gate Free) Y(mm) 1 Y(mm) Detector ID raw Y Detector ID Calibrated Y : y v i (i = 1, ) T u := v i y 1 T d := v i (y i + H) 1, t u,d t 1u = y 1 (x x 1 ) + + (y y 1 ) v 1 v µ t u = y (x x ) + + (y y ) v v µ t 1d = y 1 + H (x x 1 ) + + (y y 1 ) v 1 t d = y + H v + v µ (4.48) (x x ) + (y y ) v µ (4.49) 9 ( ) x (x x 1 ) + (y y 1 ) x 1 = (y y 1 ) 1 + = (y y 1 ) 1 + tan θ = y y 1 y y 1 cos θ ( ) x (x x ) + (y y ) x = (y y ) 1 + = (y y ) 1 + tan θ = y y y y cos θ (4.5) (4.51) 4 dt u := t 1u t u = y 1 v 1 + y v y 1 y v µ cos θ (4.5) x 1 x y 1 y dt d := t 1d t d = y v + y 1 v 1 y 1 y v µ cos θ + H v 1 H v (4.53) d T := t 1u + t 1d t u + t d = dt u + dt d (4.54) = y 1 y v µ cos θ + H v 1 H v (4.55) = tan θ (v 1 = v = v) 9 y y 1 dt u := x 1 x v tan θ x 1 x v µ sin θ dt d := + x 1 x v tan θ x 1 x v µ sin θ d T = x 1 x v µ sin θ (4.56) (4.57) (4.58) 39

42 Residual Correction Position vs Residual 971. / 11 P P E-1.91E-3 P E E-5 P E-6.658E-8 P5.165E-9.17E-1 P6.5585E-1.16E-13 P7.339E E : ( ) 6 ( ) Slew(A) 4.: slew ( ) 4. XY x 1 x = W = const. 3 1 θ : dt u = W v tan θ + W v µ sin θ dt d = W v tan θ + W v µ sin θ d T = + W v µ sin θ (4.59) (4.6) (4.61) y θ = arctan W y 1 y 3 XY W 1cm 4.3, (W ) 4

43 1.8 Constant Fraction Triggering Input Pulse Delayed Pulse Inverted and Attenuated Pulse Synthesized pulse.6.4 Pulse Height Time 4.1: CFT(Constant Fraction Triggering) Gaussian (Input Pulse) Delayed Pulse, Inverted and Attenuated Pulse (Synthesized Pulse) CFT θ dy slew dy θ Tr θ Tr = f(dy ) (4.6) f f(dy ) θ Tr y dt = t d t u ddt θ Tr (slew ) 4.6 ddt θ Tr arcsin arctan (4.6) f ( θ dt ) d T dt u dt d θ dt p 1 f(θ dt ) = tan(θ dt p ) + p 4 sin(θ dt p ) + p 3 (4.63) dt u, dt d slew x 1 x W d T 4.58 ( ) 41

44 4.: slew dt u, dt d (4.47) ( dt u = t 1u t C1u u = t 1u t u + + D 1u C ) u D u A1u Au ( dt d = t 1d t C1d d = t 1d t d + + D 1d C ) d D d A1d Ad (4.64) (4.65) A 1 (A 1 ) A 1 slew : p 1 f(x) = + p 3 (4.66) x + p f(x) slew slew ( ) : σ t1 t = σt 1 + σt. (4.67) 1 (1-ch ) 4

45 / 1 P E-1 P E-.1536E-1 P Zenith Angle vs d Τ : ( ) d T ( ) ( ) f(x) = p 1 sin(x p ) + p E-1/ 7 P P -.17E-.1113E-1 P P Zenith Angle vs dtu : ( ) dt u ( ) ( ) f(x) = p 1p 4 tan(x p + p3. ) p 1 sin(x p ) + dt u, dt d t 1, t t 1 t 4 σ A : σ B : A σ C : A 1 σ D : A 1, A 4.3 t 1 t σ A = σ 1 + σ (4.68) σb = σ1 + σ (4.69) σc = σ 1 + σ (4.7) σd = σ 1 + σ (4.71) σ 1 43

