3. 重力波と沿岸 赤道ケルビン波見延庄士郎 ( 海洋気候物理学研究室 ) 予習課題 を印刷解答の上, 授業冒頭で提出してください. 予習のための課題なので

Size: px
Start display at page:

Download "3. 重力波と沿岸 赤道ケルビン波見延庄士郎 ( 海洋気候物理学研究室 ) 予習課題 を印刷解答の上, 授業冒頭で提出してください. 予習のための課題なので"

Transcription

1 3. 重力波と沿岸 赤道ケルビン波見延庄士郎 ( 海洋気候物理学研究室 ) 予習課題 hp:// を印刷解答の上, 授業冒頭で提出してください. 予習のための課題なので, 冒頭のみ提出を受け付けます. また以下の you ube のビデオを見ておくこと. 個々のビデオは全部は見ずに, 雰囲気がつかめる程度見ればいいです. 大気の重力波 :hp:// (30 秒 ) 津波シミュレーション :hp:// の 3:50 から日本海の津波沿岸ケルビン波シミュレーション :hps:// 赤道ケルビン波, 海面高度観測 hps:// (1997 年 1 月 ~4 月に赤道ケルビン波が伝播しエルニーニョのきっかけとなった様子 ) 2014 年 9 月 30 日 16:35 重力波見えるかな? 年 9 月 30 日 16: 年 9 月 30 日 17:25 3 4

2 第二回まとめ をコリオリ パラメータといい, Ω を地球自転の角速度,θ を緯度として,=2 Ω sin θ で表される. 密度一様な一層流体の, 運動方程式と連続の式からなる, 閉じた方程式系を, 浅水方程式系という. 摩擦が, 運動に伴う減速の場合, 潜水方程式系の運動方程式は, v = v g ru (2.4a) = u g rv y 摩擦が風応力である場合には, 運動方程式は y τ v τ = v g + (2.5a) = u g + H y H 連続の式は ρ 0 v = H + y (2.6) ρ 0 (2.4b) (2.5b) 5 本日の目的 波は離れた場所に, 物質が移動することなく, エネルギーを伝えるので, さまざまな波動現象は社会生活でも非常に重要である. 電磁波 : 視覚 ( 可視光 ), 電波 (TV, 携帯 ), 赤外線 ( ヒーター, 輻射熱 ) 音波 : 聴覚 地球流体 ( 大気 海洋 ) にも, いくつかの重要な波が存在する. これらの波が離れたところにエネルギーを伝えることが, 多くの大気 海洋現象で重要な役割を果たす. 本日は, エルニーニョ理論でも重要となる, 赤道ケルビン波とその近縁である, 沿岸ケルビン波, そして重力波について学ぶ. これらの波はいずれも前スライドの浅水方程式系で記述でき, その場合の伝播速度はとなる. 扱う順序は, 重力波 沿岸ケルビン波 赤道ケルビン波 地球流体には, もう一つロスビー波または惑星波と呼ばれる重要な波が存在する. それについては次回学ぶ. 6 伝播方程式 ( 一階線形偏微分方程式 ) の基礎 1/2 空間一次元 (, ) の場合,u +cu =0の伝播方程式と呼ぶ. この式の特徴を理解するために, u= u (ξ)=u(-c), ξ=-cを上式に代入し, 解となることを確認しよう. なお解がu(-c) で表されるということは次のスライドに示すように,- 平面上の直線上を伝搬することを意味する. 右の式変形の中で, 下に示す偏微分についての合成関数の微分を使う. 伝播方程式 ( 一階線形偏微分方程式 ) の基礎 2/2 u=u(ξ)=u(-c) で ξ=-c が解であるということは,-c= 一定であれば, ξ が一定で, したがって u(ξ) も一定となる. -c= 一定とは,- 平面の直線にほかならない. 左右の図は同じ情報を色塗りと ( 左 ), 俯瞰した高さと色 ( 右 ) で描いている. u ξ u= u (ξ)=u(-c) であるということは, 左図の依存関係があるので, ξ du u( ξ ) = dξ ξ du u( ξ ) = dξ ここで ξ=-c なので ξ ξ = 1, = c u + cu = u( ξ ) + c u( ξ ) ξ du ξ du = + c dξ dξ du du = c + c = 0 dξ dξ 7 結局,u +cu =0 (c は正の定数 ) という方程式は, u( c ) という解をもち, その解は速度 c で正の方向への伝播を表す. 同様に,u -cu =0 (c は正の定数 ) という方程式は, u( + c ) という解をもち, その解は速度 c で負の方向への伝播を表す. 正か負を入れる 8

3 波動方程式 空間二次元 (, y) の場合は u c 2 u =0 を, 空間一次元 () の場合, u c 2 u =0 を波動方程式と呼ぶ (uは未知変数,cは定数) 空間一次元では,の正の方向と負の方向にそれぞれcの速度で伝播する. このことは, 以下のように簡単に理解できる 2 u c u = 0 なら c c u = なので u cu =0 または u +cu =0 が解である. これらは二つ前のスライドから, それぞれ,の負の方向に速度 c で伝播, 正の方向に速度 c で伝播する解をもつ. 正か負を入れる 伝播 波動方程式のまとめ u +cu =0 (c は正の定数 ) という方程式は, u( c ) という解をもち, この解は速度 c で正の方向への伝播を表す. u -cu =0 (c は正の定数 ) という方程式は, u( + c ) という解をもち, この解は速度 c で負の方向への伝播を表す. 空間一次元 () の場合, u c 2 u =0 を波動方程式と呼ぶ. この式は u +cu =0 または u cu =0 を解として持ち, それぞれ, の正の方向に速度 c で伝播, 負の方向に速度 c で伝播を表す. 9 出発方程式系 波動の基本的な性質を考える上で, 運動方程式 (2.4ab) にあった外力である風応力および (2.5ab) にあった摩擦力は無視しよう. したがって, 出発方程式系は運動方程式 v = v g (3.1a) = u g y および連続の式 v = H + (2.6) 再掲 y である. (3.1b) 運動方程式のスケール解析 1/3 運動方程式 ( 摩擦, 風応力は無視, 右の式 ) に 3 つ項があるけれど, 場合によっては主な 2 項のバランスで近似できて, 話が簡単になる. そこでどの場合にどのバランスとなるのかを, スケール解析よって調べよう. 現象のスケールを 長さスケール L, 時間スケール T, 速度スケール U, と置く. = v g U?, U, g T L 加速度コリオリ圧力傾度 バランスが成り立つように決まると考えて, 積極的にスケール解析には使わない

