γ γ CsI RIBF SAMURAI CsI(Tl),CsI(Na) APD γ

Size: px
Start display at page:

Download "γ γ CsI RIBF SAMURAI CsI(Tl),CsI(Na) APD γ"

Transcription

1 /02/24

2 γ γ CsI RIBF SAMURAI CsI(Tl),CsI(Na) APD γ

3 i γ γ γ γ CsI(Tl)-A γ CsI(Tl),CsI(Na)

4 ii

5 iii Sn Sn SRC SAMURAI RIBF SAMURAI θ γ θ γ PMT,APD CATANA PMT(R11265U R580),APD CsI PMT APD [11, 12] CsI(Tl) CsI(Na) Cs, 22 Na, 60 Co Cs, 22 Na, 60 Co γ HV CsI(Na)

6 iv 5.6 CsI(Tl)-B CsI(Na)-C CsI(Tl)-A.B CsI(Na)-C,D ESR PMT A,B,C,D,E x, y, z x γ γ γ Na PMT A,B,C,D,E ?? x,y,z A A B C A,B,C

7 v 3.1 CATANA CsI(Tl),CsI(Na),NaI(Tl),BGO PMT(R11265U), PMT(R580), APD(S ) PMT(R11265U,R580) APD (%) CsI(Tl) CsI(Tl)-A,B CsI(Na) CsI(Na)-C,D

8

9 (GDR :Giant Dipole Resonance) GDR E x A E x 80 A 1/3 MeV 3 4 MeV [1] (E1) 1 E1 ˆf 1 H A M S S = 1 2 < 0 [ ˆf 1, [H, ˆf 1 ] ] 0 >= 3A 32πM (1.1.1) (sum rule) 100% [2] GDR (E1 ) Sn MeV 25 MeV GDR [3] GDR 5-7 MeV PDR 1970

10 Sn [3] [4] 1.2 (Z) (N) [5] ,132 Sn 130 Sn 1.3 GDR GDR PDR 10 MeV PDR 15 MeV GDR [3] % PDR PDR 130 Sn, 132 Sn 68 Ni 10.1(7) MeV, 9.8(7) MeV, 9.55(17) MeV 68 Ni 0.17(2) fm 2.8(5) % [6, 7]

11 (Z) (N) [5] Sn GDR PDR PDR [3]

12 4 1 PDR γ 2 RIBF PDR 3 γ γ

13 Ca 2015 Ca PDR 48 Ca 54 Ca 2p 3/2 2p 1/2 52 Ca, 54 Ca PDR [8] RI (RIBF) SAMURAI(Superconducting Analyzer for MUlti-particle from RAdioIsotope beams) 70 Zn(345 AMeV) 48,50,52 Ca γ 48,50,52 Ca Ca γ γ SAMURAI NaI(Tl) γ DALI2 20% γ ,50,52 Ca Ca Pb (Z) (E1 ) B(E1)

14 6 2 E x σ coul B(E1) dσ coul de x = 16π3 9ħc N E1(E x ) db(e1) de x (2.2.1) Pb Pb (Z=82) Pb Z C (Z=6) Ca Pb ( ) Ca Ca 51 Ca 52 Ca PDR GDR 1 51 Ca 51 Ca γ 51 Ca m 51Ca, p 51Ca, E 51Ca, m n, p n, E n γ E γ 52 Ca M M = (E 51Ca + E n ) 2 (p 51Ca + p n ) 2 (2.2.2) E rel = M (m 51Ca + m n ) (2.2.3)

15 2.3 7 γ 52 Ca E x E x = S n + E rel + E γ (2.2.4) E x E rel E γ E rel SAMURAI Ca γ E γ γ 2.2 ( ) γ ( ) 52 Ca 51 Ca* 52 Ca* γ 52 Ca 2.3 RI (RIBF) SAMURAI SAMURAI NEBULA(NEutron detection system for Breakup of Unstable nuclei with Large Acceptance) γ RIBF SAMURAI 2.3,2.4 (SRC) SAMURAI SAMURAI 70 Zn(345 AMeV) 2 52 Ca

16 SRC SAMURAI RIBF 1 ( 70 Zn) Be ( 52 Ca) 2 BigRIPS SAMURAI SAMURAI 52 Ca 51 Ca γ 2.4 γ 60% γ γ γ θ E lab γ = E cm γ 1 γ(1 β cos θ) (2.4.1)

