??

Size: px
Start display at page:

Download "??"

Transcription

1 () 2014,,,,, - (ISS) Sontag Hamilton-Jacobi H L 2-, Hamilton-Jacobi-Issacs H,, ISS, ISS Strict Feedback Form,, / / / /154

2 3 Aine System ( ) m ẋ = (x)g(x)u = (x) g i (x)u i i=1 y = h(x) 3 x n C 1 C C 1 - φ ψ φ 1 x, u( R m ), y( R l ) General Nonlinear System ẋ = (x, u) y = h(x) x, u( R m ), y( R l ) ψ C 1 - M R n (= n ) C ( ) C () / /154 (3 ) 3 x ẋ? p R n T p M R n T M x ẋ n x M, (x, ẋ) T M ẋ x ẋ x ẋ T M U = M U R n 3 3 () R SO(3) 3 : R T R = I, det R =1 Ṙ = S(ω)R R Ṙ 3 ω =(ω 1,ω 2,ω 3 ) T S(ω) = 0 ω 3 ω 2 ω 3 0 ω 1 ω 2 ω 1 0 ω R Ṙ / /154

3 3 1 Aine System x n ẋ x n ẋ = (x) (x) Lipschitz Lipschitz / / 154 Lipschitz Lipschitz : ẋ = (x), x R n x(0) = x 0 x(t) (t 0)?? Lipschitz Lipschitz x ẋ = { 1 (x 0) 1 (x<0) Time x =0 ẋ =0 ẋ = / / 154

4 Lipschitz Lipschitz Lipschitz ẋ = sgn(x) 3 x x Lipschitz Lipschitz : (x) U Lipschitz (x 1 ) (x 2 ) M x 1 x 2 M(> 0) Time ( R n ) Lipschitz Lipschitz (x) Lipschitz x =0 x U x U x Lipschitz (x) Lipschitz ( U x M ) / / 154 Lipschitz Lipschitz Lipschitz Lipschitz = Lipschitz Lipschitz Lipschitz Lipschitz (Picard-Lindelö ) (x) Lipschitz ẋ = (x), x(0) = x 0 x(t) T (x 0 ) 0 t T () (x) Lipschitz ẋ = (x), x(0) = x 0 : ẋ = x 3 ( Lipschitz) Finite time blowup Lipschitz Lipschitz (y = x 2 ) Lipschitz Time / / 154

5 Lipschitz Lipschitz (Peano existence theorem) Picard-Lindelö (x) t Peano existence theorem Carathéodory s existence theorem Coddington & Levinson (1955) E.A. Coddington, N. Levinson: Theory o Ordinary Dierential Equations, McGraw-Hill (1955) / / 154 (): () 2 M(θ) θ c(θ, θ)g(θ) =u () u = c(θ, θ)g(θ)m(θ)v θ = v? / / 154

6 : Lie Lie 1 Lg h 0 y (SISO ) MIMO Lie Lie 1 Lg h 0 y (SISO ) MIMO ẋ = (x)g(x)u y = h(x) : u = α(x)β(x)v v y v u y x / / 154 Lie Lie Lie Lie 1 Lg h 0 y (SISO ) MIMO tool = Lie () h(x): (x): M R(x) M TM (x n = ) (L h)(x) = n i=1 h x i i (x) = h x (x)(x) Lie Lie 1 Lg h 0 y (SISO ) MIMO : ẋ = (x) x(t) x y = h(x) dy dt = h(x) dx x dt = h(x) x (x) =(L h)(x) L h x h(x) ẋ = (x) (L g L h)(x) =(L g (L h))(x) (L k h)(x) =(L (L ( (L h) )))(x) }{{} k times / / 154

7 t 2? Lie Lie 1 Lg h 0 y (SISO ) MIMO 1 (m =1)1 (l =1) t ẋ = (x)g(x)u y = h(x) ẏ = h x dx dt = h x ((x)g(x)u) =(L gu h)(x, u) =L h(x)l g h(x)u L gu x h(x) h(x) Lie Lie 1 Lg h 0 y (SISO ) MIMO d k y dt k? NO = Lk guh 2 1 ÿ = d dt {(L guh)(x(t),u(t))} x x u ÿ = d dt (L guh)(x, u) =L gu L h L gu L g h u u L g h ẏ = C(Ax Bu) =CAx CBu L g h u y 2 y 2 L g h = / / 154 L g h 0 y 2 : L g h =0 y 2 ẏ = L h(x)l g h(x) u : L g h =0 Lie Lie 1 Lg h 0 y (SISO ) MIMO u (L g h)(x) u = L h(x)v L g h(x) ẏ = v v y = L g h Lie Lie 1 Lg h 0 y (SISO ) MIMO L g L h(x) 0 ÿ = L gu L h = L 2 h(x)l g L h(x) u u = L2 h(x)v L g L h(x) ÿ = v / / 154