4 運動方程式のスケール解析 2/3 Q1. コリオリ項と圧力傾度項がバランス ( 地衡流バランス ) する ための,Tの条件はなにか? なお, 記号ずっと大きいを使おう. A1. 加速度項がコリオリ項よりはるかいに小さいなら, 加速度項以外の他の2 項のバランスとなる. この場合 U U T 1 T = v g U?, U, g T L 加速度コリオリ圧力傾度 運動方程式のスケール解析 3/3 Q1. 加速度項と圧力傾度項がバランスするための,Tの条件はなにか? A1. 加速度項がコリオリ項よりはるかいに大きいなら, 加速度項と圧力傾度項のバランスとなる. この場合 U U T 1 T 時間スケールが 1/ よりも十分短い. おおざっぱに言えば,1 日よりも十分短い. = v g U?, U, g T L 加速度コリオリ圧力傾度 時間スケールが短い場合の支配方程式 東向き運動方程式 (3.1a) から 北向き運動方程式 (3.1b) から 連続の式は (2.6) のまま ( ) h = H u + v y 1 式 1 変数の式に帰着させる. そのためには,(3.2ab) の対称性から,hを残すのがよさそう. (2.6)/ (3.2ab) から未知変数にhのみを含む式が得られる h gh h + h = (3.3) これは二次元の波動方程式にほかならない. u v = gh = gh ( ) 0 yy y (3.2a) (3.2b) 時間スケールが短い : 非回転重力波 ( ) 0 h gh h + h = (3.3 再掲 ) yy この波の復元力は重力であるので, この波を ( 非回転 ) 重力波と呼ぶ. 重力波には, 海洋の津波, 大気の山岳波などがある. 重力波の伝播速度は c = ± gh (3.4) である. 水深が 4000 m で, 重力加速度を 10 m/s 2 とすると, 重力波の伝播速度は 200 m/s である

5 ロスビー変形半径 空間一次元で, 長さ L に渡って初期水位を与えたとする. L 圧力傾度力重力波応答の加速 盛り上がりを逃がすように, 圧力傾度力の向きに流体が加速される. これは重力波として応答している. 重力波伝播速度は gh なので, 距離 Lを伝播するのに要する時間スケールは, L /. gh この時間スケールが 1/ よりも十分大きいなら, 流れがコリオリ力で曲げられ, 圧力傾度力はコリオリ力でバランス. L / gh 1/ gh L = R O ロスビーの変形半径 L 圧力傾度力 コリオリ力 地衡流の収束 発散?( 一定の場合 ) 1) 初期水位 2) 流れは? 北 赤道東 3) 収束発散? 4) 移動方向? 収束発散はゼロ, 伝播はしない 岸に沿う波 コリオリ力によって, 流体粒子の運動が曲げられる. しかし岸があると, 岸に流が当たってしまい, 異なる運動をするだろう. 岸にくっついて, 水位が盛り上がっている状況を考えよ方北う. コリオリが効くとどうなるか? 向半どういう流れどんな水平収元の水位はどっに球岸ができる? 束発散分布? ちに移動? 伝でコリオリが播は効く流れ収し岸束よを う右とに発す見散る次は定量的理解に式を使おうるこの波を沿岸ケルビン波という 19 20

6 沿岸ケルビン波の解 1/3 岸が邪魔するために, 岸に直交する流速は, 岸に沿う流速よりもはるかに小さい. 実は沿岸ケルビン波は, 岸に直交する方向の流速 ( 今 v としよう ) がゼロとなる解で表現さ れる. その際の式は, (3.2a 再掲 ) u v = gh u =, gh (3.2b 再掲 ) v + u = ghy u = gh y (2.6 再掲 ) h = H( u + vy) h = Hu 岸に沿う 方向には,(3.5a)(3.6) からhのみの 1 式を得ることは容易で h ghh これは非回転重力波と同じく,の正負の2 = 0 (3.7) 方向に速度 で伝播する波を示している. しかし物理ではときどきあることだが,2つの解がともに成り立つとは限らない. (3.5 a) (3.5b) (3.6) 沿岸ケルビン波の解 2/3 岸に直交するy 方向には,u, hがそれぞれ特定の構造を持つと仮定する. ただし,(3.5a) または (3.6) が成り立つには, その構造 Y(y) が同一である必要がある. したがって, ( u, h)(, y, ) = Y ( y) ( uɶ (, ), hɶ (, )) (3.8) y 方向の構造を決めるために,(3.5b) (3.6) H h = Hu = ( ghy ) (3.8) 上式 gh Yhɶ = Yyhɶ (3.9) 沿岸ケルビン波の解 3/3 ところで速度で伝播するなら伝播方程式は hɶ + gh hɶ = 0 (3.10) であり, 一方速度で伝播するなら伝播方程式は hɶ gh hɶ = 0 (3.11) である. したがって, 正方向の伝播なら (3.9)(3.10) からYについて Y = Y gh / (3.12) y であって,Y は沖に向かって減衰する. 逆に負方向の伝播なら,(3.9)(3.10) からは Y について (3.13) Y = + Yy gh / となりYは沖に向かって増加する. 物理的に存在可能な解は前者のみなので,(3.10)(3.11) の式の組が成り立ち, 波は正の方向に伝播することが確認できた. 23 赤道に沿う波 岸が支える沿岸ケルビン波のように, 両半球の水位が互いに支えることによって, 赤道にも同様の波が生じる この波を赤道ケルビン波と呼ぶ. 北 1) 初期水位 東 赤道 2) 流れは? 3) 収束発散? 4) 移動方向? 発散収束 発散収束 伝播は東向き. 速度はやはり gh 24