17 2.4 γ 9 β = 0.6, E cm γ = 1 MeV θ 2.5 γ 2.5 β = 0.6 E γ cm = 1 MeV θ γ γ γ I cm γ I lab I lab = (1 + β cos θ)2 1 β 2 I cm (2.4.2) β = 0.6, I cm = 1 γ θ β = 0.6 I cm = 1 θ γ θ E lab, I lab γ γ (θ) θ γ θ SAMRAI β E lab E cm

18

19 11 3 γ 2015 γ CATANA CAlorimeter for γ-ray Transition in Atomic Nuclei at high isospin Asymmetry γ CATANA 3.1 γ γ NaI(Tl),CsI(Tl) Ge Ge CATANA γ γ 3.1 γ γ γ α β γ [9] γ E γ = ħω E e = ħω I(I: )

20 12 3 γ K σ photon (K) σ phton (K) = { ϕ 0 α 4 Z ζ 7/2 (ζ 1) ϕ 0 α 4 Z 5 ζ 1 e πα+2α2 (1 ln α) (ζ 1) (3.1.1) ϕ, ζ, α ϕ 0 = 8π 3 ( e 2 m e c 2 ) cm 2 (3.1.2) ζ = hν 0 m e c 2 (3.1.3) α = e2 4πħc = (3.1.4) Z 5 L,M σ photon σ photon 5 4 σ phton(k) (3.1.5) E γ γ E γ E e γ ϕ γ θ E γ E γ = 1 + ζ(1 cos θ) 2ζ cos 2 ϕ E e =E γ (1 + ζ) 2 ζ 2 cos 2 ϕ tan ϕ = cot(θ/2) 1 + ζ ζ 1 σ comp (3.1.6) (3.1.7) (3.1.8) Z σ comp = Zϕ 0 (1 2ζ + 5.2ζ ζ 3 ) (3.1.9) γ E γ 2m e c 2 = 1.02 MeV

21 3.1 γ 13 E γ 2m e c 2 m e c 2 E γ 137m e c 2 Z 1/3 σ pair σ pair = ϕz 2 ( 28 9 ) 218 ln 2ζ 27 (3.1.10) Z 2 ϕ ( ) e 2 2 ϕ = m e c 2 /137 = (cm 2 ) (3.1.11) γ γ σ 3 σ = σ photon + σ comp + σ pair (3.1.12) 3.1 γ 3 1 MeV 1 MeV [9] 3.1 γ 3 1 MeV 1 MeV

22 14 3 γ I γ dx di di = N Aσ Idx (3.1.13) A I 0 γ x I(x) γ I(x)/I 0 I(x) = I 0 e N A σ A x (3.1.14) γ γ (Photomultiplier Tube ;PMT) Avalanche Photodioide(APD) 3.2 PMT 3.2 [10] PMT (PMT) 1. (Photo Cathode) 2. 1 δ 2

23 3.1 γ 15 N α = α δ N (3.1.15) PMT [10] APD Avalanche Photodioide(APD) PMT 60 80% APD ( ) 3.3 APD [10] 3.3 ( )PMT,( )APD PMT APD

24 16 3 γ 3.2 γ γ CATANA γ β = 0.6 γ CATANA 200 CsI(Tl) CsI(Na) (5 < θ < 111 ) E γ =1 MeV 56 % SAMURAI γ 20 % 100 kev-10 MeV 100 kev-30 MeV θ 9 ϕ Cs γ (661 kev) 10 % CATANA γ 15 cm 9.5 cm CATANA CsI(Tl) CsI(Na) γ ( 3.1.1, 3.1.9, ) Z γ CsI(Tl) CsI(Na) NaI(Tl) BGO 3.2 [12]

25 3.2 γ CATANA ( ) ( ) 3.1 CATANA γ 3.4 ( ) (cm) (PMT) Avalanche Photodiode(APD) CATANA PMT(R11265U,R580) APD(S ) PMT APD

26 18 3 γ 3.2 CsI(Tl),CsI(Na),NaI(Tl),BGO CsI(Tl) CsI(Na) NaI(Tl) BGO (g/cm 3 ) (cm) (nm) (ns) (NaI(Tl) (%)) Z Z Z [11] 3.3 PMT(R11265U), PMT(R580), APD(S ) PMT(R11265U) PMT(R580) APD(S ) (mm 2 ) ϕ (nm) (%) (V) CsI(Tl) CsI(Na) 3.6 PMT APD CsI(Na) PMT CsI(Tl) PMT [11, 12] ESR