46 E-1/ 7 P P.1516E E-1 P P Zenith Angle vs dtd : ( ) dt d ( ) ( ) 4.4 p f(x) = 1 sin(x p + p1p4 ) tan(x p + p3. ) E-1/ 3 P P P E P Difference of Time Difference vs Zenith Angle : θ dt, ddt arcsin, arctan θ dt t 1 t σ1 > σ 1 (4.7) σ > σ (4.73) σ D σ 1 σ (4.74) σ 1 σ1 > σ 1 σd / (4.68) σ = σa σ 1 σ > σ σd / σ A σ 1 > σd /. 4.3 ( σ A =.41, σ D =.189) σa σ D / > σ 1 > σd / (4.75). > σ1 >.13 (4.76) ns. (4.69) σ1 = σb σ σb σ D / =.17 44

47 4.7: ( ) ( ) Tu1-Tu(NS) / 57 P P P Analogue(ch) Slew Effect : dt u Slew( ) ( ) dtu / 317 Constant Mean.15.85E- Sigma.15.36E Analogue (not fixed) ηχ Reduced Slew dtu Time-Resolution Evaluation 4.9: Slew dt u ( ) ( ) 45

48 E+5/ 191 Constant.498E Mean E-3 Sigma E-3 Time Resolutions dt(ns) dt(ns) σ A σ B / 83 Constant Mean E- Sigma E / 98 Constant Mean E- Sigma.61.41E / Constant Mean E-1 Sigma E σ C dt(ns) -4-4 σ D dt(ns) 4.3: t 1 t 46

49 ID18, 8 CFD (4.67) 5. ( T ) T.14ns,.3ns,.9ns 5. 4 t d t u mm, 37., 15.3mm 5.3 NEBULA NEBULA 1MeV (FWHM, 8MeV ) σ T.1ns, σ y 3mm. (5.1) ID σ[ns] 18U.154 8U.15 18D.14 8D : ( ) 1 T 47

50 ID σ dtu σ dtd σ tu σ td σ T : ns. ID, ( ) ( ) 48

51 ID σ y : mm. 49

52 6 NEBULA 1 ( ) 3MeV HIMAC π γ 5

53 A RUN 3 NBBQ RUN RUN Am-Be 131, 13, 133 ( ) 1, 11, 13, 14, 15, 113, 114, 115, 116, 138, 139, 14, 144, 145 ( ) 16, 161, 164, 165 A.1: Run 51

54 [1], RIBF, 8 [], Group Meeting Material, 9 [3], Group Meeting Material, 1 [4] Gibelin Julien, Search for low lying dipole strength in the neutron rich nucleus 6 Ne, 5 5

55 NEBULA

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

Canvas-tr01(title).cv3

Canvas-tr01(title).cv3 Working Group DaiMaJin DaiRittaikaku Multiparticle Jiki-Bunnsekiki Samurai7 Superconducting Analyser for Multi particles from RadioIsotope Beams with 7Tm of bending power (γ,n) softgdr, GDR non resonant

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( ) ( ) TA 2234 oda@phys.kyushu-u.ac.jp TA (M1) 2161 sumi@epp.phys.kyushu-u.ac.jp TA (M1) 2161 takada@epp.phys.kyushu-u.ac.jp TA (M1) 2254 tanaka@epp.phys.kyushu-u.ac.jp µ ( ) 1 2 1.1...............................................

More information

untitled

untitled masato@icrr.u-tokyo.ac.jp 996 Start 997 998 999 000 00 00 003 004 005 006 007 008 SK-I Accident Partial Reconstruction SK-II Full reconstruction ( SK-III ( ),46 (40%) 5,8 (9%),9 (40%) 5MeV 7MeV 4MeV(plan)

More information

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi,

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

1..FEM FEM 3. 4.

1..FEM FEM 3. 4. 008 stress behavior at the joint of stringer to cross beam of the steel railway bridge 1115117 1..FEM FEM 3. 4. ABSTRACT 1. BackgroundPurpose The occurrence of fatigue crack is reported in the joint of

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

udc-2.dvi

udc-2.dvi 13 0.5 2 0.5 2 1 15 2001 16 2009 12 18 14 No.39, 2010 8 2009b 2009a Web Web Q&A 2006 2007a20082009 2007b200720082009 20072008 2009 2009 15 1 2 2 2.1 18 21 1 4 2 3 1(a) 1(b) 1(c) 1(d) 1) 18 16 17 21 10

More information

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete J-PARC E15 (TGEM-TPC) TGEM M1 ( ) J-PARC E15 TPC TGEM TGEM J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2 CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

Chap10.dvi

Chap10.dvi =0. f = 2 +3 { 2 +3 0 2 f = 1 =0 { sin 0 3 f = 1 =0 2 sin 1 0 4 f = 0 =0 { 1 0 5 f = 0 =0 f 3 2 lim = lim 0 0 0 =0 =0. f 0 = 0. 2 =0. 3 4 f 1 lim 0 0 = lim 0 sin 2 cos 1 = lim 0 2 sin = lim =0 0 2 =0.