8 3... Lie Lie 1 Lg h 0 y (SISO ) MIMO : L g h =0, L g L h =0 d 3 y dt 3 L g L 2 h(x) 0 = L gul 2 h = L 3 h(x)l g L 2 h(x) u u = L3 h(x)v L g L 2 h(x) d3 y dt 3 = v Lie Lie 1 Lg h 0 y (SISO ) MIMO : x 0 y ρ x 0 U x0 (L g L i h)(x) =0, i =0,...,ρ 2, x U x0 (L g L ρ 1 h)(x 0 ) 0 ρ ρ ẏ = L h(x) ÿ = L 2 h(x). d ρ 1 y dt ρ 1 d ρ y dt ρ = Lρ 1 h(x) = Lρ h(x)l gl ρ 1 h u ρ u / / 154 (SISO ) Lie Lie 1 Lg h 0 y (SISO ) MIMO ẋ = Ax bu y = cx (x) =Ax, g(x) =b, h(x) =cx = ρ cb = cab = ca 2 b = = ca ρ 2 b =0, ca ρ 1 b 0 () Lie Lie 1 Lg h 0 y (SISO ) MIMO ρ ρ : : d ρ y dt ρ = Lρ h(x)l gl ρ 1 h(x) u u = Lρ h(x)v L g L ρ 1 h(x) d ρ y dt ρ = v y = h(x), ẏ = L h(x),...,d ρ 1 y/dt ρ = L ρ 1 h(x) (x ) / / 154

9 MIMO Lie Lie 1 Lg h 0 y (SISO ) MIMO MIMO (l m) : x 0 (ρ 1,...,ρ l ) x 0 U x0 (L gk L i h j )(x) =0, j =1,...,l,i=0,...,ρ j 2, k =1,...,m, x U x0 L g1 L ρ1 1 h 1 (x 0 ) L gm L ρ1 1 h 1 (x 0 ) rank. = l L g1 L ρl 1 h l (x 0 ) } {{ L gm L ρl 1 h l (x 0 ) } =G(x) d ρ 1 y 1 dt ρ 1. d ρ l y l dt ρ l = L ρ1 h 1(x). L ρl h l(x) G(x)u Lie Lie 1 Lg h 0 y (SISO ) MIMO L ρ1 h 1(x) u = G T (x)(g(x)g T (x)) 1. v L ρl h l(x) d ρ 1 y 1 dt ρ 1. d ρ l y l dt ρ l = v / / 154 (1) Lie Lie 1 Lg h 0 y (SISO ) MIMO Lie Lie 1 Lg h 0 y (SISO ) MIMO : ẋ 1 = u 1 cos x 3 ẋ 2 = u 1 sin x 3 ẋ 3 = u 2 (x 1,x 2 ) x 3 u 1 ( 1) u 2 ( 2) (x 1, x 2 ) (G(x) ) ( ) x1 d cos x y = 3 x 2 d sin x 3 x 3 (x 1 d cos x 3, x 2 d sin x 3 ) / / 154

10 (2) Lie Lie 1 Lg h 0 y (SISO ) MIMO r =(1, 1) : [ cos x3 d sin x ẏ = G(x)u = 3 sin x 3 d cos x 3 d 0 G(x) : u = ]( u1 [ cos x3 sin x 3 ) ](ṙx k{r x (x 1 d cos x 3 )} sin x 3 /d cos x 3 /d ṙ y k{r y (x 2 d sin x 3 )} (r x,r y ) u 2 ) Lie Lie 1 Lg h 0 y (SISO ) MIMO / / 154 Normal Form n ρ n ρ? Φ(x): x (z T,ξ T ) T Normal Form Normal Form z 1 = h(x),z 2 = L h(x),...,z ρ = L ρ 1 h(x) ξ Normal Form: y = z 1 ż 1 = z 2.. ż ρ = L ρ h(φ 1 (z,ξ)) L g L ρ 1 h(φ 1 (z,ξ)) u ξ = γ(z,ξ)ζ(z,ξ)u SISO ζ(z,ξ) = / / 154

11 ζ( ) =0 Normal Form ζ( ) =L g ξ =0 ξ : L g ξ = ξ x g =0 n 1 ( = ) z 1,...,z ρ 1 z 1,...,z ρ 1 n ρ ξ Normal Form y 0 y t 0 z =0 z =0 u = L gl ρ 1 h(φ 1 (0,ξ)) L ρ h(φ 1 (0,ξ)) n ρ ξ = γ(0,ξ) ζ(0,ξ) L gl ρ 1 h(φ 1 (0,ξ)) L ρ h(φ 1 (0,ξ)) ζ(z,ξ) =0 y 0 y y (exo system) / / 154 Normal Form : ẋ = y = ( 0 [ ] 0 1 x ) x ( ) 1 u 1 G(s) = s 1 s 2 s 1 u = x 1 x 2 v : [ ] ( ) ẋ = x v y = ( 0 1 ) G(s) = s 1 s(s 1) x Normal Form : () ( ) / / 154

12 z Normal Form Vidyasagar : [ ] ẋ = (x) ż = g(z)γ(x, z)x ẋ = (x) ż = g(z) γ(x, z) ẋ = (x), ż = g(z) ẋ = x ż = z z 3 x x Normal Form [ ] [ 0 ] [ ] : ẋ 1 = x 2 u ẋ 2 = x 1 x 2 1x 3 2 u y = x 1 : ẋ 2 = x 2 () : u = x 1 x 2 : ẋ 1 = x 1 () ẋ 1 = x 1 ẋ 2 = x 2 x 2 1x / / 154 Normal Form z? 2 z : 2 () Normal Form () () / / 154