27 3.2 γ ( )PMT(R11265U R580), ( )APD 3.6 CsI PMT APD [11, 12]

28

29 γ CATANA CATANA CsI(Tl),CsI(Na) 2 PMT 2 (R11265U,R580) APD S CsI(Tl),CsI(Na) PMT,APD CATANA γ A:CsI(Tl), CATANA ( 4.1) B:CsI(Tl), mm 3 C:CsI(Na), D:CsI(Na), A,B,C,D

30 CsI(Tl) CsI(Na) CATANA PMT(R11265U, R580) APD(S ) 3M ESR [13] PMT APD splitter 2 shaping-amp ADC ADC PC ADC Cs, 22 Na, 60 Co 22 Na A 4.1 N N 0 T 1/2 t t N = N 0 2 T 1/2 (4.2.1) Cs, 22 Na, 60 Co 137 Cs β 137 Ba 661 kev γ 22 Na β +

31 ( )VETO 4.1 (kev) (Bq) ( ) 137 Cs Na 511, Co 1173, Ne 1275 kev γ β kev γ 2 60 Co kev,1333 kev γ 4.3 ( ) 137 Cs,( ) 22 Na,( ) 60 Co 137 Cs 661 kev, 22 Na 511 kev,1275 kev, 60 Co 1173 kev,1333 kev γ

32

33 CsI(Tl)-A PMT(R11265U) HV=850 V, 2.0 µs 60 Co γ 40 K(1461 kev) γ (µ) (σ) 5.2 γ γ CsI(Tl)-A PMT(R11265U) HV 850 V,2.0 µs 3 5 µ(ch) = p0 + p1 E γ (5.2.1)

34 ( ) 137 Cs(661 kev), ( ) 22 Na(511 kev,1275 kev), ( ) 60 Co(1173 kev,1333 kev), ( ), ( ) 60 Co

35 Egamma χ 2 / ndf / 3 p ± p ± channel 5.2 γ E 1 p1 E(%) = σ(ch) p1 E γ (5.2.2) 5.3 CsI(Tl)-B( ) CsI(Na)-C D( ) PMT APD (HV) (sht) HV HV 5.3 CsI(Tl)-B 137 Cs 661 kev 60 Co 1173 kev 60 Co 1333 kev γ R1165U, R580, APD PMT:2.0 µs, APD:1.0 µs PMT R11265U HV R V APD

36 V HV PMT(R11265U):+850 V,PMT(R580):+1200 V, APD:+390 V resolution(%) Cs661 Co1173 Co1333 resolution(%) Cs661 Co1173 Co HV(V) HV(V) resolution(%) Cs661 Co1173 Co HV(V) 5.3 HV R11265U R580U APD 3 γ

37 HV 5.4 CsI(Tl)-B R1165U, R580, APD HV PMT(R11265U) 850 V,PMT(R580) V, APD +390 V PMT(R580) sht=2.0 µs PMT(R11265U),APD PMT(R11265U),APD sht=2.0 µs sht=2.0 µs resolution(%) Cs661 Co1173 Co1333 resolution(%) Cs661 Co1173 Co shaping-time(us) shaping-time(us) resolution(%) Cs661 Co1173 Co shaping-time(us) 5.4 R11265U R580U APD

38 PMT(R11265U,R580) APD (%) R11265U R580 APD 137 Cs(661keV) Co(1173keV) Co(1333keV) PMT APD PMT APD HV sht= 2.0 µs (%) 5.1 PMT(R11265U) PMT(R580) APD HV +850 V,+1200 V,+390 V 137 Cs APD 60 Co R Cs 0.7 % CATANA A CsI(Tl) CsI(Na) CsI(Tl) CsI(Na) 3.2 NaI(Tl) 45 %,85 % CsI Tl Na CsI(Na) PMT(R11265U) PMT CsI(Tl)-B CsI(Na)-C(1 ) PMT HV +850 V CsI(Na) sht = 2.0 µs CsI(Tl) CsI(Na) 5.6 CsI(Tl)-B, CsI(Na)-C CsI(Tl) sht = 2.0 µs CsI(Tl) CsI(Na)