7 ケルビン波の補足 導出時の概念図では分かりやすさのために, 静止状態から考えたので, 岸 ( 赤道 ) に直交する流れもあるように描いたが, その流れはケルビン波によるのではない. 純粋なケルビン波では, 伝播方向の速度成分のみを持つ. 収流れ束コリオリ力圧力傾度力発散高発散 収束 第 3 回のまとめ おおざっぱにいうと, 時間スケールが 1 日よりも短い現象では, コリオリ項を無視することができる. その場合に重要となる波は, ( 非回転 ) 重力波である. 層厚が H の 1 層モデルでは重力波の伝播速度は. 上の波が 1/ の時間で伝播する距離を, ロスビーの変形半径と言い, これよりも大きいスケールでは一般に地衡流バランスが成り立つ ( 摩擦無しの場合 ) 岸があることで生じる波が, 沿岸ケルビン波で,1 層モデルの伝播速度はで, 岸を右に見る方向に伝播する. それと近い関係にあるのが, 赤道ケルビン波で, 1 層モデルの伝播速度はで赤道に沿って東向きに伝播する

3. 重力波と沿岸 赤道ケルビン波 2014 年 9 月 30 日 16:35 見延庄士郎 ( 海洋気候物理学研究室 ) 予習課題 : 以下の you tube のビデオを見ておくこと. 個々のビデオは全部は見ずに, 雰囲気がつかめる程度見ればいい.

3. 重力波と沿岸 赤道ケルビン波 2014 年 9 月 30 日 16:35 見延庄士郎 ( 海洋気候物理学研究室 ) 予習課題 : 以下の you tube のビデオを見ておくこと. 個々のビデオは全部は見ずに, 雰囲気がつかめる程度見ればいい. 3. 重力波と沿岸 赤道ケルビン波 2014 年 9 月 30 日 16:35 見延庄士郎 ( 海洋気候物理学研究室 ) minobe@sci.hokudai.ac.jp 予習課題 : 以下の you ube のビデオを見ておくこと. 個々のビデオは全部は見ずに, 雰囲気がつかめる程度見ればいい. 大気の重力波 : hp://www.youube.com/wach?v=yxnkzecu3be 津波シミュレーション

More information

4. ロスビー波と 1.5 層モデル見延庄士郎 ( 海洋気候物理学研究室 ) 予習ビデオ : NASA JPL の海面高度偏差でエルニーニョを見るページ. 赤道ケルビン波が見えるか? の動画 ht

4. ロスビー波と 1.5 層モデル見延庄士郎 ( 海洋気候物理学研究室 ) 予習ビデオ : NASA JPL の海面高度偏差でエルニーニョを見るページ. 赤道ケルビン波が見えるか?   の動画 ht 4. ロスビー波と 1.5 層モデル見延庄士郎 ( 海洋気候物理学研究室 ) 予習ビデオ : NASA JPL の海面高度偏差でエルニーニョを見るページ. 赤道ケルビン波が見えるか? hps://sealevel.jpl.nasa.gov/elnino015/inde.hml の動画 hps://sealevel.jpl.nasa.gov/elnino015/1997vs015-animaed-800.gif

More information

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧 2. 潜水方程式系の導出 見延庄士郎 ( 海洋気候物理学研究室 ) minobe@mail.sci.okudai.ac.jp 第 1 回まとめ 1/2 二つの変数の関係の強さを表す統計量は相関であり, 最小値は -1, 最大値は +1, 無相関は である. 過去数十年間の ( 気象庁は 3 年 ) 月ごとの平均値を, 月平均データの平年値または気候値という. 観測値から平年値を引いたものが, 偏差である.

More information

運動方程式の基本 ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧力傾度力 + 摩擦力 流体の運動

運動方程式の基本 ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧力傾度力 + 摩擦力 流体の運動 2. 浅水方程式系の導出 見延庄士郎 ( 海洋気候物理学研究室 ) 第 1 回まとめ 1/2 二つの変数の関係の強さを表す統計量は相関であり, 最小値は -1, 最大値は +1, 無相関は である. 過去数十年間の ( 気象庁は 3 年 ) 月ごとの平均値を, 月平均データの平年値または気候値という. 観測値から平年値を引いたものが, 偏差である. 連続する n 個のデータを平均して, 中央のデータの値に置き換える平滑化が,

More information

4. ロスビー波と 1.5 層モデル見延庄士郎 ( 海洋気候物理学研究室 ) 予習ビデオ : NASA JPL の海面高度偏差でエルニーニョを見るページ. 赤道ケルビン波が見えるか? の動画 ht