13 Lie 1 2 λ (A) (B) Lie 1 2 λ (A) (B) n λ(x) n ρ =0 λ(x) λ(x)? / / 154 λ(x) Lie (Lie bracket) Lie 1 2 λ (A) (B) : : u = α(x)β(x)v (β(x) 0) z =Φ(x) ż = a 0 a n 1 z. 0 v 1 z 1 n Φ 1 (x)(= z 1 ) n : 1 1 n (= ) λ(x) Lie 1 2 λ (A) (B) Lie bracket : (x), g(x): M TM ( ) [,g](x) = g (x) x x g(x) 2 g x = ( x) T sec. x x = g ( x) T sec. T sec. x = g ( x) x = ( x) T sec. x1 x2 [,g](x) = lim T 0 1 T 2 (x 1(x, T ) x 2 (x, T )) / / 154

14 Lie (2) Lie 1 2 λ (A) (B) (a 1, a 2 ) [,g] = [g, ] [a 1 1 a 2 2,g]=a 1 [ 1,g]a 2 [ 2,g] [,a 1 g 1 a 2 g 2 ]=a 1 [,g 1 ]a 2 [,g 2 ] [,[g, p]][g, [p, ]] [p, [,g]]=0 (Jacobi ) [α, βg] =αβ[,g]α (L β) g (L g α) β L [,g] h = L L g h L g L h () Lie 1 2 λ (A) (B) n : 1 (n 1) 2 (L g λ)(x) =0 (L g L λ)(x) =0. (L g L n 2 λ)(x) =0 n (L g L n 1 λ)(x) 0 Lie bracket Lie : L [,g] λ = L L g λ L g L λ / / ad Lie 1 2 λ (A) (B) L g λ =0 L g L λ = L [,g] λ L L g λ =0 }{{} =0 L g L 2 λ = L [,g] L λ L L g L λ }{{} =0 = L [,[,g]] λ L L [,g] λ =0 }{{} =0. L g L n 2 λ =( 1) n L [,[ [,g] ]] λ =0 Lie 1 2 λ (A) (B) : 0 = g ad g =[,g] ad k g =[,[ [,g] ]] }{{} k times ad 0 g = g / / 154

15 1 2 Lie 1 2 λ (A) (B) Lie Bracket 1 : (L g λ)(x) =0 (L ad gλ)(x) =0. (L ad n 2 λ)(x) =0 g Lie 1 2 λ (A) (B) 1 (L g L n 1 λ)(x) = (L [,g] L n 2 λ)(x)(l L g L n 2 λ)(x) }{{} =0 = L ad 2 λ L L [,g] L n 3 λ gln 3 = L ad 3 gln 4 λ L L ad 2 = =( 1) n 1 L ad n 1 λ 0 g gln 4 λ L L g L n 2 λ L 2 L g L n 3 λ / / 154 λ Lie 1 2 λ (A) (B) : (L g λ)(x) =0 (L ad λ)(x) =0 g (L ad 2 gλ)(x) =0 λ(x). (L ad n 2 λ)(x) =0 g (L ad n 1 λ)(x) 0 g Lie 1 2 λ (A) (B) : g, ad g,...,ad n 1 g ad k g g, ad g,...,ad k 1 g ad k g(x) =c 0 (x)g(x)c 1 (x)ad g(x) c k 2 (x)ad k 1 g(x) ad k1 g(x) =c 0 (x)ad g(x)(l c 0 )(x)g(x) c k 3 (x)ad k 1 g(x)(l c k 3 )(x)ad k 2 g(x) c k 2 (x){c 0 (x)g(x)c 1 (x)ad g(x) c k 2 (x)ad k 1 g(x)} (L c k 2 )(x)ad k 1 g(x) ad k1 g(x) / / 154

16 (A) (1) Lie 1 2 λ (A) (B) λ(x) (A): n g, ad g,...,ad n 1 g (=) Lie 1 2 λ (A) (B) 1 (n 1) (L g λ)(x) =0 (L ad gλ)(x) =0 (L ad 2 gλ)(x) =0. (L ad n 2 λ)(x) =0 g ( 2 ) [ λ λ x,p(x) =,..., λ ] p(x) =0, x 1 x n p = g, ad g,...,ad n 2 g λ/ x g, ad g,...,ad n 2 g / / 154 (2) Lie 1 2 λ (A) (B) n (n 1) g, ad g,...,ad n 2 g 0 ω(x) s(x)( λ/ x) =ω(x) λ(x) s(x) ( 0)? s(x) Lie 1 2 λ (A) (B) x R n q L p1 λ =0,...,L pq λ =0 (p 1 (x),...,p q (x) ) : n q λ 1 (x),...,λ n q (x) (=) Δ(x) =span{p 1 (x),...,p q (x)} Δ(x) [δ 1,δ 2 ] Δ, δ 1 Δ, δ 2 Δ / / 154

17 (B) Lie 1 2 λ (A) (B) λ(x) (B): span{g(x), ad g,...,ad n 2 g} Lie 1 2 λ (A) (B) Δ n = span{g, ad g,...,ad n 1 g} n Δ n 1 = span{g, ad g,...,ad n 2 g} / / 154 (1) (2) Lie 1 2 λ (A) (B) L δ λ(x) =0(δ Δ n 1 ) λ(x) 1 λ x [g, ad g,...,ad n 1 g] =[0,...,0, L ad n 1 λ] g 0 L g λ = L g L λ = = L g L n 2 λ =0 L g L n 1 λ 0 λ(x) n Lie 1 2 λ (A) (B) : z =Φ(x) : ż = z 0 0 : z 1 = λ(x) z 2 =(L λ)(x). z n =(L n 1 λ)(x) 0. 0 L n λ L gl n 1 λ u u = Ln λ(x) L g L n 1 λ(x) v L g L n 1 λ(x) / / 154