39 resolution(%) Cs661 Co1173 Co1333 resolution(%) CsI(Tl)-B CsI(Na)-C shaping-time(us) 5.5 CsI(Na) CsI(Tl) Egamma(keV) 5.6 CsI(Tl)-B( ) CsI(Na)-C( ) CsI(Tl),CsI(Na) 5.7 CsI(Tl)-A,B CsI(Tl)-C,D CsI(Tl)-A CsI(Tl)-B CsI(Na)-C CsI(Na)-D PMT(R11265U) HV=+850 V, sht=2.0 µs CsI(Tl) CsI(Na) A D B C CsI(Tl) CsI(Na) 5.2 CsI(Tl)-A,B CsI(Na)-C,D PMT A/B, D/C γ A-B,D-C CsI(Na) PMT CsI(Tl) PMT PMT 5.2 ( ) CsI(Tl) % CsI(Na) %

40 32 5 resolution(%) CsI(Tl)-A CsI(Tl)-B resolution(%) CsI(Na)-C CsI(Na)-D Egamma(keV) Egamma(keV) 5.7 CsI(Tl)A.B CsI(Na)C,D CsI(Tl) CsI(Na) CsI(Tl) CsI(Na)-D PMT PMT (ESR) ( ) PMT R11265U,HV=+850 V, sht =2.0 µs %-0.86 % PMT

41 5.4 CsI(Tl)-A 33 resolution(%) ESR absorber Egamma(keV) 5.8 ESR ( ) ( ) 5.4 CsI(Tl)-A CATANA B,C,D CsI(Tl)-A A CsI(Tl)-A PMT ESR ESR PMT(R11265U) CsI(Tl)-A PMT PMT HV=+850 V, sht = 2.0 µs ( ) ( ) PMT 5.9 k 1,k 2,k 3

42 34 5 Egamma(keV) 1400 first second thrid resolution(%) 14 first second thrid channel Egamma(keV) HV, 1 k 1 1 = k 1 2 = k 1 3 = % PMT 2.3 % PMT CsI(Tl)-A PMT PMT PMT 5.10 PMT ( ) ( ) PMT PMT

43 5.5 γ γ ( 6.0 cm 9.0 cm) A,A ( 3.4 cm 5.2 cm) B,B C(6.0 cm 3.4 cm) D(9.0 cm 5.2 cm) A A E E 5.12 x, y, z 5.11 A,B,C,D,E A A B B 5.12 x, y E z E γ cm 1 cm 2 A γ A γ cm 137 Cs A 1 cm HV=+850 V, sht=2.0 µs 5.15 x = z = 0 cm, y = 25 cm γ (529 ch), (10.44 %) z (PMT ) z = 1 3 cm PMT z =4 cm

44 x A x z cm cm z = 0 1 cm x γ cm 22 Na A 1 1 cm 2 HV=+850 V, sht = 2.0 µs x = 0 cm( ) z =0 8.8 cm x =0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm z=0 cm 1.8 cm 22 Na 511 kev, 1275 kev 2 γ

45 5.5 γ 37 channel resolution(%) z(cm) z(cm) γ ( ) ( ) z γ 5.16,5.17 x = y = 0 cm, z = 15 cm γ, 551 kev 470 ch, % 1275 kev 1124 ch, 7.65 % x x 0 cm, 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm channel channel x=0 450 x= x= x= x= z(cm) x=0 x=0.5 x=1.0 x=1.5 x= z(cm) γ ( 511 kev, 1275 kev) x x z γ x = 0 z z (PMT ) z = 0 2 cm kev z = 0.3 cm 2.8 cm 0.51 % z =2.8 cm 8.8 cm 5.4 % 1275 kev z =0.3 cm 2.8 cm 0.20 % z = 2.8 cm 8.8 cm 2.2 %

46 38 5 resolution(%) x=0 x=0.5 x=1.0 x=1.5 x=2.0 resolution(%) x=0 x=0.5 x=1.0 x=1.5 x= z(cm) γ ( 511 kev, 1275 kev)x x z z = 0 2 cm γ z(cm) x x PMT PMT z < 2 cm ( x = 0, z = 0.8 cm) ( x = 0, z = 8.8 cm) kev, 1275 kev x = 0, z = 6.0 cm PMT z = 6.0 cm x = 0, z = 6.0 cm 511 kev,1275 kev 1.0 %, 3.6 %