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

( ) : 1997

( ) : 1997 ( ) 2008 2 17 : 1997 CMOS FET AD-DA All Rights Reserved (c) Yoichi OKABE 2000-present. [ HTML ] [ PDF ] [ ] [ Web ] [ ] [ HTML ] [ PDF ] 1 1 4 1.1..................................... 4 1.2..................................

More information

untitled

untitled MPPC 18 2 16 MPPC(Multi Pixel Photon Counter), MPPC T2K MPPC T2K (HPK) CPTA, MPPC T2K p,π T2K > 5 10 5 < 1MHz > 15% 200p.e. MIP 5p.e. p/π MPPC HPK MPPC 2 1 MPPC 5 1.1...................................

More information

X線分析の進歩36 別刷

X線分析の進歩36 別刷 X X X-Ray Fluorescence Analysis on Environmental Standard Reference Materials with a Dry Battery X-Ray Generator Hideshi ISHII, Hiroya MIYAUCHI, Tadashi HIOKI and Jun KAWAI Copyright The Discussion Group

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

[1] 2 キトラ古墳天文図に関する従来の研究とその問題点 mm 3 9 mm cm 40.3 cm 60.6 cm 40.5 cm [2] 9 mm [3,4,5] [5] 1998

[1] 2 キトラ古墳天文図に関する従来の研究とその問題点 mm 3 9 mm cm 40.3 cm 60.6 cm 40.5 cm [2] 9 mm [3,4,5] [5] 1998 18 1 12 2016 キトラ古墳天文図の観測年代と観測地の推定 2015 5 15 2015 10 7 Estimating the Year and Place of Observations for the Celestial Map in the Kitora Tumulus Mitsuru SÔMA Abstract Kitora Tumulus, located in Asuka, Nara

More information

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索  第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智 µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV] 3 PET 3-1 PET 3-1-1 PET PET 1-1 X CT MRI(Magnetic Resonance Imaging) X CT MRI PET 3-1 PET [1] H1 D2 11 C-doxepin 11 C-raclopride PET H1 D2 3-2 PET 0 0 H1 D2 3-1 PET 3-2 PET ( : CYRIC ) ( 0 ) 3-1-2 (3-1

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe *1 *2 *1 JIS A 14812008X TEM 950 TEM 1 2 3 4 JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbestos with Superheated Steam Part 3 An evaluation with

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

1 Visible spectroscopy for student Spectrometer and optical spectrum   phys/ishikawa/class/index.html 1 Visible spectroscopy for student Spectrometer and optical spectrum http://www.sci.u-hyogo.ac.jp/material/photo phys/ishikawa/class/index.html 1 2 2 2 2.1................................................

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i 25 Estimation scheme of indoor positioning using difference of times which chirp signals arrive 114348 214 3 6 , (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,,

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information

JPS2016_Aut_Takahashi_ver4

JPS2016_Aut_Takahashi_ver4 CTA 111: CTA 7 A B A C D A E F G D H I J K H H J L H I A C B I A J I H A M H D G Dang Viet Tan G Daniela Hadasch A Daniel Mazin A C CTA-Japan A, B, Max-Planck-Inst. fuer Phys. C, D, ISEE E, F, G, H, I,

More information

soturon.dvi

soturon.dvi Stopped Muon 94S2003J 11 3 10 1 2 2 3 2.1 Muon : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 : : : : : : : : 4 2.3 : : : : : : : : : : : : : 6 3 7 3.1 : : : : : : : : : : : : : : : :

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

土木学会構造工学論文集(2011.3)

土木学会構造工学論文集(2011.3) Vol.57A (11 3 ) RC Consecutve falling-weight impact test of large-scale RC girders under specified total input-impact energy * ** *** **** ***** Norimitsu Kishi, Hisashi Konno, Satoru Yamaguchi, Hiroshi

More information

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 3 SPECT SJ SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 9ch MPPC array 3 3 9 3 3 9.mm(sigma) . SPECT..................................................................3............