18 (1) (2) Lie 1 2 λ (A) (B) : ( ) 2 i M z = MG K z z 0 e = Ri d dt {L(z)i} L(z) = 2K z z 0 L 0 z () i e M G z M Magnetic levitation system z 0 R () L(z) inductance (z ) L 0 inductance() K (= μ 0N 2 S/4) () R L i e Lie 1 2 λ (A) (B) e = e s () : z s Kes /(R MG) z 0 ż s = 0 i s e s /R : x =(z z s, ż,i i s ) T : u = e e s : x 2 ẋ = G K(x 3 i s ) 2 0 M(x 1 z s z 0 ) 2 0 u 1/L(x φ(x) 1 z s ) ( 1 φ(x) = Rx 3 2Kx ) 2(x 3 i s ) LL(x 1 z s ) (x 1 z 0 z s ) / / 154 (3) (4) g(x) = 0 0 1/L(x 1 z s ) ad g =[,g] = ad 2 g =[,[,g]] = (A) 0 2K(x 3 i s ) M(x 1 z 0 z s ) 2 L(x 1 z s ) R L(x 1 z s ) 2 2K(x 3 i s ) M(x 1 z 0 z s ) 2 L(x 1 z s ) rankδ 3 = rank{,[,g], [,[,g]]} =3 () / 154 Lie 1 2 λ (A) (B) (B) Δ 2 = span 0 1, [g, [,g]] = Δ 2 involutive 0 2K M(x1z 0 z s ) 2 L(x1x s ) 2 0 Δ 2 λ = x / 154

19 Lie 1 2 λ (A) (B) n 2 3 Lyapunov Lyapunov V Lyapunov / / 154 (1) Lyapunov Lyapunov V Lyapunov : ẋ = (x) (x 0 )=0 x 0 (equilibrium (point), ) x x =0 ẋ =0 Lyapunov Lyapunov V Lyapunov : Boundedness ẋ = (x) U x(0) K(x(0)) x(t) K(x(0)) (t 0) () : (Local) Stability LS ẋ = (x) x =0 () ɛ>0 δ(ɛ) > 0 x(0) <δ(ɛ) x(t; x(0)) <ɛ,t 0 () () ( ) () Lyapunov () / / 154

20 (2) (3) Lyapunov Lyapunov V : Attractiveness U x(0) x(t; x(0)) 0 (t ) U () : (Local) Asymptotical Stability LAS ẋ = (x) x =0 () x =0 Lyapunov Lyapunov V : Global Stability GS ẋ = (x) x =0 : Global Asymptotical Stability GAS ẋ = (x) x =0 Lyapunov Lyapunov Lyapunov / / 154 Lyapunov Lyapunov V (x) Lyapunov : V (x) : V (x) : V (0) = 0 V (x) > 0, x 0 LS: V 0 LAS: V < 0(x 0) Lyapunov Lyapunov V Lyapunov x 2 x 1 V (x) =x 2 1 2x 1 x 2 2x 2 2 =(x 1 x 2 ) 2 x 2 2 Lyapunov Lyapunov V Lyapunov () GS: V 0 V (x) () GAS: V < 0(x 0) V (x) V (x) x V (x) < 0 (x 0) (Radially unbounded)? V (x) ( x ) / / 154

21 V ẋ = (x) (x)? V (x) (x) : 2 1 Lyapunov Lyapunov V Lyapunov V (x) = V x dx dt V (x) = x (x)(= L V (x)) V / x V x (x) = ( V x 1,..., V x n L V L L V ) Lyapunov Lyapunov V Lyapunov (= Separatrix) / / 154 Lyapunov Lyapunov Lyapunov V Lyapunov V (x) S a = {x V (x) a} (a >0) (= ) a S a = {x V (x) =a} V V (x) p(a) < 0, x S a, a > 0 V p(v ) < 0 V 0 Lyapunov Lyapunov V Lyapunov Lyapunov : V < 0 (x 0) V Lyapunov : V 0 V Lyapnov V =0 Lyapunov (Lyapunov ) Lyapunov? / / 154

22 Yoshizawa La Salle = Lyapunov Lyapunov V Lyapunov Ω x(0) t>0 x(t) Ω Ω Yoshizawa La Salle : Ω Ω E( Ω) E M Ω M Ω E M Lyapunov : V (x) Lyapunov E = {x V (x) =0} x =0 x =0 M = {0} Lyapunov Lyapunov V Lyapunov : [ ] 0 1 ẋ = Ax = x 1 1 [ ] V (x) =x T Px = x T 1 0 x = x x 2 2 Lyapunov V (x) =x T (PA A T P )x = 2x 2 2 E = {x x 2 =0} E ẋ 2 =0 x E ẋ 2 = x 1 x 2 =0 E / / 154 V (x) V (x) Lyapunov Lyapunov V Lyapunov / / 154

23 1 : V (x) : s(u, y) u y : () () () () ( 0) 1 : V (x(t 1 )) V (x(t 0 )) t1 t 0 s(u(t),y(t))dt V (x)... V (0) = 0, V(x) 0 s( )... V ( ) V s(u, y) / / () : u Required supply: ( t1 ) V r (x(t 1 )) in s(u, y) dτ, x(t 0 )=0 u,t 1 t 0 t1 t 0 s(u, y)dt 0, x(t 0 )=0, u( ) 1 V r available storage ( V a (x(t 0 )) = sup u,t 1 t1 t 0 ) s(u, y)dt 1 : x(t 0 )=0 : required supply V r V (x) V a (x) V (x) V r (x) / / 154