47 5.5 γ 39 count count channel Na ( x = 0, z = 0.3 cm x = 0, z = 8.8cm) 511 kev,1275 kev channel

48

49 CsI(Tl),CsI(Na) CsI(Tl)-A,B CsI(Na)-C,D PMT(R11265U) CsI(Tl),CsI(Na) PMT 6.1,6.2 PMT SBA(Super Bialkali) SBA PMT [11][12] PMT N e N photon η 300nm-700nm 300nm-700nm γ E γ 1 kev CsI(Tl) 54 CsI(Na) 45 N phton = λ (N e η) (6.1.1) N eλ N eλ = λ { 54 E γ kev (CsI(Tl)) 45 E γ kev (CsI(Na)) (6.1.2)

50 [12] 6.2 PMT Super Bialkali( ) PMT [11] N photon E(%) = 1 Nphoton (6.1.3) HV=+850 V, sht = 2.0 µs CsI(Tl)-A % 31 % PMT PMT 5.5 γ

51 ( )CsI(Tl) CsI(Tl)-A,B ( )CsI(Na) CsI(Na)- C,D γ (CsI(Tl)) CsI(Tl)-A CsI(Tl)-B 137 Cs(661keV) Co(1173keV) Co(1331keV) (CsI(Na)) CsI(Na)-C CsI(Na)-D 137 Cs(661keV) Co(1173keV) Co(1331keV) PMT ,6.4 E 100% 90% A,B,C,D,E A A B B x, y E z E

52 A,A 1 B 1 C 1 PMT E θ 0 Ω 0 = 1 2 (1 cos θ 0) (6.2.1) 6.5 z cm z = 5, 7 cm x = 4.0, 4.0 cm z = 9 cm x = 4.0, 3.5, 3.5, 4.0 cm 0 PMT z = 1 cm -1 cm< x <1 cm efficiency z=1 z=3 z=5 z=7 z= x(cm) 6.5 z = 0 z x A,A 1 A,A PMT θ 1A θ 1A

53 x = 0 E P,C,H,θ, d P (x, y, z) E (0,y, z) P P C H θ PC PH R P ϕ A A PMT ϕ A = A C PMT a=45 mm r=19 mm 6.6 A 1 z = 0 x, z( ) PMT θ 1A P, C, H, θ, d E y = 0 A,A y E 5.2 cm, 3.4 cm, 9.3 cm y = 1 z {5.2 ( )} (6.2.2) x, y, z, ϕ A, r CH, P H, P C, θ, R CH = z + (y a) cos ϕ A sin ϕ A (6.2.3) P H = (y + a) sin ϕ A (6.2.4) P C = CH 2 + P H 2 + x 2 (6.2.5) 1 CH θ = sin P C (6.2.6) R = r cos(ϕ A θ) (6.2.7) θ A A 1 PMT e

54 46 6 θ A = tan 1 R P C (6.2.8) e = 1 2 (1 cos θ A) (6.2.9) x x (PMT ) z z = 5 cm x x = 0 cm PMT z z PMT cos θ z = 5 cm efficiency z=1 z=3 z=5 z=7 z= x(cm) 6.7 A 1 z x B,B 1 B,B θ 1B x x = 0 cm z z = 7 cm x x = 0 cm x A,A B,B z A,A C 1 C 1 θ 1C x

55 efficiency z=1 z=3 z=5 z=7 z= x(cm) 6.8 B 1 y = 0 cm z x z x z (PMT ) efficiency z=1 z=3 z=5 z=7 z= x(cm) 6.9 C 1 z = 0 cm z x

56 x = z ( ) x 1 cm z 1 A B C 1 A B A,B 2 efficinecy no reflection on A on B on C SUM efficinecy no reflection on A on B on C SUM z(cm) z(cm) A,B,C 1 x = x 1cm z z z z 1 2

57 γ CATANA 48,50,52 Ca PDR 2015 CATANA Ca γ γ CATANA CATANA CsI(Tl) CsI(Na) PMT(R11265U,R580) APD(S ) 4 3 CATANA γ 7.2 CATANA CsI(Tl) PMT(R11265U) CATANA