4. ロスビー波と 1.5 層モデル見延庄士郎 ( 海洋気候物理学研究室 ) 予習ビデオ : NASA JPL の海面高度偏差でエルニーニョを見るページ. 赤道ケルビン波が見えるか?   の動画 ht 4. ロスビー波と 1.5 層モデル見延庄士郎 ( 海洋気候物理学研究室 ) 予習ビデオ : NASA JPL の海面高度偏差でエルニーニョを見るページ. 赤道ケルビン波が見えるか? hps://sealevel.jpl.nasa.gov/elnino015/inde.hml の動画 hps://sealevel.jpl.nasa.gov/elnino015/1997vs015-animaed-800.gif

More information

7 渦度方程式 総観規模あるいは全球規模の大気の運動を考える このような大きな空間スケールでの大気の運動においては 鉛直方向の運動よりも水平方向の運動のほうがずっと大きい しかも 水平方向の運動の中でも 収束 発散成分は相対的に小さく 低気圧や高気圧などで見られるような渦 つまり回転成分のほうが卓越

7 渦度方程式 総観規模あるいは全球規模の大気の運動を考える このような大きな空間スケールでの大気の運動においては 鉛直方向の運動よりも水平方向の運動のほうがずっと大きい しかも 水平方向の運動の中でも 収束 発散成分は相対的に小さく 低気圧や高気圧などで見られるような渦 つまり回転成分のほうが卓越 7 渦度方程式 総観規模あるいは全球規模の大気の運動を考える このような大きな空間スケールでの大気の運動においては 鉛直方向の運動よりも水平方向の運動のほうがずっと大きい しかも 水平方向の運動の中でも 収束 発散成分は相対的に小さく 低気圧や高気圧などで見られるような渦 つまり回転成分のほうが卓越している そこで 回転成分に着目して大気の運動を論じる 7.1 渦度 大気の回転成分を定量化する方法を考えてみる

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

浅水方程式 順圧であるためには, 静水圧近似が必要 Dw Dt + コリオリ力 = 1 p + 粘性 g ρ z w が u, v に比べて小さい 運動の水平距離に対して水深が浅い 浅水 海は深いが, 水平はさらに広い 最大 1 万 km 浅水方程式 : u, v, の式 水平 2 次元の解 D D

浅水方程式 順圧であるためには, 静水圧近似が必要 Dw Dt + コリオリ力 = 1 p + 粘性 g ρ z w が u, v に比べて小さい 運動の水平距離に対して水深が浅い 浅水 海は深いが, 水平はさらに広い 最大 1 万 km 浅水方程式 : u, v, の式 水平 2 次元の解 D D 流体地球科学第 11 回 東京大学大気海洋研究所准教授藤尾伸三 ttp://ovd.aori.u-tokyo.ac.jp/ujio/2015ciba/ ujio@aori.u-tokyo.ac.jp 2016/1/8 順圧流の運動方程式 流体の密度が一様ならば, 圧力 静水圧 の水平勾配は鉛直一様 海面の高さによる水平圧力勾配のみ ηx,y px, y, z = ρ g dz = ρgη z p x

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

外から中心に投げたボールの動画 1 中心に向かってまっすぐ投げる 回転盤でボールをキャッチ 円盤の回転速度とボールの速度を合わせれば, 投げたボールを取れる ( 投げた人にはボールが回ってくるように見える ) 投げてからの時間は, 回転の半周期 円盤の外から見る図斜めに飛んでいく 投げた人が見る図コ

外から中心に投げたボールの動画 1 中心に向かってまっすぐ投げる 回転盤でボールをキャッチ 円盤の回転速度とボールの速度を合わせれば, 投げたボールを取れる ( 投げた人にはボールが回ってくるように見える ) 投げてからの時間は, 回転の半周期 円盤の外から見る図斜めに飛んでいく 投げた人が見る図コ 流体地球科学第 6 回 外から中心に投げたボールは? 回転盤の外から見た図 ( ) 期待される位置, ( ) 実際の位置 間違った図 1 間違った図 2 正しい図 東京大学大気海洋研究所准教授藤尾伸三 http://ovd.aori.u-tokyo.ac.jp/ujio/215chiba/ ujio@aori.u-tokyo.ac.jp 215/11/2 最終更新日 215/11/24 ボールは左

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

流体地球科学第 7 回 力のバランス永遠に回れるバランス ( 以下, 北半球 =コリオリ力は進行方向の右向き ) 慣性振動 : 遠心力 =コリオリ力 地衡風 : コリオリ力 = 圧力傾度力 東京大学大気海洋研究所准教授藤尾伸三

流体地球科学第 7 回 力のバランス永遠に回れるバランス ( 以下, 北半球 =コリオリ力は進行方向の右向き ) 慣性振動 : 遠心力 =コリオリ力 地衡風 : コリオリ力 = 圧力傾度力 東京大学大気海洋研究所准教授藤尾伸三 流体地球科学第 7 回 力のバランス永遠に回れるバランス ( 以下, 北半球 =コリオリ力は進行方向の右向き ) 慣性振動 : 遠心力 =コリオリ力 地衡風 : コリオリ力 = 圧力傾度力 東京大学大気海洋研究所准教授藤尾伸三 http://ovd.aori.u-tokyo.ac.jp/fujio/205chiba/ fujio@aori.u-tokyo.ac.jp F C F A 旋衡風 : 遠心力

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

Microsoft PowerPoint - 夏の学校(CFD).pptx

Microsoft PowerPoint - 夏の学校(CFD).pptx /9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