More information

ATLAS 2011/3/25-26

ATLAS 2011/3/25-26 ATLAS 2011/3/25-26 2 LHC (Large Hadron Collider)/ATLAS LHC - CERN - s=7 TeV ATLAS - LHC 1 Higgs 44 m 44m 22m 7000t 22 m 3 SCT( ) SCT(SemiConductor Tracker) - - 100 fb -1 SCT 3 SCT( ) R eta=1.0 eta=1.5

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

XFEL/SPring-8

XFEL/SPring-8 DEVELOPMENT STATUS OF RF SYSTEM OF INJECTOR SECTION FOR XFEL/SPRING-8 Takao Asaka 1,A), Takahiro Inagaki B), Hiroyasu Ego A), Toshiaki Kobayashi A), Kazuaki Togawa B), Shinsuke Suzuki A), Yuji Otake B),

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

main.dvi

main.dvi CeF 3 1 1 3 1.1 KEK E391a... 3 1.1.1 KL 0 π0 νν... 3 1.1.2 E391a... 4 1.1.3... 5 1.2... 6 2 8 2.1... 8 2.2... 10 2.3 CeF 3... 12 2.4... 13 3 15 3.1... 15 3.2... 15 3.3... 18 3.4... 22 4 23 4.1... 23 4.2...

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

LEPS

LEPS LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow 20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow 1115084 2009 3 5 3.,,,.., HCI(Human Computer Interaction),.,,.,,.,.,,..,. i Abstract Method for Recognizing Expression Considering

More information

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量 33 Non-destructive Measurement of Retained Austenite Content in Austempered Ductile Iron Yoshio Kato, Sen-ichi Yamada, Takayuki Kato, Takeshi Uno Austempered Ductile Iron (ADI) 100kg/mm 2 10 ADI 10 X ADI

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

MEG μ + e + γ ( ) ( MEGA) = (BSM) MEG μ + e + γ ( : a few ) 180 γ μ + e +

MEG μ + e + γ ( ) ( MEGA) = (BSM) MEG μ + e + γ ( : a few ) 180 γ μ + e + MEG ( ) 2011 9 10 MEG μ + e + γ ( ) (1.2 10-11 MEGA) = (BSM) MEG μ + e + γ ( : a few 10-13 ) 180 γ μ + e + μ eγ @MEG DC μ + (590MeV 1.3MW @ ) γ: e + : MEG (900L) (VUV) 846 PMT : PMT : PMT PMT (DRS4) particle

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

soturon.dvi

soturon.dvi 12 Exploration Method of Various Routes with Genetic Algorithm 1010369 2001 2 5 ( Genetic Algorithm: GA ) GA 2 3 Dijkstra Dijkstra i Abstract Exploration Method of Various Routes with Genetic Algorithm

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra

IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra 1,a) 1 1 2 1 Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on traffic Abstract: The equipment with Wi-Fi communication function such as a smart phone which are send on a regular

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

OHO.dvi

OHO.dvi 1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

CdTe γ 02cb059e :

CdTe γ 02cb059e : CdTe γ 02cb059e : 2006 5 2 i 1 1 1.1............................................ 1 1.2............................................. 2 1.3............................................. 2 2 3 2.1....................................

More information

nenmatsu5c19_web.key

nenmatsu5c19_web.key KL π ± e νe + e - (Ke3ee) Ke3ee ν e + e - Ke3 K 0 γ e + π - Ke3 KL ; 40.67(%) Ke3ee K 0 ν γ e + π - Ke3 KL ; 40.67(%) Me + e - 10 4 10 3 10 2 : MC Ke3γ : data K L real γ e detector matter e e 10 1 0 0.02

More information

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l c 28. 2, y 2, θ = cos θ y = sin θ 2 3, y, 3, θ, ϕ = sin θ cos ϕ 3 y = sin θ sin ϕ 4 = cos θ 5.2 2 e, e y 2 e, e θ e = cos θ e sin θ e θ 6 e y = sin θ e + cos θ e θ 7.3 sgn sgn = = { = + > 2 < 8.4 a b 2

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information