58 50 7 CsI(Tl),CsI(Na) CATANA γ γ RIBF

59 51 [1] ( 1988 ) [2] 19 ( 1988 ) [3] P.Adrich et al., Evidence for Pygmy and Giant Dipole Resonances in 130 Sn and 132 Sn Phys.Rev.Lett.95,132501(2005) [4] D. Savran, T. Aumann, A. Zilges, Progress in Particle and Nuclear Physics (2013), doi: /j.ppnp [5] LBNL Isotopes Project Nuclear Structure Systematics Home Page [6] D.M.Rossi et al. Measurement of the Dipole Polarizability of the Unstable Neutron- Rich Nucules 68 Ni,Phys.Rev.Lett.111,242503(2013) [7] O.wieland et al., Search for the Pygmy Dipole Resonance in 68 Ni at 600 MeV/nucleon Phys.Rev.Lett.102,092502(2009) [8] Tsunenori Inakura, Takashi Nakatsukasa, Kazuhiro Yabana Low-energy E1 strength in select nuclei: Possible constraints on the neutron skins and the symmetry energy arxiv: (2013) [9] W.R.Leo Techniques for Nuclear and Particle Physics Experiment Second Revised Edition(Springer-Verlag, 1993) [10] Glenn F. Knoll 3 ( 2001 ) [11] [12] Saint-Gobain [13] 3M [14] J.Bea, A.Gadea,L.M.Garicia-Raffi,J.Rico, B.Rubio, J.L.Tain imulation of light collection in scintillators with rough surfaces (Nuclear Instruments and Method in Physics Research A 350 (1994) )

60

61 53 4

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2..

1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2.. 21 PET 06S2037G 2010 3 1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2........................................

More information

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L 19 P6 γ 2 3 27 NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter LaBr 3 (Ce) PMT 662keV 2.9% CsI(Tl) 7.1%

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

3 1 4 1.1......................... 4 1.1.1....................... 4 1.1.2.................. 4 1.1.3 Coulomb potential.............. 5 1.2.............

3 1 4 1.1......................... 4 1.1.1....................... 4 1.1.2.................. 4 1.1.3 Coulomb potential.............. 5 1.2............. Fe muonic atom X 25 5 21 3 1 4 1.1......................... 4 1.1.1....................... 4 1.1.2.................. 4 1.1.3 Coulomb potential.............. 5 1.2.......................... 6 1.2.1...................

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

untitled

untitled MPPC 18 2 16 MPPC(Multi Pixel Photon Counter), MPPC T2K MPPC T2K (HPK) CPTA, MPPC T2K p,π T2K > 5 10 5 < 1MHz > 15% 200p.e. MIP 5p.e. p/π MPPC HPK MPPC 2 1 MPPC 5 1.1...................................

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency

STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency STB-Ring Tagging Efficiency Study GEANT4 2010 3 STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency ( )

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13: B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

CsI(Tl) 2005/03/

CsI(Tl) 2005/03/ CsI(Tl) 2005/03/30 1 2 2 2 3 3 3.1............................................ 3 3.2................................... 4 3.3............................................ 5 4 6 4.1..............................................

More information

Canvas-tr01(title).cv3

Canvas-tr01(title).cv3 Working Group DaiMaJin DaiRittaikaku Multiparticle Jiki-Bunnsekiki Samurai7 Superconducting Analyser for Multi particles from RadioIsotope Beams with 7Tm of bending power (γ,n) softgdr, GDR non resonant

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

2 2. : ( Wikipedia ) 2. 3. 2 2. photoelectric effect photoelectron. 2. 3. ν E = hν h ν > ν E = hν hν W = hν

2 2. : ( Wikipedia ) 2. 3. 2 2. photoelectric effect photoelectron. 2. 3. ν E = hν h ν > ν E = hν hν W = hν KEK 9,, 20 8 22 8 704 690 9 804 88 3.. 2 2. : ( Wikipedia ) 2. 3. 2 2. photoelectric effect photoelectron. 2. 3. ν E = hν h ν > ν E = hν hν W = hν 2.2. (PMT) 3 2: PMT ( / ) 2.2 (PMT) ν ) 2 2 00 000 PMT

More information

29 1 8 i 1 1 2 3 2.1.................................... 3 2.2..................................... 4 2.3......................................... 7 2.4.................................... 9 2.5.........................................