スライド 1

スライド 1 非線形数理秋の学校 パターン形成の数理とその周辺 - 反応拡散方程式理論による時 空間パターンの解析を中心に - 2007 年 9 月 25 日 -27 日 モデル方程式を通してみるパターン解析ー進行波からヘリカル波の分岐を例としてー 池田勉 ( 龍谷大学理工学部 ) 講義概要, 講義資料, 講義中に使用する C 言語プログラムと初期値データ, ヘリカル波のアニメーションをウェブで公開しています :

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

第五回まとめ 2/2 東岸域では, 北風がエクマン流を通じて湧昇をもたらす. これを沿岸湧昇と呼ぶ. 沿岸湧昇域での, 局所的な大気海洋結合変動現象であるカリフォルニアニーニョ, ニンガルーニーニョなどが発見されている. エクマン流と地衡流の関係の仮説 前回学んだエクマン流が, どう地衡流と関係する

第五回まとめ 2/2 東岸域では, 北風がエクマン流を通じて湧昇をもたらす. これを沿岸湧昇と呼ぶ. 沿岸湧昇域での, 局所的な大気海洋結合変動現象であるカリフォルニアニーニョ, ニンガルーニーニョなどが発見されている. エクマン流と地衡流の関係の仮説 前回学んだエクマン流が, どう地衡流と関係する 6. 海洋風成循環と海面高度 見延庄士郎 ( 海洋気候物理学研究室 ) 復習課題 http://www.sci.hokudai.ac.jp/~minobe/class/po_clm/05_review_ekman.pdf を印刷解答の上, 授業冒頭で提出してください. 冒頭のみ提出を受け付けます. 東岸域でのエクマン流 Q. 大洋の東岸域では, 岸に沿う風が吹くと, エクマン流が岸に直交するので,

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

本日の内容 6. 海洋風成循環と海面高度 見延庄士郎 ( 海洋気候物理学研究室 ) 予習課題 : 下のニュースに目を通しておくこと. 温暖化進めば今世紀半ばまで年 4 兆円支出米政府監査院 ( 朝日新聞 2017/11/25)

本日の内容 6. 海洋風成循環と海面高度 見延庄士郎 ( 海洋気候物理学研究室 ) 予習課題 : 下のニュースに目を通しておくこと. 温暖化進めば今世紀半ばまで年 4 兆円支出米政府監査院 ( 朝日新聞 2017/11/25) 本日の内容 6. 海洋風成循環と海面高度 見延庄士郎 ( 海洋気候物理学研究室 ) 予習課題 : 下のニュースに目を通しておくこと. 温暖化進めば今世紀半ばまで年 4 兆円支出米政府監査院 ( 朝日新聞 2017/11/25) http://www.shi.com/rticles/askbt1t4fkbtuhbi002.html クローズアップ科学 黒潮が 12 年ぶりに大蛇行高潮の被害誘発 シラス漁に打撃

More information

Microsoft Word - mathtext8.doc

Microsoft Word - mathtext8.doc 8 章偏微分と重積分 8. 偏微分とは これまで微分を考える際 関数は f という形で 関数値がつの変数 に依存している場合のみを扱ってきました しかし一般に変数はつとは決まっておらず f のように 複数の変数を持つ関数も考えなければなりません そ こでこの節では今まで学んできた微分を一般化させ 複数の変数に対応した偏微分と呼ばれるものについて説明します これまでの微分を偏微分と区別したいとき 常微分という呼び方を用います

More information

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする 相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 第 2 回 : 海洋数値モデルの概要 海洋大循環モデル海洋プリミティブ方程式圧力項 粘性 拡散項の取り扱い境界条件初期値 境界値問題海洋モデルの種類地球流体力学的現象地衡流平衡と温度風平衡海洋アイソスタシーとリモートセンシングどこまでダウンスケールできるか 海洋大循環モデル 地球流体力学的な現象を数値的に表現する数値モデル地球流体力学的現象 : 地球回転と成層の効果が支配的な現象 海洋大循環モデルの適用範囲

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

Microsoft PowerPoint - 1章 [互換モード]

Microsoft PowerPoint - 1章 [互換モード] 1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

eq2:=m[g]*diff(x[g](t),t$2)=-s*sin(th eq3:=m[g]*diff(z[g](t),t$2)=m[g]*g-s* 負荷の座標は 以下の通りです eq4:=x[g](t)=x[k](t)+r*sin(theta(t)) eq5:=z[g](t)=r*cos(the

eq2:=m[g]*diff(x[g](t),t$2)=-s*sin(th eq3:=m[g]*diff(z[g](t),t$2)=m[g]*g-s* 負荷の座標は 以下の通りです eq4:=x[g](t)=x[k](t)+r*sin(theta(t)) eq5:=z[g](t)=r*cos(the 7. 制御設計の例 7.1 ローディングブリッジの制御装置 はじめに restart: ローディング ブリッジは 負荷をある地点から別の地点に運びます 台車の加速と減速は好ましくない振動を発生してしまいます そのため負荷はさらに安定し難くなり 時間もかかってしまいます 負荷がある地点から他の地点へ素早く移動し すみやかに安定するような制御装置を設計します 問題の定義 ローディング ブリッジのパラメータは以下の通りです

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

図 7-: コリオリ力の原理 以下では 回転台の上で物体が運動したとき 物体にはたらくみかけの力を定量的に求めてみる 回転台は角速度 で回転していて 回転台に乗っている観測者から見た物体の速度ベクトルの動径方向の成分を u 接線方向の成分を v とする 図 7-3: 回転台の上での物体の運動 はじめ