24 1 s(u, y) =γ 2 u 2 y 2 : u y L 2 - γ s(u, y) =u T y : s(u, y) =u T y a u 2 b y 2 : IFP OFP IFP, OFP Hill & Moylan / / 154 IFP OFP IFP, OFP Hill & Moylan (passivity) : u T y V (x) V (x(t 1 )) V (x(t 0 )) V (x) V u T y t1 t 0 u T ydt IFP OFP IFP, OFP Hill & Moylan LCR 2 : [ ] T H ẋ =(J R) g(x)u x y = g(x) T [ H x H J R [ ] [ ] T H H Ḣ = R y T u u T y x x ] T / / 154

25 IFP OFP IFP, OFP Hill & Moylan 2 u System 1 System 2 y 1 y y 2 2 u y 2 u 1 System 1 System 2 y 1 u 2 y IFP OFP IFP, OFP Hill & Moylan Augmented System u u y y M(x) System 1 M(x) T V (x(t 1 )) V (x(t 0 )) = t1 t1 t 0 u T ydt = t1 t 0 u T y dt t 0 u T M(x) T ydt / / 154 IFP OFP IFP OFP IFP OFP IFP, OFP Hill & Moylan OFP(Output Feedback Passivity): IFP(Input Feedback Passivity): s(u, y) =u T y ρy T y OFP(ρ) Passive System ρi OFP(ρ) s(u, y) =u T y νu T u IFP(ν) Passive System νi IFP(ν) IFP OFP IFP, OFP Hill & Moylan α Σ OFP(ρ) ασ OFP(ρ/α) Σ IFP(ν) ασ IFP(αν) OFP( ρ) IFP(ρ) OFP( ρ) ρi ρi IFP(ρ) / / 154

26 IFP OFP IFP, OFP Hill & Moylan Lyapunov : V (0) = 0, V(x) 0, V 0 Lyapunov V (x) E = {x V (x) =0} x =0 E x =0 : ẋ = (x, u), y = h(x, u) 1. u =0 2. u =0u =0 3. y = h(x) u = ky (k >0) IFP OFP IFP, OFP Hill & Moylan ẋ = (x, u), y = h(x, u) : Zero-State Detectability (ZSD): y 0 x(t) 0 (t ) : Zero-State Observability (ZSO): y 0 x(t) / / 154 IFP, OFP 1. u =0 0 V (x) V (x) 0 2. V (x) 0 V (x) =0 u u 1 System 1 y 1 y System 1 u T 1 y 1 ρ 1 y T 1 y 1 ν 1 u T 1 u 1 IFP OFP IFP, OFP Hill & Moylan 0 V (x) u T h(x, u), or u h(x, u) h(x, u) =h(x, 0) η(x, u)u V (x) =0 u u T h(x, 0) u T η(x, u)u 0 h(x, 0) = 0 {x V (x) =0} ẋ = (x, 0) {x h(x, 0) = 0} {x V (x) =0} x 0 x = V (x) =0y = h(x) =0 V kh(x) T h(x) {x h(x) =0} 0 x =0 IFP OFP IFP, OFP Hill & Moylan y 2 u 2 V 1 (x 1 ) System 2 System 2 u 1 =0, u 2 =0 System1,2 u T 2 y 2 ρ 2 y2 T y 2 ν 2 u T 2 u 2 u =0 V 2 (x 2 ) 1. ν 1 ρ 2 0 ν 2 ρ ν 1 ρ 2 > 0 ν 2 ρ 1 > 0 V 1, V : V 1 V 2 Lyapunov / / 154

27 Hill & Moylan IFP OFP IFP, OFP Hill & Moylan : System 1 u 1 =0 V 1 System 2 y 2 = Ku 2 K K λ min λ max V 2 =0 λ min ρ 2 λ 2 max ν 2 > 0 ρ 2 > 0, ν 2 u T 2 y 2 ρ 2 y T 2 y 2 ν 2 u T 2 u 2 (λ min ρ 2 λ 2 max ν 2 )u T 2 u 2 0 λ min ρ 2 λ 2 max ν 2 > 0 ρ 2 > 0, ν 2 ν 1 ρ 2 > 0 ν 2 ρ 1 > 0 OFP(ρ 1 ) System 1 (ν 1 =0) K System 1 (ρ 1 =0, ν 1 =0) K IFP OFP IFP, OFP Hill & Moylan : ẋ = (x)g(x)u y = h(x)j(x)u Hill & Moylan, 1976: V (x) s(u, y) =u T y ρy T y νu T u k q : R n R k, W : R n R k m L V = 1 2 q(x)t q(x) ρh(x) T h(x) L g V (x) =h(x) T 2ρh(x) T j(x) q T (x)w (x) W (x) T W (x) = 2νI j(x)j(x) T 2ρj(x) T j(x) / / 154 Hill & Moylan...(1) Hill & Moylan...(2) IFP OFP IFP, OFP Hill & Moylan Hill & Moylan IFP : ν IFP(ν) j(x) 0 : ρ =0j(x)j(x) T =2νI W (x) T W (x) (): V (x) L V 0 L g V (x) =h(x) T j(x) =0 u =0 Lyapunov : ρ = ν =0W (x) =0 Hill & Moylan IFP OFP IFP, OFP Hill & Moylan : j(x) =0 V (x) m 1 (L g h)(0) : V/ x(0) = 0 ( ) h x (0) = g T 2 V x 2 (0) 2 V/ x 2 (0) R T R h/ x rank Rg(0) = m rank (L g h)(0) = rank {g(0) T R T Rg(0)} = m / / 154