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

第1部 一般的コメント

第1部 一般的コメント (( 2000 11 24 2003 12 31 3122 94 2332 508 26 a () () i ii iii iv (i) (ii) (i) (ii) (iii) (iv) (a) (b)(c)(d) a) / (i) (ii) (iii) (iv) 1996 7 1996 12

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 3 SPECT SJ SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 9ch MPPC array 3 3 9 3 3 9.mm(sigma) . SPECT..................................................................3............

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

Ne 17M / 02/ 08

Ne 17M / 02/ 08 2018 32 Ne 17M00819 2019/ 02/ 08 Z 10-12 N=20 sd pf 2 pf 2ħω 26 Ne 30 Ne 2 +, 4 + R 4/2 32 Ne 32 Ne δ 33 Na 1 32 Ne 32 Ne RI 240 MeV 32 Ne SAMURAI CsI(Na) CATANA 33 Na 1 32 Ne 2 + 1 4+ 1 676(3) kev, 2077(13)

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

T T T T A 0 1 A 1 A P (A 1 ) = C 1 6 C 8C 3 = 15 8, P (A ) = C 6 C 1 8C 3 = 3 8 T 5 B P (A 1 B) = =

T T T T A 0 1 A 1 A P (A 1 ) = C 1 6 C 8C 3 = 15 8, P (A ) = C 6 C 1 8C 3 = 3 8 T 5 B P (A 1 B) = = 4 1.. 3. 4. 1. 1 3 4 5 6 1 3 4 5 6. 1 1 1 A B P (A B) = P (A) + P (B) P (C) = P (A) P (B) 3. 1 1 P (A) = 1 P (A) A A 4. A B P A (B) = n(a B) n(a) = P (A B) P (A) 50 015 016 018 1 4 5 8 8 3 T 1 3 1 T T

More information

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV] 3 PET 3-1 PET 3-1-1 PET PET 1-1 X CT MRI(Magnetic Resonance Imaging) X CT MRI PET 3-1 PET [1] H1 D2 11 C-doxepin 11 C-raclopride PET H1 D2 3-2 PET 0 0 H1 D2 3-1 PET 3-2 PET ( : CYRIC ) ( 0 ) 3-1-2 (3-1

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

CdTe γ 02cb059e :

CdTe γ 02cb059e : CdTe γ 02cb059e : 2006 5 2 i 1 1 1.1............................................ 1 1.2............................................. 2 1.3............................................. 2 2 3 2.1....................................

More information

untitled

untitled (1) 100 100 60% (2) (3) - 1 - 1 2 3 4 100 200-2 - 1 2 3-3 - 4 5 6 7......... (1) (2) (3) 1) 2) 3) 8(5) - 4 - 0.5 27.3 3 0.05 27.30 4 0.005 Système International d'unités 7218 1 (1) Pas Pas J/molK J/(molK)

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

光部品関連技術における基盤技術との題を与えられたが、光部品は広範囲の分野であり、その全てを網羅する時間も無いし、それだけの力量...

光部品関連技術における基盤技術との題を与えられたが、光部品は広範囲の分野であり、その全てを網羅する時間も無いし、それだけの力量... .. 6.610.. (Photo Multiplier Tube ) MCP PMT 100 PMT.. (Avalanche Photo Diode). APD A PD A PD APD APD. APD PMT.. APD V.. 5.. - 屈 折 率 1.5 ブルスター 角 56.31 s 偏 光 反 射 率 0.1479 45 方 向 の 反 射 率 (1 面 ) p 偏 光 0.0085

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

ボールねじ

ボールねじ A A 506J A15-6 A15-8 A15-8 A15-11 A15-11 A15-14 A15-19 A15-20 A15-24 A15-24 A15-26 A15-27 A15-28 A15-30 A15-32 A15-35 A15-35 A15-38 A15-38 A15-39 A15-40 A15-43 A15-43 A15-47 A15-47 A15-47 A15-47 A15-49

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

untitled

untitled --- = ---- 16 Z 8 0 8 8 0 Big Bang 8 8 s-process 50 r-process 8 50 N r-process s-process Hydrogen 71% Helium 8% Others 1.9% Heay 4-4% lements(>ni p-process (γ process? r-process s-process Big Bang H,He

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 の

最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます.  このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 の 最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. http://www.morikita.co.jp/books/mid/047143 このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 のものです. 3 10 GIS 3 1 2 GPS GPS GNSS GNSS 23 3 3 2015