図 7-: コリオリ力の原理 以下では 回転台の上で物体が運動したとき 物体にはたらくみかけの力を定量的に求めてみる 回転台は角速度 で回転していて 回転台に乗っている観測者から見た物体の速度ベクトルの動径方向の成分を u 接線方向の成分を v とする 図 7-3: 回転台の上での物体の運動 はじめ 7 大気の力学 () 7. コリオリ力 水平面内に気圧の差があると風が吹く原因となる 気圧の差によって空気塊 高にはたらく力を気圧傾度力 (pessue gaient foce) という 気圧傾度力は等 圧線と直角に 高圧側から低圧側に向かってはたらく しかし 天気図で見ら れる風向と 等圧線とのなす角は直角ではないことが多い これは 地球の自 高転の影響によって 地球上を運動する空気塊にコリオリ力

More information

領域シンポ発表

領域シンポ発表 総観気象学 のシラバス ( 第 1 回 ) 日本の四季と気圧配置 ( 第 2 回 ) 大気運動の全体像 ( 第 3 回 ) 大気の運動方程式の導出 (1) ( 第 4 回 ) スケール解析 ( 第 5 回 ) コリオリ力 ( 第 6 回 ) 地衡風 温度風 ( 第 7 回 ) ロスビー波 ( 第 8 回 ) 温帯低気圧 ( 傾圧不安定波 ) ( 第 9 回 ) 前線 ( 第 10 回 ) 乾燥対流

More information

破壊の予測

破壊の予測 本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の FDTD 解析法 (Matlab 版 2 次元 PML) プログラム解説 v2.11 1. 概要 FDTD 解析における吸収境界である完全整合層 (Perfectl Matched Laer, PML) の定式化とプログラミングを2 次元 TE 波について解説する PMLは異方性の損失をもつ仮想的な物質であり 侵入して来る電磁波を逃さず吸収する 通常の物質と接する界面でインピーダンスが整合しており

More information

DVIOUT

DVIOUT 最適レギュレータ 松尾研究室資料 第 最適レギュレータ 節時不変型無限時間最適レギュレータ 状態フィードバックの可能な場合の無限時間問題における最適レギュレータについて確定系について説明する. ここで, レギュレータとは状態量をゼロにするようなコントローラのことである. なぜ, 無限時間問題のみを述べるかという理由は以下のとおりである. 有限時間の最適レギュレータ問題の場合の最適フィードバックゲインは微分方程式の解から構成される時間関数として表現される.

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

ベクトル公式.rtf

ベクトル公式.rtf 6 章ラプラシアン, ベクトル公式, 定理 6.1 ラプラシアン Laplacian φ はベクトル量である. そこでさらに発散をとると, φ はどういう形になるであろうか? φ = a + a + a φ a + a φ + a φ = φ + φ + φ = 2 φ + 2 φ 2 + 2 φ 2 2 φ = 2 φ 2 + 2 φ 2 + 2 φ 2 = 2 φ したがって,2 階の偏微分演算となる.

More information

木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合

木村の物理小ネタ   単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合 単振動と単振動の力学的エネルギー. 弾性力と単振動 弾性力も単振動も力は F = -x の形で表されるが, x = の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合いの位置 である たとえば, おもりをつるしたばねについて, ばねの弾性力を考えるときは, ばねの自然長を x = とし, おもりの単振動で考える場合は, おもりに働く力がつり合った位置を

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

Taro-解答例NO3放物運動H16

Taro-解答例NO3放物運動H16 放物運動 解答のポイント 初速度, 水平との角度 θ で 高さ の所から投げあげるとき 秒後の速度 =θ =θ - 秒後の位置 =θ 3 ( 水平飛行距離 ) =θ - + 4 ( 高さ ) ~4 の導出は 基本問題 参照 ( 地上から投げた場合の図 : 教科書参照 ) 最高点の 高さ 最高点では において = 水平到達距離 より 最高点に到達する時刻 を求め 4に代入すると最高点の高さH 地上では

More information

平面波

平面波 平面波 図.に示すように, 波源 ( 送信アンテナあるいは散乱点 ) から遠い位置で, 観測点 Pにおける波の状態を考えてみる. 遠いとは, 波長 λ に比べて距離 が十分大きいことを意味しており, 観測点 Pの近くでは, 等位相面が平面とみなせる状態にある. 平面波とは波の等位相面が平面になっている波のことである. 通信や計測を行うとき, 遠方における波の振舞いは平面波で近似できる. したがって平面波の性質を理解することが最も重要である.

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ 物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右のつの物質の間に電位差を設けて左から右に向かって電流を流すことを行った場合に接点を通って流れる電流を求めるためには

More information

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を ( 全体 htt://home.hiroshima-u.ac.j/atoda/thermodnamics/ 9 年 月 8 日,7//8 戸田昭彦 ( 参考 G 温度計の種類 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k T を単位として決められている 9 年 月 日 ( 世界計量記念日 から, 熱力学温度 T/K の定義も熱エネルギー k T/J に基づく. 定積気体温度計

More information

19年度一次基礎科目計算問題略解

19年度一次基礎科目計算問題略解 9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる

More information

DVIOUT

DVIOUT 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

宇宙機工学 演習問題

宇宙機工学 演習問題 宇宙システム工学演習 重力傾度トルク関連. 図に示すように地球回りの円軌道上を周回する宇宙機の運動 を考察する 地球中心座標系を 系 { } 軌道面基準回転系を 系 { } 機体固定系を 系 { } とする 特に次の右手直交系 : 地心方向単位ベクトル 軌道面内 : 進行方向単位ベクトル 軌道面内 : 面外方向単位ベクトル 軌道面外 を取る 特に この { } Lol Horiotl frme と呼ぶ