28 (1) (2) IFP OFP IFP, OFP Hill & Moylan Hill & Moylan : ẋ = Ax Bu, y = Cx Du V (x) =x T Px/2 (P > 0) L, W D =0 PA A T P = L T L PB = C T L T W W T W = D D T PA A T P 0 PB = C T IFP OFP IFP, OFP Hill & Moylan (Positive Real): H(s) =C(sI A) 1 B D ( ) (positive real ) 1. Re (λ i (A)) 0, i =1,...,n 2. H(jω)H( jω) T 0, ω / λ i (A) 3. A s i lim (s s i )H(s) s si Positive Real Lemma: H(s) / / 154 (3) IFP OFP IFP, OFP Hill & Moylan (Strictly Positive Real): H(s) =C(sI A) 1 B D ( ) 1. Re (λ i (A)) < 0, i =1,...,n 2. H(jω)H( jω) T > 0, ω / λ i (A) 3. H( ) H( ) T > 0 lim ω ω2(m q) det[h(jω) H( jω) T ] > 0 q = rank[h( )H( )] Kalman-Yakubovich-Popov Lemma: H(s) P >0, L, W, ɛ>0 PA A T P = L T L ɛp PB = C T L T W W T W = D D T FB FB positive real IFP/OFP D =0PA A T P<0, PB = C T / / 154

29 Vidyasagar y 2 = φ(u 2 ) y 2 αβ 2 u 2 2 < β α 2 u 2 2 (u 2 0) y 2 =0 (u 2 =0) { αu 2 2 <u 2 y 2 <βu 2 2 (u 2 0) y 2 =0 (u 2 =0) y = β 2 u 2 y 2 FB FB positive real IFP/OFP (α, β) β = { u T 2 y 2 >αu T 2 u 2 (u 2 0) y 2 =0 (u 2 =0) FB FB positive real IFP/OFP y = α 2 u 2 u / / 154 FB FB positive real IFP/OFP (α, β) 1 (α, β) 0 System 1 FB FB positive real IFP/OFP 1 (α, β) (β >0) 1 (1/β)I V (x) OFP( k) k = αβ/(β α) 0 u 1 y 2 ( 1/ β)i System 1 y y 1 1 u 2 u 2 ( 1/ β)i / / 154

30 (1) FB FB positive real IFP/OFP OFP( k) V ȳ T 1 (u 1 kȳ 1 )= ū 2 (y 2 kū 2 ) ū 2 = u 2 y 2 /β ū 2 (y 2 kū 2 ) > 0 (ū 2 0) V < 0 (y 1 0) 0 u 1 y 2 ( 1/ β)i System 1 ( 1/ β)i y y 1 1 u 2 u 2 FB FB positive real IFP/OFP u ' αβ /( β α) ( 1/ β)i System 1 u1 y1 u y u = β/(β α) (u 1 αy 1 ), y = u 1 /β y 1 u '' ( 1/ β)i System 1 u1 y 1 αi y' y' / / 154 (2) (1) FB FB positive real IFP/OFP V 1 u T y =(u 1 αy 1 ) T (u 1 /β y 1 ) = α β { u T 1 y 1 1 β α β ut 1 u 1 αβ } α β yt 1 y 1 1 u T y 1 α β ut u αβ α β yt y FB FB positive real IFP/OFP SISO G 0 (s) G 0 (s) p (Gain Margin): (α, β) 1/κ j0 ( κ (α, β)) p 1 α 1 β Im Re (Sector Margin): (α, β) (α, β) / / 154

31 (2) positive real FB FB positive real IFP/OFP (Disc Margin): D(α, β) 1 ( 1 2 α 1 ) j0 1 ( 1 β 2 α 1 ) β () p D(α, β) 1 α 1 β ( ) ( ) () Im Re FB FB positive real IFP/OFP β>0 positive real : G 0 (s) D(α, β) Ḡ(s) = G 0(s)(1/β) αg 0 (s)1 strictly positive real G 0 (s) D(α, β) D(α, β) p Ḡ(s) positive real u '' ( 1/ β)i System 1 u1 y 1 αi y' System 1 G 0 (s) L[y ] L[u ] = G 0(s)(1/β) αg 0 (s) / / 154 positive real(2) IFP/OFP positive real = (Disc Criterion): G 0 (s) D(α, β) (α, β) OFP : 3 1. ɛ OFP( α ɛ) 2. D(α, ) 3. IFP(ν) (ν α) FB FB positive real IFP/OFP FB FB positive real IFP/OFP IFP : ɛ IFP( 1/β ɛ) D(0,β) 1 / α 1 / β / / 154

32 Hamiltonian FB Hamiltonian FB : q =(q 1,...,q n ) T : u =(u 1,...,u n ) T : T (q, q) : W (q) Lagrangian (Lagrangean ): L = T W Euler-Lagrange : d dt ( L q i d dt ) L q i = u i, [ ] T L q i =1,...,n [ ] T L = u q / / 154 Hamiltonian T (q, q) = 1 2 qt M(q) q M(q) Euler-Lagrange : [ L : p = q : q = φ(p, q) ] T Hamiltonian: H(p, q) = [ q T p L(q, q) ] q=φ(p,q) Hamiltonian FB M(q) q c(q, q)g(q) =u c(q, q) =c 1 (q, q)c 2 (q, q) [ ] (M(q) q) c 1 (q, q) = q ( ), q c 2 (q, q) = 1 [ ( q T ] T M(q) q) () 2 q [ ] T W g(q) = () q Hamiltonian FB T = q T M(q) q/2 : p = M(q) q Hamiltonian: H = 1 2 pt M(q) 1 p W (q) H q, q H = 1 2 qt M(q) q W (q) = T W / / 154