More information

日本糖尿病学会誌第58巻第2号

日本糖尿病学会誌第58巻第2号 β γ Δ Δ β β β l l l l μ l l μ l l l l α l l l ω l Δ l l Δ Δ l l l l l l l l l l l l l l α α α α l l l l l l l l l l l μ l l μ l μ l l μ l l μ l l l μ l l l l l l l μ l β l l μ l l l l α l l μ l l

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

取扱説明書 [F-02F]

取扱説明書 [F-02F] F-02F 4. 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 a b c d a b c d a b cd 9 e a b c d e 20 2 22 ab a b 23 a b 24 c d e 25 26 o a b c p q r s t u v w d h i j k l e f g d m n a b c d e f g h i j k l m n x 27 o

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

soturon.dvi

soturon.dvi Stopped Muon 94S2003J 11 3 10 1 2 2 3 2.1 Muon : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 : : : : : : : : 4 2.3 : : : : : : : : : : : : : 6 3 7 3.1 : : : : : : : : : : : : : : : :

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

物理化学I-第12回(13).ppt

物理化学I-第12回(13).ppt I- 12-1 11 11.1 2Mg(s) + O 2 (g) 2MgO(s) [Mg 2+ O 2 ] Zn(s) + Cu 2+ (aq) Zn 2+ (aq) + Cu(s) - 2Mg(s) 2Mg 2+ (s) + 4e +) O 2 (g) + 4e 2O 2 (s) 2Mg(s) + O 2 (g) 2MgO(s) Zn(s) Zn 2+ (aq) + 2e +) Cu 2+ (aq)

More information

1 1 2 2 3 3 RBS 3 K-factor 3 5 8 Bragg 15 ERDA 21 ERDA 21 ERDA 21 31 31 33 RUMP 38 42 42 42 42 42 42 4 45 45 Ti 45 Ti 61 Ti 63 Ti 67 Ti 84 i Ti 86 V 90 V 99 V 101 V 105 V 114 V 116 121 Ti 121 Ti 123 V

More information

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 14 m) ( 10 10 m) 2., 3 1 =reaction-text20181101b.tex

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1 ... 0 60 Q,, = QR PQ = = PR PQ = = QR PR = P 0 0 R 5 6 θ r xy r y y r, x r, y x θ x θ θ (sine) (cosine) (tangent) sin θ, cos θ, tan θ. θ sin θ = = 5 cos θ = = 4 5 tan θ = = 4 θ 5 4 sin θ = y r cos θ =

More information

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE

More information

koji07-02.dvi

koji07-02.dvi 007 I II III 1,, 3, 4, 5, 6, 7 5 4 1 ε-n 1 ε-n ε-n ε-n. {a } =1 a ε N N a a N= a a

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

Note5.dvi

Note5.dvi 12 2011 7 4 2.2.2 Feynman ( ) S M N S M + N S Ai Ao t ij (i Ai, j Ao) N M G = 2e2 t ij 2 (8.28) h i μ 1 μ 2 J 12 J 12 / μ 2 μ 1 (8.28) S S (8.28) (8.28) 2 ( ) (collapse) j 12-1 2.3 2.3.1 Onsager S B S(B)

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C( 3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

( ) 2003 Report on Activies in (JCPRG) HENDEL NRDF DARPE EXFOR Web HENDEL HENDEL NRDF EXFOR EXFOR NRDF IAEA IAEA

( ) 2003 Report on Activies in (JCPRG) HENDEL NRDF DARPE EXFOR Web HENDEL HENDEL NRDF EXFOR EXFOR NRDF IAEA IAEA 2003 Report on Activies in 2003 2003 (JCPRG HENDEL NRDF DARPE EXFOR Web HENDEL HENDEL NRDF EXFOR EXFOR NRDF IAEA 2003 4 14 1 5 26 2 6 17 19 IAEA Nuclear Reaction Data Centers Meeting 2003 ( 6 30 3 7 28

More information

放射線化学, 92, 39 (2011)

放射線化学, 92, 39 (2011) V. M. S. V. 1 Contents of the lecture note by Prof. V. M. Byakov and Dr. S. V. Stepanov (Institute of Theoretical and Experimental Physics, Russia) are described in a series of articles. The first article

More information

Microsoft Word - Wordで楽に数式を作る.docx

Microsoft Word - Wordで楽に数式を作る.docx Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる

More information