More information

粘性 接する流体の間に抵抗が働き, その大きさは速度差に比例 粘性係数流体と壁の間にも抵抗 ( 摩擦 ) は働く 粘性や摩擦の大きさは, 物質の性質で異なる ネバネバ 粘性が大 流体は一緒に動こうとするサラサラ 粘性が小 ある流体粒子の速度を U, 上側 下側の流体粒子の速度を U U, U L 粘

粘性 接する流体の間に抵抗が働き, その大きさは速度差に比例 粘性係数流体と壁の間にも抵抗 ( 摩擦 ) は働く 粘性や摩擦の大きさは, 物質の性質で異なる ネバネバ 粘性が大 流体は一緒に動こうとするサラサラ 粘性が小 ある流体粒子の速度を U, 上側 下側の流体粒子の速度を U U, U L 粘 流体地球科学第 9 回 東京大学大気海洋研究所准教授藤尾伸三 http://ovd.aori.-tokyo.ac.jp/fjio/2015chiba/ fjio@aori.-tokyo.ac.jp 2015/12/11 最終更新日 2015/12/9 北大西洋の中緯度の表層における収支 質量保存 = 0 (q 2 q 1 ) + (0 q 3 ) = 0 南から入ってくる流量 q 1, 北に出て行く流量

More information

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63> 力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

線形代数とは

線形代数とは 線形代数とは 第一回ベクトル 教科書 エクササイズ線形代数 立花俊一 成田清正著 共立出版 必要最低限のことに限る 得意な人には物足りないかもしれません 線形代数とは何をするもの? 線形関係 y 直線 yもも 次式で登場する (( 次の形 ) 線形 ただし 次元の話世の中は 3 次元 [4[ 次元 ] 次元 3 次元 4 次元 はどうやって直線を表すの? ベクトルや行列の概念 y A ベクトルを使うと

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

Chap3.key

Chap3.key 区分求積法. 面積 ( )/ f () > n + n, S 長方形の和集合で近似 n f (n ) リーマン和 f (n ) 区分求積法 リーマン和 S S n n / n n f ()d リーマン積分 ( + ) + S (, f ( )) 微分の心 Zoom In して局所的な性質を調べる 積分の心 Zoom Ou して大域的な性質を調べる 曲線の長さ 領域の面積や体積 ある領域に含まれる物質の質量

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

偏微分方程式、連立1次方程式、乱数

偏微分方程式、連立1次方程式、乱数 数値計算法 011/6/8 林田清 大阪大学大学院理学研究科 常微分方程式の応用例 1 Rutherford 散乱 ( 原子核同士の散乱 ; 金の薄膜に α 粒子をあてる ) 1 クーロン力 f= 4 0 r r r Ze y からf cos, si f f f y f f 粒子の 方向 y方向の速度と座標について dv Ze dvy Ze y, 3 3 dt 40m r dt 40m r d dy

More information

Microsoft Word - 9章(分子物性).doc

Microsoft Word - 9章(分子物性).doc 1/1/6 9 章分子物性 1 節電気双極子モーメント (Electric Dipole Moment) 電子双極子モーメント とは 微小な距離 a だけ離れて点電荷 q が存在する状態 絶対値は aq で 負電荷 q から正電荷 q へ向かうベクトルである 例えば 水分子は下右図のような向きの電気双極子モーメントをもち その大きさは約 1.85D である このように元々から持っている双極子モーメントを

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

反射係数

反射係数 平面波の反射と透過 電磁波の性質として, 反射と透過は最も基礎的な現象である. 我々の生活している空間は, 各種の形状を持った媒質で構成されている. 人間から見れば, 空気, 水, 木, 土, 火, 金属, プラスチックなど, 全く異なるものに見えるが, 電磁波からすると誘電率, 透磁率, 導電率が異なるだけである. 磁性体を除く媒質は比透磁率がで, ほとんど媒質に当てはまるので, 実質的に我々の身の回りの媒質で,

More information

自由落下と非慣性系における運動方程式 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣

自由落下と非慣性系における運動方程式 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣 自由落下と非慣性系における運動方程式 1 1 2 3 4 5 6 7 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣性力があるか... 7 1 2 無重力 (1) 非慣性系の住人は無重力を体感できる (a) 併進的な加速度運動をしている非慣性系の住人

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

微分方程式 モデリングとシミュレーション

微分方程式 モデリングとシミュレーション 1 微分方程式モデリングとシミュレーション 2018 年度 2 質点の運動のモデル化 粒子と粒子に働く力 粒子の運動 粒子の位置の時間変化 粒子の位置の変化の割合 速度 速度の変化の割合 加速度 力と加速度の結び付け Newtonの運動方程式 : 微分方程式 解は 時間の関数としての位置 3 Newton の運動方程式 質点の運動は Newton の運動方程式で記述される 加速度は力に比例する 2

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 球面波 回折 (. グリーンの定理. キルヒホッフの積分定理 3. ホイヘンスの原理 4. キルヒホッフの回折公式 5. ゾンマーフェルトの放射条件 6. 補足 付録 (90~904 のアプローチ : 回折 (diffaction までの道標. 球面波 (pheical wave のみ対象 : スカラー表示. 虚数単位 i を使用する 3. お詫び : 自己流かつ説明が飛躍する場面があります

More information

2014年度 名古屋大・理系数学

2014年度 名古屋大・理系数学 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(

More information

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える 共振回路 概要 回路は ラジオや通信工学 などに広く使われる この回路の目的は 特定の周波数のときに大きな電流を得ることである 使い方には 周波数を設定し外へ発する 外部からの周波数に合わせて同調する がある このように 周波数を扱うことから 交流を考える 特に ( キャパシタ ) と ( インダクタ ) のそれぞれが 周波数によってインピーダンス *) が変わることが回路解釈の鍵になることに注目する