33 Hamiltonian FB L : dl = [ ] L d q q [ ] L dq q p, q, L H : dh = q T dp p T d q dl dl p p T d q [ ] L dh = q T dp dq q [ ] H = q T p [ ] [ ] H L = q q H p, q L q, q Legendre Hamiltonian FB Euler-Lagrange ṗ = [ ] T L u q Hamilton : p, q [ ] T H q = p [ ] T H ṗ = u q / / 154 Hamiltonian system Hamiltonian FB Port controlled Hamiltonian system: Hamiltonian system [ ] T H q = p [ ] T H ṗ = u q [ ] T H y = (= q) p Ḣ = u T y Port controlled Hamiltonian system H Hamiltonian FB Port-Controlled Hamiltonian System : T = q T M(q) q/2 =p T M(q) 1 p/2 (M(q) M 0 > 0) W (q) 0 u = ky = k q Ḣ = kyt y = k q T q p 0(t ) W q W/ q 0(x 0) u = k q (D ): W (q) =0 W / / 154

34 Hamiltonian FB : W (q) (q W/ q 0(x 0)) Hamiltonian: H(p, q) =H(p, q) W (q)w(q) = T (p, q)w (q) [ ] T H = p [ ] T H, p [ ] T H = q [ ] T H q = p [ ] T H ṗ = q [ ] T H y = (= q) p [ ] T H q [ ] T W q [ ] T W q [ ] T W u q [ ] T W q Hamiltonian FB Hamiltonian [ ] T W (): u = g(q) ū q port controlled Hamiltonian system: [ ] T H q = p [ ] T H ṗ = ū q y = [ ] T H (= q) p port controlled Hamiltonian system ū = ky / / 154 (1) (2) : W = k 1 2 (q q 0) T (q q 0 ) u = g(q) k 2 q k 1 (q q 0 ) Hamiltonian FB k 1 > 0 q 0 q u = g(q) k 1 (q q 0 )ū ū = k 2 y = k 2 q (k 2 > 0) W (q) =0 ( q 0 ) Hamiltonian FB g(q): k 2 q: D()- k 1 (q q 0 ): P()- PD (dynamic-based control) / / 154

35 (1) (2) Hamiltonian FB P τ O θ m z m 2 K O OP L m O m J G τ LK mg Hamiltonian FB P m z OP θ q =(q 1,q 2 ) T =(θ, z) T, q =( q 1, q 2 ) T =( θ, ż) q p u = τ, x =(q T, q T ) T =(θ, z, θ, ż) T x =(q T,p T ) T : : T = J 2 θ 2 m 2 {(z2 L 2 ) θ 2 2L θż ż 2 } = 1 2 qt M(q) q = 1 [ ] J m(l 2 z 2 ) ml 2 qt q ml m U = K 2 z2 mg(l y m )= K 2 z2 mg{l(1 cos θ)z sin θ} / / 154 (3) (4) : L = T U : ( ) τ M(q) q c(q, q) = 0 ( ) 2mz θż mg(z cos θ L sin θ) c(q, q) = mz θ 2 Kz mg sin θ : H = H k 1 2 q2 1 H( x) k 1 >m 2 G 2 /K : u = k 1 q 1 v : Hamiltonian FB : p = M(q) q : H = 1 2 pt M(q) 1 p U(q) : q = H p (= q) ṗ = H q ( τ 0 ) Hamiltonian FB q = H p (= q) ṗ = H q y = H p 1 = q 1 ( v 0 ) / / 154

36 (5) (6) Hamiltonian FB y =0, u =0q 1 = θ = θ 0 (const.), θ =0, θ =0 ml z mg(z cos θ 0 L sin θ 0 )k 1 θ 0 =0 m z Kz mg sin θ 0 =0 z k 1 θ 0 = z(lk mg cos θ 0 ) LK mg cos θ 0 0z z z 0 z = z 0, ż =0, z =0 z 0 Kk 1 θ 0 mg(kl mg cos θ 0 )sinθ 0 = Kk 1 θ 0 mgkl sin θ 0 m2 G 2 sin 2θ 0 =0 2 k 1 > max{m 2 G 2 /K, mg(kl mg)/4} θ 0 θ = θ 0 =0θ 0 z 0 z = z 0 =0 Hamiltonian FB LK mg cos θ 0 =0 z θ 0 =0 LK = mg () LK mg cos θ 0 0 y = k 2 y u = k 1 q 1 k 2 q 1 k 1 > max{m 2 G 2 /K, mg(kl mg)/4}, k 2 > / / 154 (1) : : ẋ = (x)g(x)u u = α(x) Lyapunov V (x) : ẋ = (x) =(x)g(x)α(x) Lyapunov Sontag-type Sontag Sontag Sontag-type cl Lyapunov Sontag-type Sontag Sontag Sontag-type cl V (x) / / 154

37 (2) Lyapunov Sontag-type Sontag Sontag Sontag-type cl [ ] V V = {(x)g(x)α(x)} x = L V (x)(l g V (x))α(x) < 0, (x 0) α(x) L g V V L g V (x) =0 V u = α(x) L V < 0 (x 0) V (x) : L g V (x) =0 x 0 x L V (x) < 0. α(x) Lyapunov Sontag-type Sontag Sontag Sontag-type cl (Control Lyapunov unction, cl): V (x) ẋ = (x) g(x)u (cl) V (x) L g V (x) =0 x 0 L V (x) < 0 cl ( ) α s (x) / / 154 Sontag-type Sontag-type Cl V (x) Sontag-type : u = α s (x) = L V (L V ) 2 (L g V (L g V ) T ) 2 L g V (L g V ) T (L g V ) T, L g V 0 0, L g V =0 Sontag-type Sontag-type cl V (x) L g V 0: V = L V L g Vα s (x) { } = L V L V (L V ) 2 (L g V (L g V ) T ) 2 = (L V ) 2 (L g V (L g V ) T ) 2 < 0 Lyapunov Sontag-type Sontag Sontag Sontag-type cl cl Lyapunov Sontag-type Sontag Sontag Sontag-type cl L g V =0, x 0: V = L V < 0 V / / 154

38 Sontag-type Sontag-type () Sontag-type L g V 0 α s (x) L g V =0? : 0, i b =0and a<0 φ(a, b) = a a 2 b 2, elsewhere b b a : V (x) Sontag-type α s (x) : a = L V, b = L g V (L g V ) T α s (x) = { 0, x =0 φ(l V,L g V (L g V ) T )(L g V ) T, x 0 Lyapunov Sontag-type Sontag Sontag Sontag-type cl S = {(a, b) R 2 b>0 or a<0} : p 2 F (a, b, p) =bp 2 2ap b =0 S p = φ(a, b) (b =0, a<0 ) F p (a, b, φ(a, b)) = 2 a 2 b 2 0, (a, b) S φ(a, b) Lyapunov Sontag-type Sontag Sontag Sontag-type cl α s (x) / / 154 Sontag-type Sontag-type L g V = 0 α s (x)???? L V < 0 α s (x) 0 (Small Control Property, scp): Cl V (x) α c (x) (α c (0) = 0) L V (x)l g V (x)α c (x) < 0, x 0 Lyapunov Sontag-type Sontag Sontag Sontag-type cl α s (x) 0 α s (x)???? L V > 0 α s (x) (L g V L V x ) α s Lyapunov Sontag-type Sontag Sontag Sontag-type cl Scp Sontag-type : Scp V (x) Lyapunov 1 Sontag-type / / 154

39 () cl Lyapunov Sontag-type Sontag Sontag Sontag-type cl : L V L g V α c, L V 0 α s α c α c 2 L g V 2, L V 0 α s L g V, L V 0 α c, L g V α s Scp cl V (x) Sontag-type Lyapunov Sontag-type Sontag Sontag Sontag-type cl : ẋ = (x)g(x)u (0) = 0 scp cl V (x) cl scp cl V (x) Sontag-type / / 154

??

?? ( ) 2014 2014 1/119 = (ISS) ISS ISS ISS iss-clf iss-clf ISS = (ISS) FB 2014 2/119 = (ISS) ISS ISS ISS iss-clf iss-clf ISS R + : 0 K: γ: R + R + K γ γ(0) = 0 K : γ: R + R + K γ K γ(r) (r ) FB K K K K R

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. K E N Z OU 8 9 8. F = kx x 3 678 ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. D = ±i dt = ±iωx,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx ver. 1.0 18 6 20 F = f m r = F r = 0 F = 0 X = Y = Z = 0 (1 δr = (δx, δy, δz F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2 δr (2 1 (1 (2 n (X δx + Y δy + Z δz = 0 (3 1 F F = (X, Y, Z δr = (δx, δy, δz S δr δw

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> MATLAB/Simulink による現代制御入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/9241 このサンプルページの内容は, 初版 1 刷発行当時のものです. i MATLAB/Simulink MATLAB/Simulink 1. 1 2. 3. MATLAB/Simulink

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

untitled

untitled 1 n m (ICA = independent component analysis) BSS (= blind source separation) : s(t) =(s 1 (t),...,s n (t)) R n : x(t) =(x 1 (t),...,x n (t)) R m 1 i s i (t) a ji R j 2 (A =(a ji )) x(t) =As(t) (1) n =

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

数値計算:常微分方程式

数値計算:常微分方程式 ( ) 1 / 82 1 2 3 4 5 6 ( ) 2 / 82 ( ) 3 / 82 C θ l y m O x mg λ ( ) 4 / 82 θ t C J = ml 2 C mgl sin θ θ C J θ = mgl sin θ = θ ( ) 5 / 82 ω = θ J ω = mgl sin θ ω J = ml 2 θ = ω, ω = g l sin θ = θ ω ( )

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx Sturm-Liouville Green KEN ZOU 2006 4 23 1 Hermite Legendre Lguerre 1 1.1 2 L L p(x) d2 2 + q(x) d + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 2 + q(x) d + r(x) (2) L = d2 2 p(x) d q(x) + r(x) (3) 2 (Self-Adjoint

More information

1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u

1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u ( ) LPV( ) 1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u m 1 m m 2, b 1 b b 2, k 1 k k 2 (2) [m b k ( ) k 0 b m ( ) 2 ẋ = Ax, x(0) 0 (3) (x(t) 0) ( ) V (x) V (x) = x T P x >

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information