More information

7 章問題解答 7-1 予習 1. 長方形断面であるため, 断面積 A と潤辺 S は, 水深 h, 水路幅 B を用い以下で表される A = Bh, S = B + 2h 径深 R の算定式に代入すると以下のようになる A Bh h R = = = S B + 2 h 1+ 2( h B) 分母の

7 章問題解答 7-1 予習 1. 長方形断面であるため, 断面積 A と潤辺 S は, 水深 h, 水路幅 B を用い以下で表される A = Bh, S = B + 2h 径深 R の算定式に代入すると以下のようになる A Bh h R = = = S B + 2 h 1+ 2( h B) 分母の 7 章問題解答 7- 予習. 長方形断面であるため, 断面積 と潤辺 S は, 水深, 水路幅 B を用い以下で表される B, S B + 径深 R の算定式に代入すると以下のようになる B R S B + ( B) 分母の /B は河幅が水深に対して十分に広ければ, 非常に小さな値となるため, 上式は R ( B) となり, 径深 R は水深 で近似できる. マニングの式の水深 を等流水深 0 と置き換えると,

More information

Laplace2.rtf

Laplace2.rtf =0 ラプラスの方程式は 階の微分方程式で, 一般的に3つの座標変数をもつ. ここでは, 直角座標系, 円筒座標系, 球座標系におけるラプラスの方程式の解き方を説明しよう. 座標変数ごとに方程式を分離し, それを解いていく方法は変数分離法と呼ばれる. 変数分離解と固有関数展開法. 直角座標系における 3 次元の偏微分方程式 = x + y + z =0 (.) を解くために,x, y, z について互いに独立な関数の積で成り立っていると考え,

More information

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方 大阪大学物理 8 を解いてみた Ⅰ. 問 g 最高点の座標を y max とすると, 力学的エネルギー保存則より \ y m mgy 補足 max g max 小物体の運動方向に対する仕事は重力 ( 保存力 ) の斜面に沿った成分のみであり, 垂直抗力 ( 非保存力 ) の仕事は である よって, 力学的エネルギー保存則が成り立つ これを確かめてみよう 小物体は重力の斜面に沿った外力を受けながらその運動エネルギーを失っていく

More information

1.民営化

1.民営化 参考資料 最小二乗法 数学的性質 経済統計分析 3 年度秋学期 回帰分析と最小二乗法 被説明変数 の動きを説明変数 の動きで説明 = 回帰分析 説明変数がつ 単回帰 説明変数がつ以上 重回帰 被説明変数 従属変数 係数 定数項傾き 説明変数 独立変数 残差... で説明できる部分 説明できない部分 説明できない部分が小さくなるように回帰式の係数 を推定する有力な方法 = 最小二乗法 最小二乗法による回帰の考え方

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使 / 平成 9 年 3 月 4 日午後 時 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使う事ができる 最小作用の原理 : 粒子が時刻 から の間に移動したとき 位置 と速度 v = するのが ラグランジュ関数

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度

More information

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074> 宇宙工学基礎 ( 軌道の基礎 松永三郎 機械宇宙学科 機械宇宙システム専攻 ニュートンの法則 第 法則 力が作用作用しないしない限り 質点質点は静止静止ないしはないしは一定速度一定速度で運動するする ( 慣性の法則 慣性空間 慣性座標系慣性座標系の定義第 法則 慣性座標系におけるにおける質点質点の運動 p F ( pɺ t ( F: 全作用力, pmv: 並進運動量 ( 質量と速度速度の積 慣性系を規準規準としてとして時間微分時間微分を行うことにことに注意第

More information

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx ~ 流体力学の基礎 ~ 第 2 回 流体静力学 2011 年 10 月 22 日 ( 土 ) 講習会のスケジュール概要 ( あくまでも現時点での予定です ) 流体力学の基礎 第 1 回目 2011.09 流体について 第 2 回目 2011.10 流体静力学 第 3 回目 2011.11/12 流体運動の基礎理論 1 第 4 回目 2012.01 流体運動の基礎理論 2 第 5 回目 2012.02

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13) 偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -

More information

Microsoft Word - 201hyouka-tangen-1.doc

Microsoft Word - 201hyouka-tangen-1.doc 数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r 第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無

More information

2014 年 10 月 2 日 本日の講義及び演習 数値シミュレーション 2014 年度第 2 回 偏微分方程式の偏微分項をコンピュータで扱えるようにする 離散化 ( 差分化 ) テイラー展開の利用 1 階微分項に対する差分式 2 階微分項に対する差分式 1 次元熱伝導方程式に適用して差分式を導出

2014 年 10 月 2 日 本日の講義及び演習 数値シミュレーション 2014 年度第 2 回 偏微分方程式の偏微分項をコンピュータで扱えるようにする 離散化 ( 差分化 ) テイラー展開の利用 1 階微分項に対する差分式 2 階微分項に対する差分式 1 次元熱伝導方程式に適用して差分式を導出 04 年 0 月 日 本日の講義及び演習 数値シミュレーション 04 年度第 回 偏微分方程式の偏微分項をコンピュータで扱えるようにする 離散化 ( 差分化 テイラー展開の利用 階微分項に対する差分式 階微分項に対する差分式 次元熱伝導方程式に適用して差分式を導出 Ecel を利用した温度変化シミュレーション 永野 ( 熱流体システム研究室 hagao@tc.ac.p 重要! 熱の伝わり方 ( 伝熱モード

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information